Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = marine surface sediments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 187
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

24 pages, 18493 KiB  
Article
Aeolian Landscapes and Paleoclimatic Legacy in the Southern Chacopampean Plain, Argentina
by Enrique Fucks, Yamile Rico, Luciano Galone, Malena Lorente, Sebastiano D’Amico and María Florencia Pisano
Geographies 2025, 5(3), 33; https://doi.org/10.3390/geographies5030033 - 14 Jul 2025
Viewed by 444
Abstract
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its [...] Read more.
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its subsurface preserves sediments from the Miocene marine transgression, while the surface hosts some of the country’s most productive soils. Two main geomorphological domains are recognized: fluvial systems dominated by alluvial megafans in the north, and aeolian systems characterized by loess accumulation and wind erosion in the south. The southern sector exhibits diverse landforms such as deflation basins, ridges, dune corridors, lunettes, and mantiform loess deposits. Despite their regional extent, the origin and chronology of many aeolian features remain poorly constrained, as previous studies have primarily focused on depositional units rather than wind-sculpted erosional features. This study integrates remote sensing data, field observations, and a synthesis of published chronometric and sedimentological information to characterize these aeolian landforms and elucidate their genesis. Our findings confirm wind as the dominant morphogenetic agent during Late Quaternary glacial stadials. These aeolian morphologies significantly influence the region’s hydrology, as many permanent and ephemeral water bodies occupy deflation basins or intermediate low-lying sectors prone to flooding under modern climatic conditions, which are considerably wetter than during their original formation. Full article
Show Figures

Figure 1

24 pages, 9329 KiB  
Article
Formation Kinetics and Morphology Characteristics of Natural Gas Hydrates in Sandstone Fractures
by Chaozheng Ma, Xiaoxu Hu, Hongxiang Si, Jiyao Wang, Juntao Pan, Tingting Luo, Tao Han and Aowang Wang
Appl. Sci. 2025, 15(13), 7399; https://doi.org/10.3390/app15137399 - 1 Jul 2025
Viewed by 302
Abstract
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results [...] Read more.
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results are presented below: (1) In 3 mm Type I fractures, the induction time is longer than that observed in the other two fracture widths. Hydrates predominantly form on the fracture walls and gradually expand toward both sides of the fracture. (2) Gas enters the fracture from multiple directions, causing the hydrate in Type X fractures to expand toward the center from all sides, which shortens the induction time and increases the quantity of hydrate formation. (3) An increase in fracture roughness promotes nucleation of the hydrate at surface protrusions but inhibits the total quantity of hydrate formation. (4) Hydrate dissociation typically propagates from the fracture wall into the interior, exhibiting a wavy surface morphology. Gas production is influenced by the fracture width, with the highest gas production observed in a 3 mm fracture. (5) Due to the memory effect, the hydrate induction time for reformation is significantly shorter, though the quantity of hydrate formed is lower than that of the first formation. This study aims to provide micro-level insights into the distribution of hydrates in sandstone fractures, thereby facilitating more efficient and safe extraction of hydrates from fractures. Full article
Show Figures

Figure 1

15 pages, 1134 KiB  
Article
Cross-Shore Microplastic Accumulation on Sri Lanka’s West Coast One Year After the Catastrophic X-Press Pearl Pollution Event
by Paula Masiá Lillo, Susantha Udagedara, Ross Williamson and Daniel Gorman
Microplastics 2025, 4(3), 37; https://doi.org/10.3390/microplastics4030037 - 1 Jul 2025
Viewed by 709
Abstract
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along [...] Read more.
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along the western coast of Sri Lanka in 2021 provides an important case study. Here, we present a three-dimensional assessment of pellet accumulation (number density) along affected beaches and compare this with other common microplastic particles one year following the incident. Surveys confirmed that pellets were still widely present in the surface sediments of ocean beaches, with some locations returning average densities of 588 pellets m2 (very high according to the global Pellet Pollution Index [PPI]). Profiling deeper into beach sediments showed pellets were present to depths of 30 cm; however, most were restricted to the top 10 cm. Our observations of persistent pellet contamination of beaches along Sri Lanka’s west coast emphasize the need for continued monitoring of these types of events to assess the magnitude and persistence of risks to the environment, wildlife, and human well-being. Full article
Show Figures

Figure 1

17 pages, 5229 KiB  
Article
Distribution and Relationship of Radionuclides and Heavy Metal Concentrations in Marine Sediments from the Areas Surrounding the Daya Bay Power Plant, Southeast China
by Chengpeng Huang, Yunpeng Lin, Haidong Li, Binxin Zheng, Xueqiang Zhu, Yiming Xu, Heshan Lin, Qiangqiang Zhong, Fangfang Shu, Mingjiang Cai and Yunhai Li
J. Mar. Sci. Eng. 2025, 13(7), 1237; https://doi.org/10.3390/jmse13071237 - 27 Jun 2025
Viewed by 288
Abstract
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment [...] Read more.
Radionuclides and heavy metals pose potential risks to marine ecosystems and human health. Daya Bay, the site of China’s first commercial nuclear power plant, has experienced significant anthropogenic impacts, yet the extent of radionuclide and heavy metal contamination remains unclear. Nineteen surface sediment samples were collected in January 2024 and analyzed for natural (210Pb, 228Th, 226Ra, 228Ra, and 40K) and anthropogenic (137Cs) radionuclides, heavy metals (Cu, Pb, Zn, Cd, Cr, Mn, Hg, and As), grain size, and total organic carbon (TOC). The surface sediments of Daya Bay were predominantly fine-grained, with TOC levels ranging from 0.41% to 1.83%, influenced significantly by riverine input from the Dan’ao River. Natural radionuclides exhibited distinct spatial patterns: 210Pb and 228Th activity levels were higher in fine-grained sediments, and correlated with TOC, indicating adsorption and sedimentation controls. In contrast, anthropogenic 137Cs activity was low and showed no significant impact from the nuclear power plant. Notably, the absence in the samples of key anthropogenic radionuclides typically associated with nuclear power plant operations further confirmed the negligible impact of the power plant on local sediment contamination. The results indicated that the baseline levels of both natural and anthropogenic radionuclides and heavy metals were predominantly influenced by natural processes and local anthropogenic activities rather than the operation of the nuclear power plant. This study establishes critical baselines for radioactivity and heavy metals in Daya Bay, underscoring effective pollution control measures and the resilience of local ecosystems despite anthropogenic pressures. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

23 pages, 1042 KiB  
Article
Spatial Dynamics and Ecological Risk Assessment of Microplastics in Littoral Sediments of the Sea of Marmara, Türkiye
by Esra Billur Balcıoğlu İlhan
J. Mar. Sci. Eng. 2025, 13(6), 1159; https://doi.org/10.3390/jmse13061159 - 12 Jun 2025
Viewed by 623
Abstract
Plastic and especially microplastic (MP) pollution has posed a serious threat to the marine environment for decades. Studies on MPs have started to gain momentum especially in the Sea of Marmara (SoM), which is an international waterway, under the pressure of intense maritime [...] Read more.
Plastic and especially microplastic (MP) pollution has posed a serious threat to the marine environment for decades. Studies on MPs have started to gain momentum especially in the Sea of Marmara (SoM), which is an international waterway, under the pressure of intense maritime traffic and exposure to domestic and industrial discharges. The aim of this study was to evaluate the MPs found in surface sediments collected from the coastal area of the SoM according to the locations and to reveal the extent of the existing pollution. This is the first study to examine MPs in both the surface sediments of the entire shorelines of the SoM, which have not been previously reported, and in the surface sediments of Çanakkale Strait. Accordingly, the highest MP abundance was detected at Yenice station (St 15) with 1286 items/kg, and the lowest MP abundance was detected at Turan Village station (St 14) with 199 items/kg. The most dominant shapes across all sampling stations and months were fiber (37%) and fragment (26%), while the most dominant color was blue (35%). According to the polymer characterization results, PE (polyethylene) was found to be the most dominant polymer type. Additionally, most stations were found to have “Moderate” and “High” pollution levels in terms of the contamination factor (CF), and regions were classified as “Moderate” and ‘High’ in terms of the pollution load index (PLI), with the St 15 station specifically exhibiting “Very High” pollution levels. Furthermore, hazard index (HI) and pollution risk index (PRI) values were also calculated regionally, revealing that regions have pollution levels classified as “High”, “Very High”, and even “Dangerous”. This study concluded that there are no areas with low pollution levels in SoM, and that the threat posed by MP pollution in this sea is increasing. Furthermore, this study found that stations with high MP pollution levels are located near river discharges and that rivers significantly contribute to MP pollution in the seas. The findings are of great importance in terms of the need to implement sustainable plans and measures to prevent pollution in the SoM and to take concrete steps to protect and ensure the sustainability of coastal ecosystems, particularly those under serious pollution threats. Full article
(This article belongs to the Special Issue Marine Pollution, Bioremediation and Ecosystem Restoration)
Show Figures

Figure 1

18 pages, 1402 KiB  
Article
A Preliminary Study on the “Hitchhiking” of Radionuclides on Microplastics: A New Threat to the Marine Environment from Compound Pollution
by Chaoran Li, Zhonglai Zhou, Xinran Meng, Junheng Li, Hongyi Chen, Tianle Yu and Min Xu
Toxics 2025, 13(6), 429; https://doi.org/10.3390/toxics13060429 - 24 May 2025
Viewed by 752
Abstract
With the widespread use of plastic products globally, the issue of microplastics as environmental pollutants has become increasingly severe. Due to their small size, large surface area, and hydrophobic properties, microplastics are capable of adsorbing various pollutants, particularly radionuclides, which, in turn, can [...] Read more.
With the widespread use of plastic products globally, the issue of microplastics as environmental pollutants has become increasingly severe. Due to their small size, large surface area, and hydrophobic properties, microplastics are capable of adsorbing various pollutants, particularly radionuclides, which, in turn, can impact the stability of ecosystems. This laboratory study investigates the adsorption capacity of microplastics (PVC) for radionuclides (Ra-226, Cs-137, and K-40) under controlled conditions, examining the effects of spatial distribution and particle size. The laboratory experiment results indicate that the adsorption of Ra-226 by microplastics was significantly higher in the bottom water compared to the surface layer, with concentrations of 13.29 mBq/kg on microplastics mixed with the bottom water and 1.65 mBq/kg in the surface layer. The concentration of Cs-137 on microplastics mixed with the bottom water was 6.99 mBq/kg, while on microplastics mixed with the surface water, the concentration was 1.31 mBq/kg. In contrast, the adsorption of K-40 was lower, with concentrations of 2.1 mBq/kg and 0.35 mBq/kg on microplastics mixed with the bottom and surface water, respectively. Furthermore, microplastics with smaller particle sizes exhibited stronger adsorption capacities. The adsorption concentrations of Ra-226 and Cs-137 by 50 µm microplastics were 13.29 mBq/kg and 6.99 mBq/kg, respectively, while the concentrations for 100 µm and 150 µm particles decreased to 3.14 mBq/kg and 1.39 mBq/kg, and 2.2 mBq/kg and 0.35 mBq/kg, respectively. These findings suggest that the adsorption capacity of microplastics is significantly influenced by particle size and sediment depth, highlighting the potential risk of exacerbating the spread of radioactive pollutants in marine ecosystems. Full article
Show Figures

Graphical abstract

18 pages, 3579 KiB  
Article
Screening and Characterization of Marine Bacillus atrophaeus G4 Protease and Its Application in the Enzymatic Hydrolysis of Sheep (Ovis aries) Placenta for the Preparation of Antioxidant Peptides
by Wei Wang, Guoqing Peng, Jingjing Sun, Chengcheng Jiang, Jianhua Hao and Xiu Zhang
Molecules 2025, 30(10), 2217; https://doi.org/10.3390/molecules30102217 - 20 May 2025
Viewed by 398
Abstract
Proteolytic enzymes, which play a crucial role in peptide bond cleavage, are widely applied in various industries. In this study, protease-producing bacteria were isolated and characterized from marine sediments collected from the Yellow Sea, China. Comprehensive screening and 16S rDNA sequencing identified a [...] Read more.
Proteolytic enzymes, which play a crucial role in peptide bond cleavage, are widely applied in various industries. In this study, protease-producing bacteria were isolated and characterized from marine sediments collected from the Yellow Sea, China. Comprehensive screening and 16S rDNA sequencing identified a promising G4 strain as Bacillus atrophaeus. Following meticulous optimization of fermentation conditions and medium composition via response surface methodology, protease production using strain G4 was significantly enhanced by 64%, achieving a yield of 3258 U/mL. The G4 protease exhibited optimal activity at 50 °C and pH 7.5, demonstrating moderate thermal stability with 52% residual activity after 30-min incubation at 50 °C—characteristics typical of an alkaline protease. Notably, the enzyme retained over 79% activity across a broad pH range (6–11) and exhibited excellent salt tolerance, maintaining over 50% activity in a saturated NaCl solution. Inhibition by phenylmethylsulfonyl fluoride, a serine protease inhibitor, confirmed its classification as a serine protease. The enzyme’s potential in generating bioactive peptides was further demonstrated through hydrolysis of sheep (Ovis aries) placenta, resulting in a hydrolysate with notable antioxidant properties. The hydrolysate exhibited a 64% superoxide anion scavenging activity, surpassing that of reduced glutathione. These findings expand the current understanding of Bacillus atrophaeus G4 proteases and provide a foundation for innovative sheep placenta utilization with potential industrial applications. Full article
Show Figures

Figure 1

24 pages, 2893 KiB  
Article
Adsorption of Methylene Blue Dye onto Various Marine Sediments and Seagrass Biomass of Posidonia oceanica Species: Kinetics and Equilibrium Studies
by Maria C. Vagi, Andreas S. Petsas, Dionysia Dimitropoulou, Melpomeni Leventelli and Anastasia D. Nikolaou
Organics 2025, 6(2), 21; https://doi.org/10.3390/org6020021 - 6 May 2025
Viewed by 693
Abstract
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected [...] Read more.
This study concerns the investigation of the sorption and desorption phenomena of the organic dye methylene blue (MB) on three different marine sediments and non-living biomass of the seagrass species Posidonia oceanica. All tested adsorbents were of natural origin and were collected from unpolluted coasts of the North Aegean Sea (Greece). The batch equilibrium technique was applied and MB concentrations were determined by spectrophotochemical analysis (λ = 665 nm). The experimental results showed that all four isotherm models, Freundlich, Langmuir, Henry, and Temkin, could describe the process. The normalized to organic matter content adsorption coefficients (KOM) ranged between 33.0765 and 34.5279 for the studied sediments. The maximum adsorption capacity (qmax) of sediments was in the range of 0.98 mg g−1 and 6.80 mg g−1, indicating a positive correlation with the adsorbents’ organic matter content, textural analysis of fine fraction (<63 μm), and specific surface area. The bioadsorption of MB on P. oceanica biomass resulted in 13.25 mg g−1 up to 17.86 mg g−1 adsorption efficiency. Desorption studies revealed that the studied dye in most cases was very strongly adsorbed on studied matrices with extremely low quantities of seawater extractable amounts (≤1.62%). According to the experimental findings, phycoremediation by using P. oceanica can be characterized as an efficient method for the bioremediation of dye-polluted wastewater. Full article
Show Figures

Figure 1

13 pages, 6743 KiB  
Article
Weak Underwater Signals’ Detection by the Unwrapped Instantaneous Phase
by Aldo Vesnaver, Luca Baradello and Eleonora Denich
J. Mar. Sci. Eng. 2025, 13(5), 907; https://doi.org/10.3390/jmse13050907 - 3 May 2025
Viewed by 347
Abstract
In marine seismic surveys, weak signals can be overlaid by stronger signals or even random noise. Detecting these signals can be challenging, especially when they are close to each other or partially overlapping. Several normalization methods have already been proposed, but they often [...] Read more.
In marine seismic surveys, weak signals can be overlaid by stronger signals or even random noise. Detecting these signals can be challenging, especially when they are close to each other or partially overlapping. Several normalization methods have already been proposed, but they often lead to distortion. In this paper, we show that the unwrapped instantaneous phase of the associated analytical signal is an effective detection tool and validate it using synthetic and real data examples. This approach does not require user-defined parameters and therefore does not introduce personal bias in the results. We show that weak signals from submarine fluid plumes can be successfully detected by seismic surveys. These plumes can reveal anomalies in shallow sediments such as near-surface gas pockets and soft formations, which can severely affect offshore structures such as platforms and wind farms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 15975 KiB  
Article
Utilization of Marine-Dredged Sediment and Calcium Sulfoaluminate Cement for Preparing Non-Sintered Ceramsites: Properties and Microstructure
by Jiuye Zhao, Zijian Wang, Mengying Xiao, Chunyi Cui and Hailong Liu
J. Mar. Sci. Eng. 2025, 13(5), 891; https://doi.org/10.3390/jmse13050891 - 30 Apr 2025
Viewed by 434
Abstract
The resource utilization of marine-dredged sediment is considered a sustainable approach to its disposal. This paper investigates the preparation of non-sintered ceramsites from marine-dredged sediments and CSA cement via cold-bonded pelletization. The study examines the effects of various preparation conditions on the engineering [...] Read more.
The resource utilization of marine-dredged sediment is considered a sustainable approach to its disposal. This paper investigates the preparation of non-sintered ceramsites from marine-dredged sediments and CSA cement via cold-bonded pelletization. The study examines the effects of various preparation conditions on the engineering properties, phase compositions and microstructures of non-sintered ceramsites. The results indicate that preparation conditions significantly influence the particle size distribution of non-sintered ceramsites. The early-strength development of non-sintered ceramsites prepared from CSA cement is remarkable, with the PCS achieving approximately 60% and 80% of the 28-day strength within 3 days and 7 days, respectively—a marked contrast to OPC. Response surface methodology analysis reveals significant interaction effects between the disc rotation angle, rotational speed, and duration of rotation on the PCS of non-sintered ceramsites. The open-ended porosity of non-sintered ceramsites exhibits greater sensitivity to changes in preparation parameters compared to closed-ended porosity and total porosity. The preparation conditions have negligible impact on the hydration process of CSA cement in non-sintered ceramsites. For both ellipsoidal and plate-like marine-dredged soil particles, ettringite and the AH3 phase provide effective pore-filling and binding effects in the microstructures of non-sintered ceramsites. These findings imply that low-carbon utilization of marine-dredged sediments through the preparation of non-sintered ceramsites offers a nature-based solution for sustainable management in coastal systems. Full article
(This article belongs to the Special Issue Nature-Based Solutions in Coastal Systems)
Show Figures

Figure 1

13 pages, 4270 KiB  
Article
Fabricating a Three-Dimensional Surface-Enhanced Raman Scattering Substrate Using Hydrogel-Loaded Freeze-Induced Silver Nanoparticle Aggregates for the Highly Sensitive Detection of Organic Pollutants in Seawater
by Hai Liu, Yufeng Hu and Zhiyang Zhang
Sensors 2025, 25(8), 2575; https://doi.org/10.3390/s25082575 - 18 Apr 2025
Cited by 2 | Viewed by 564
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy faces challenges in achieving both high sensitivity and reproducibility for the detection of real samples, particularly in high-salinity matrices. In this study, we developed a high-performance, salt-resistant three-dimensional (3D) SERS substrate by integrating physically induced colloidal silver nanoparticle [...] Read more.
Surface-enhanced Raman scattering (SERS) spectroscopy faces challenges in achieving both high sensitivity and reproducibility for the detection of real samples, particularly in high-salinity matrices. In this study, we developed a high-performance, salt-resistant three-dimensional (3D) SERS substrate by integrating physically induced colloidal silver nanoparticle aggregates (AgNAs) with an agarose hydrogel. AgNAs were prepared using a freeze–thaw–ultrasonication method to minimize interference in SERS signals while significantly enhancing the detection efficiency of trace pollutants. The incorporation of the agarose hydrogel not only improved the substrate’s pollutant enrichment capability, but also effectively prevented the aggregation and sedimentation of AgNAs in salt solutions. The developed SERS substrate exhibited an ultralow detection limit of 10−12 M for Nile Blue (NB), with a 100-fold increase in sensitivity compared to colloidal AgNAs and drop-cast AgNAs solid substrates. The analytical enhancement factor (AEF) for malachite green (MG) achieved a value of 1.4 × 107. Furthermore, the substrate demonstrated excellent signal uniformity, with a relative standard deviation (RSD) of 6.74% within a 200 μm × 200 μm detection area and also show a satisfactory RSD of only 9.38% within a larger area of 1 mm × 1 mm. Notably, the 3D SERS substrate exhibited excellent stability under high-salinity conditions (0.5 M NaCl) and successfully detected a model pollutant (MG) in real seawater samples using the standard addition method. This study provides a novel strategy for highly sensitive SERS detection of trace pollutants in saline environments, offering promising applications in environmental monitoring and marine pollution analysis. Full article
(This article belongs to the Special Issue Optical Nanosensors for Environmental and Biomedical Monitoring)
Show Figures

Figure 1

22 pages, 9461 KiB  
Article
Unraveling the Impact of Microplastic–Tetracycline Composite Pollution on the Moon Jellyfish Aurelia aurita: Insights from Its Microbiome
by Xuandong Wu, Hongze Liao, Xiaoyong Zhang, Zhenhua Ma and Zhilu Fu
Microorganisms 2025, 13(4), 882; https://doi.org/10.3390/microorganisms13040882 - 11 Apr 2025
Viewed by 418
Abstract
Microplastics have emerged as a pervasive marine contaminant, with extreme concentrations reported in deep-sea sediments (e.g., 1.9 million particles/m2) and localized accumulations near Antarctic research stations. Particular concern has been raised regarding their synergistic effects with co-occurring antibiotics, which may potentiate [...] Read more.
Microplastics have emerged as a pervasive marine contaminant, with extreme concentrations reported in deep-sea sediments (e.g., 1.9 million particles/m2) and localized accumulations near Antarctic research stations. Particular concern has been raised regarding their synergistic effects with co-occurring antibiotics, which may potentiate toxicity and facilitate antibiotic resistance gene dissemination through microbial colonization of plastic surfaces. To investigate these interactions, a 185-day controlled exposure experiment was conducted using Aurelia aurita polyps. Factorial combinations of microplastics (0, 0.1, 1 mg/L) and tetracycline (0, 0.5, 5 mg/L) were employed to simulate environmentally relevant pollution scenarios. Microbiome alterations were characterized using metagenomic approaches. Analysis revealed that while alpha and beta diversity measures remained unaffected at environmental concentrations, significant shifts occurred in the relative abundance of dominant bacterial taxa, including Pseudomonadota, Actinomycetota, and Mycoplasmatota. Metabolic pathway analysis demonstrated perturbations in key functional categories including cellular processes and environmental signal transduction. Furthermore, microplastic exposure was associated with modifications in polyp life-stage characteristics, suggesting potential implications for benthic–pelagic population dynamics. These findings provide evidence for the impacts of microplastic–antibiotic interactions on cnidarian holobionts, with ramifications for predicting jellyfish population responses in contaminated ecosystems. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

33 pages, 44898 KiB  
Article
The Supra-Salt Sedimentary Sequence of the North Caspian Depression: Stratigraphy and Sedimentary History
by Aitbek Akhmetzhanov, Saule Uvakova, Kenzhebek Ibrashev, Gauhar Akhmetzhanova and Vyacheslav Zhemchuzhnikov
Geosciences 2025, 15(4), 143; https://doi.org/10.3390/geosciences15040143 - 9 Apr 2025
Viewed by 600
Abstract
The North Caspian Basin, known for its oil and gas potential, was formed because of the evolution of the ancient Tethys Ocean and is also a result of the collision of the East European, Kazakhstania, and Siberian paleocontinents. At the beginning of the [...] Read more.
The North Caspian Basin, known for its oil and gas potential, was formed because of the evolution of the ancient Tethys Ocean and is also a result of the collision of the East European, Kazakhstania, and Siberian paleocontinents. At the beginning of the Mesozoic Era, it was a part of the northern continental margin of the Neo-Tethys, which formed Eurasia. In the Late Triassic and Early Jurassic, a major restructuring of the North Caspian sedimentary basin occurred, characterized by angular unconformity and the erosion of underlying sediments in the coastal zones of the basin. The sedimentary succession of the depression accumulating in the Mesozoic Era consisted of alternating siliciclastic and carbonate rocks. It began to form due to the destruction of the uplifts formed north and west of the East European craton and Urals, which resulted in coastal clastic material in the Triassic and Jurassic, but by the end of the Jurassic and Cretaceous, when all uplifts existing in the north of Tethys were leveled, it was mostly marine environments that contributed to the accumulation of siliciclastic and carbonate strata. The appearance of a large amount of sedimentary material towards the center of the depression, causing stress, as well as the deflection of the basement, contributed to fault tectonics and the resumption and manifestation of salt tectonics. As a result of the continuous diapirism of salt bodies during the Late Mesozoic, mini basins were formed, in which different sedimentogenesis was manifested. These processes contributed to the redistribution of hydrocarbons from the underlying pre-salt formations to the intermediate depth interval post-salt succession with Permian–Triassic and also near-surface Jurassic–Cretaceous formations. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

15 pages, 2126 KiB  
Article
Assessment of Heavy Metal Contamination and Ecological Risk in Mangrove Marine Sediments Inside and Outside Zhanjiang Bay: Implications for Conservation
by Haoqiang Guo, Zhiguang Song, Sibo Wang, Suiqi Yan, Yaoping Wang, Yuan Gao and Jia Xia
J. Mar. Sci. Eng. 2025, 13(4), 708; https://doi.org/10.3390/jmse13040708 - 2 Apr 2025
Cited by 1 | Viewed by 675
Abstract
Mangrove ecosystems effectively sequester heavy metals, making their sediment distribution and ecological risk assessment vital for coastal protection. This study focuses on the mangrove forests on both sides of the Donghai Island embankment in Huguang Town, Zhanjiang Bay, analyzing the content, spatial distribution, [...] Read more.
Mangrove ecosystems effectively sequester heavy metals, making their sediment distribution and ecological risk assessment vital for coastal protection. This study focuses on the mangrove forests on both sides of the Donghai Island embankment in Huguang Town, Zhanjiang Bay, analyzing the content, spatial distribution, and potential ecological risks of heavy metals (Cu, Zn, Cd, Pb, Cr, As, Hg) in surface and vertical sediment profiles through systematic sampling. The results show higher, more uniform heavy metal concentrations inside the bay, with Cd, Cr, and As showing significant accumulation, while outside, levels are lower but with Pb and As at sites like DW-Z-1 and DW-Z-4 nearing Class I Marine Sediment Quality Guideline limits. Vertically, concentrations inside the bay increase with depth due to long-term pollution, geoaccumulation and potential ecological risk indices, Cd emerges as the primary pollutant, posing a high risk (Er Class 3) inside the bay (RI Class 2) and a low to moderate risk outside. Pollution sources inside stem from industrial, urban, and aquaculture inputs, while tidal dynamics and mangroves pose purification mitigate risks outside. This study underscores Cd control needs and supports the ecological conservation of Zhanjiang Bay. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

Back to TopTop