Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = marine microbiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1285 KiB  
Review
An Exploratory Review of Microplastic Pollution, Associated Microbiomes and Pathogens in Water
by Paulina Cholewińska, Konrad Wojnarowski, Hanna Moniuszko, Przemysław Pokorny and Dušan Palić
Appl. Sci. 2025, 15(15), 8128; https://doi.org/10.3390/app15158128 - 22 Jul 2025
Viewed by 380
Abstract
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations [...] Read more.
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations of MPs in surface waters across five continents. The findings confirm that MPs are present in both marine and freshwater systems, with concentrations varying by region, hydrology, and proximity to anthropogenic sources. Polyethylene and polypropylene were identified as the most common polymers, often enriched in river mouths, estuaries, and aquaculture zones. A key focus of this review is the plastisphere—microbial biofilms colonizing MPs—which includes both environmental and pathogenic bacteria such as Vibrio, Pseudomonas, and Acinetobacter. Notably, MPs serve as vectors for the spread of antibiotic resistance genes (ARGs), including sul1, tetA and ermF, and β-lactamase genes like blaCTX-M. This highlights their role in enhancing horizontal gene transfer and microbial dissemination. The results emphasize the need for standardized monitoring protocols and further interdisciplinary research. In light of the One Health approach, understanding the microbial dimension of MP pollution is essential for managing risks to environmental and public health. Full article
Show Figures

Figure 1

20 pages, 5145 KiB  
Article
Mangrove Ecosystems in the Maldives: A Nationwide Assessment of Diversity, Habitat Typology and Conservation Priorities
by Aishath Ali Farhath, S. Bijoy Nandan, Suseela Sreelekshmi, Mariyam Rifga, Ibrahim Naeem, Neduvelil Regina Hershey and Remy Ntakirutimana
Earth 2025, 6(3), 66; https://doi.org/10.3390/earth6030066 - 1 Jul 2025
Viewed by 795
Abstract
This study presents the first comprehensive nationwide assessment of mangrove ecosystems in the Maldives. Surveys were conducted across 162 islands in 20 administrative atolls, integrating field data, the literature, and secondary sources to map mangrove distribution, confirm species presence, and classify habitat types. [...] Read more.
This study presents the first comprehensive nationwide assessment of mangrove ecosystems in the Maldives. Surveys were conducted across 162 islands in 20 administrative atolls, integrating field data, the literature, and secondary sources to map mangrove distribution, confirm species presence, and classify habitat types. Twelve true mangrove species were identified, with Bruguiera cylindrica, Rhizophora mucronata, and Lumnitzera racemosa emerging as dominant. Species diversity was evaluated using Shannon (H′), Margalef (d′), Pielou’s evenness (J′), and Simpson’s dominance (λ′) indices. Atolls within the northern and southern regions, particularly Laamu, Noonu, and Shaviyani, exhibited the highest diversity and evenness, while central atolls such as Ari and Faafu supported mono-specific or degraded stands. Mangrove habitats were classified into four geomorphological types: marsh based, pond based, embayment, and fringing systems. Field sampling was conducted using standardized belt transects and quadrats, with species verified using photographic documentation and expert validation. Species distributions showed strong habitat associations, with B. cylindrica dominant in marshes, R. mucronata and B. gymnorrhiza in ponds, and Ceriops tagal and L. racemosa in embayments. Rare species like Bruguiera hainesii and Heritiera littoralis were confined to stable hydrological niches. This study establishes a critical, island-level baseline for mangrove conservation and ecosystem-based planning in the Maldives, providing a reference point for tracking future responses to climate change, sea-level rise, and hydrological disturbances, emphasizing the need for habitat-specific strategies to protect biodiversity. Full article
Show Figures

Figure 1

11 pages, 218 KiB  
Review
Optimizing Antibiotic Choice, Administration, and Duration in NSTI Treatment
by Devorah Howell, Rachael Edgin, Aliya Rehman and Ronald Rabinowitz
Bioengineering 2025, 12(7), 691; https://doi.org/10.3390/bioengineering12070691 - 24 Jun 2025
Viewed by 398
Abstract
Necrotizing soft tissue infections (NSTIs) are serious and aggressive infections which can result in significant morbidity and mortality. Both prompt surgical intervention and early antibiotics can decrease patient mortality. Based on microbiology, NSTIs can be categorized into four different types. Type I is [...] Read more.
Necrotizing soft tissue infections (NSTIs) are serious and aggressive infections which can result in significant morbidity and mortality. Both prompt surgical intervention and early antibiotics can decrease patient mortality. Based on microbiology, NSTIs can be categorized into four different types. Type I is polymicrobial, caused by a mix of both anaerobic and aerobic bacteria. Type II is monomicrobial, usually caused by either Streptococcus or Staphylococcus. Type III infections are caused by Gram-negative bacteria, often marine-related organisms, such as Vibrio. Lastly, Type IV infections are caused by fungi, and they are often associated with trauma. Despite the possibility of all these different pathogens in NSTI, early therapy often consists of a broad Gram-positive antimicrobial such as linezolid or vancomycin, and a broad Gram-negative agent such as piperacillin/tazobactam. Multiple factors including patient comorbidities, environmental exposures, and clinical presentation must also be considered when choosing antimicrobial agents and dosing. Adjunct medical therapies such as intravenous immunoglobulin (IVIG) and the antibiotics clindamycin and linezolid that are aimed at toxin suppression may be utilized to improve outcomes. Microbiological data are critical for optimizing the antimicrobial regimen. Full article
(This article belongs to the Special Issue Surgical Wound Infections and Management)
Show Figures

Graphical abstract

15 pages, 2149 KiB  
Article
Biofilm-Forming Lactic Acid Bacteria in Sausages: Isolation, Characterization, and Inhibition Using Eisenia bicyclis-Based Nanoparticles
by Do Kyung Oh, Du-Min Jo, Minji Kim, Jeong-Bin Jo, Ji-Hwan Choi, Jeong Mi Choi, Geum-Jae Jeong, Se Yun Jeong, Fazlurrahman Khan and Young-Mog Kim
Antibiotics 2025, 14(7), 637; https://doi.org/10.3390/antibiotics14070637 - 22 Jun 2025
Viewed by 490
Abstract
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to [...] Read more.
Background/Objectives: Lactic acid bacteria produce biofilms in meat products that contribute to the products’ deterioration, reduction in quality, and shortened shelf life. Although LAB are generally considered benign, certain strains create slime and cause significant drops in pH. The study’s goal was to identify and characterize LAB strains from sausage products that are capable of biofilm formation, and to evaluate the inhibitory effects of E. bicyclis methanol extract, its ethyl acetate fraction, and phloroglucinol, as well as to synthesize AuNPs, and assess their efficacy in controlling biofilm formation. Methods: Slime or biofilm-producing LAB bacteria were isolated from commercial sausages and identified using 16S rRNA gene sequencing. Lactobacillus sakei S10, which can tolerate high salt concentrations and cold temperatures, was chosen as a representative strain. The isolates were subsequently tested for hemolytic activity, salt and temperature tolerance, and carbohydrate consumption patterns. To evaluate antibiofilm potential, marine-derived compounds from Eisenia bicyclis, such as phloroglucinol (PG), crude methanolic extracts, ethyl acetate fractions, and gold nanoparticle (AuNP) formulations, were tested in situ on sausage surfaces against L. sakei S10 and common pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The biofilm-inhibitory effects of the extracts, PG, and PG-AuNPs were estimated using the colony-counting method. Results: The PG-AuNPs had an average particle size of 98.74 nm and a zeta potential of −29.82 mV, indicating nanoscale dimensions and considerable colloidal stability. Structural analysis confirmed their spherical form and crystalline structure, as well as the presence of phenolic groups in both reduction and stabilization processes. Among the studied treatments, the PG and PG-AuNPs had the strongest antibiofilm activities, dramatically lowering biofilm biomass, particularly for P. aeruginosa and L. sakei S10. However, the inhibitory effects were less prominent in in situ conditions than in in vitro testing, highlighting the complexity of real food matrices. Conclusions: The results of this study indicate that polyphenolic compounds obtained from marine sources, particularly in nano-formulated forms, have a great deal of potential as natural antibiofilm products. Enhancing the microbiological safety of processed meat products and extending their shelf life could be accomplished through the application of these polyphenolic compounds in food packaging or surface treatments. Full article
(This article belongs to the Section Antibiofilm Strategies)
Show Figures

Figure 1

14 pages, 827 KiB  
Article
Emergence, Spread of Antimicrobial-Resistant Bacteria and Phylogenetic Relationships in Coastal Ecosystems—Gastropod Phorcus lineatus as a Bioindicator
by Dércia Santos, Ana Rita Pinto, Rita Barata, Conceição Fernandes, Hugo Guedes, Gonçalo Almeida, Edna Cabecinha, Sandra M. Monteiro, Simone Varandas and Maria José Saavedra
Microbiol. Res. 2025, 16(6), 133; https://doi.org/10.3390/microbiolres16060133 - 19 Jun 2025
Viewed by 333
Abstract
Coastal environments have been recognized as key reservoirs for antibiotic-resistant bacteria. The present study evaluated marine gastropods, Phorcus lineatus, as potential bioindicators to assess the spread of antibiotic-resistant bacteria. P. lineatus was sampled in four sites, with different anthropogenic pressures, along the [...] Read more.
Coastal environments have been recognized as key reservoirs for antibiotic-resistant bacteria. The present study evaluated marine gastropods, Phorcus lineatus, as potential bioindicators to assess the spread of antibiotic-resistant bacteria. P. lineatus was sampled in four sites, with different anthropogenic pressures, along the northwest Portuguese coastal area. From these specimens, bacteria were isolated and tested for their antimicrobial susceptibility, followed by their phylogenetic and pathotypic determination. All the Escherichia coli isolates showed resistance to at least one antimicrobial agent. The highest levels of multidrug resistance (25%) were observed in E. coli isolates obtained from SITE 2, which is impacted by the city of Porto and industrial settlements, while nearly 17% of these isolates showed a multiple antibiotic resistance (MAR) index higher than 0.2. Among the isolates, phylogroups A and B2 were the most prevalent, followed by phylogroup B1. The isolates of phylogroup A showed a higher prevalence of antimicrobial resistance. This study offers valuable insights into the antibiotic resistance risks posed to marine ecosystems and underscores the need for microbiological monitoring and the development of effective management strategies. The findings suggest P. lineatus as a potential bioindicator of antibiotic-resistant bacteria in marine environments. Full article
Show Figures

Graphical abstract

15 pages, 2081 KiB  
Article
Metagenomics Reveal Dynamic Coastal Ocean Reservoir of Antibiotic Resistance Genes
by Stacy A. Suarez, Alyse A. Larkin, Melissa L. Brock, Allison R. Moreno, Adam J. Fagan and Adam C. Martiny
J. Mar. Sci. Eng. 2025, 13(6), 1165; https://doi.org/10.3390/jmse13061165 - 13 Jun 2025
Viewed by 645
Abstract
Exposure to antibiotic-resistant microbial communities in coastal waters is an important threat to human health. Through a ten-year coastal time series, we used metagenomics from 236 time points to provide a comprehensive understanding of the seawater resistome, temporal distribution, and factors influencing frequencies [...] Read more.
Exposure to antibiotic-resistant microbial communities in coastal waters is an important threat to human health. Through a ten-year coastal time series, we used metagenomics from 236 time points to provide a comprehensive understanding of the seawater resistome, temporal distribution, and factors influencing frequencies of specific resistance types. Here, we predicted that antibiotic resistance gene frequencies would increase during the winter due to increased rainfall, with terrestrial and enteric taxa serving as the primary carriers of resistance genes in coastal waters. We found that seasonal and interannual trends of antibiotic resistance genes vary by gene and the taxa carrying them, as opposed to a general increase in most resistance genes during specific seasons. However, we found that precipitation and Enterococcus levels may be accurate indicators for total antibiotic resistance gene levels in Newport Beach coastal water. Resistance genes were primarily carried by marine taxa, though some terrestrial taxa and opportunistic pathogens also harbored these genes. Non-marine taxa can be introduced through rain, human activity, or sewage spills. By using metagenomics, we were able to elucidate the antibiotic-resistant bacterial communities in Newport Beach coastal water and demonstrate both seasonal and multiannual trends in their abundance with important implications for local health and safety. Full article
(This article belongs to the Special Issue Microbial Biogeography in Global Oceanic Systems)
Show Figures

Figure 1

16 pages, 2141 KiB  
Article
Implementation of Sustainable Methods for the Propagation and Cultivation of Chondracanthus chamissoi “Yuyo” in La Libertad, Peru: A Transition from the Laboratory to the Sea
by Nancy Soto-Deza, Luis Cabanillas-Chirinos and Nicole Terrones-Rodríguez
J. Mar. Sci. Eng. 2025, 13(6), 1164; https://doi.org/10.3390/jmse13061164 - 13 Jun 2025
Viewed by 463
Abstract
The alga Chondracanthus chamissoi, commonly known as “yuyo” or “mococho” is found along the coasts of Peru and Chile. Due to its multiple applications in industrial, health, pharmaceutical, and productive sectors, its demand has increased, leading to the uncontrolled exploitation of natural banks [...] Read more.
The alga Chondracanthus chamissoi, commonly known as “yuyo” or “mococho” is found along the coasts of Peru and Chile. Due to its multiple applications in industrial, health, pharmaceutical, and productive sectors, its demand has increased, leading to the uncontrolled exploitation of natural banks and negatively impacting marine ecosystems. This experimental study evaluated the viability of propagating C. chamissoi propagules using the foliar fertilizer Bayfolan® from Bayer, as well as its continuous, non-seasonal cultivation in La Ramada. This initiative aims to establish a productive area in La Libertad to meet the needs of national and international markets, reducing the indiscriminate exploitation of seaweed in natural banks. The results indicated that continuous cultivation is feasible, with growth rates of 0.0369 and 0.0388 g.day−1 (0% Bayfolan) and 0.0397 and 0.0399 g.day−1 (1% Bayfolan) during propagule propagation. Slight statistically significant differences were observed in final biomass between 0% and 1% Bayfolan treatments, and Bayfolan use reduced healing time by seven days. Nutritional and microbiological assays confirmed that fresh “yuyo” is suitable for human consumption; hence, La Ramada provides suitable physical–chemical and microbiological conditions for extracting and cultivating hydrobiological species, offering a viable alternative to the seasonal overexploitation of the algae and potential economic benefits for coastal families. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 4093 KiB  
Article
Blue Crab (Callinectes sapidus) Haemolymph as a Potential Reservoir of Mesophilic Shewanella Species
by Giuseppe Esposito, Fabio Bondavalli, Matteo Riccardo Di Nicola, Paolo Pastorino, Sonia Scala, Martina Gini, Giulia Milanese, Edoardo Turolla, Alessandra Maganza, Simona Sciuto, Domenico Meloni, Rita Melillo, Pierluigi Acutis, Elena Bozzetta, Sebastiano Virgilio, Caterina Faggio, Silvia Colussi and Marino Prearo
Animals 2025, 15(12), 1731; https://doi.org/10.3390/ani15121731 - 11 Jun 2025
Viewed by 1402
Abstract
The blue crab (Callinectes sapidus) is an invasive alien species in the Mediterranean Sea, posing threats to biodiversity, fisheries, and aquaculture. Climate change has worsened these challenges, influencing the distribution of bacterial species, including Shewanella species, which are sensitive to changes [...] Read more.
The blue crab (Callinectes sapidus) is an invasive alien species in the Mediterranean Sea, posing threats to biodiversity, fisheries, and aquaculture. Climate change has worsened these challenges, influencing the distribution of bacterial species, including Shewanella species, which are sensitive to changes in temperature and salinity. In this study, 300 blue crabs were sampled between June and October 2024 from the Sacca di Goro (Northern Adriatic Sea, Italy) to investigate the prevalence of Shewanella species in their haemolymph. The prevalence was found to be 7% (21/300), with species such as S. mesophila, S. algae, S. cowelliana, and S. baltica identified, particularly in the months of September and October. Molecular techniques, including MALDI-TOF MS and rpoB gene amplification, were used to identify isolates. Antibiotic susceptibility testing (AST) revealed a trend of resistance to beta-lactam antibiotics. A network analysis was also conducted to examine the global trends of Shewanella research in relation to humans, animals, and the marine environment. While proper cooking eliminates the risk to consumers, handling without personal protective equipment can increase exposure, particularly for vulnerable individuals such as those who are elderly or immunocompromised. Mild symptoms are observed in children. Further studies, particularly with a One Health approach, are crucial to better understand the transmission dynamics and evolving antibiotic resistance of Shewanella species. Full article
Show Figures

Graphical abstract

32 pages, 101984 KiB  
Article
Studying the Impact of Cement-Based and Geopolymer Concrete on the Proliferation of Escherichia coli and Staphylococcus aureus in Water-Related Applications
by Beata Figiela, Bożena Tyliszczak, Magdalena Bańkosz, Aleksandar Nikolov and Kinga Korniejenko
Materials 2025, 18(11), 2560; https://doi.org/10.3390/ma18112560 - 29 May 2025
Viewed by 531
Abstract
The main aim of this research was to synthesize the new geopolymer composite and test its antibacterial properties. The new composites are based on a geopolymer matrix, with the addition of carbon fiber, nano-silica and antibacterial nanopowder. The first stage of this research [...] Read more.
The main aim of this research was to synthesize the new geopolymer composite and test its antibacterial properties. The new composites are based on a geopolymer matrix, with the addition of carbon fiber, nano-silica and antibacterial nanopowder. The first stage of this research was the synthesis of geopolymer composites containing variable proportions of nano-additives and, as a reference material, cement. The next step was bacterial cultivation. Two different bacterial strains were selected, Gram-positive and Gram-negative (Escherichia coli and Staphylococcus aureus). In this stage, the agar microbiological medium is used for the evaluation of bacterial growth inhibition by cement and geopolymers. In the final stage, the growth of the colony was observed and the pH measurements were taken. The final assessment of efficiency was made by using optical microscopy and a colony counter based on the Petri dish. The test performed showed that the main mineralogical components are quartz, 55.0%, and mullite, with 42.1% of crystalline ingredients. EDS analysis shows that the main oxide component is SiO2, about 50.9%. The obtained results connected with bacteria growth show the growth of both types of bacteria on materials; however, after several days, the growth was inhibited. An assessment of microorganism growth inhibition by cement and geopolymers shows the better efficiency of geopolymer composites in this area for both types of colonies (Gram-positive and Gram-negative). The new element in this research was to plan the research from the point of view of its application in the water environment. The provided research can be useful for the inhibition of biofouling phenomena on marine and inland water infrastructure. Full article
Show Figures

Figure 1

15 pages, 1908 KiB  
Article
Surface Functionalized Polyhydroxyalkanoate Nanoparticles via SpyTag–SpyCatcher System for Targeted Breast Cancer Treatment
by Jin Young Heo, Min Kyung Sung, Seonhye Jang, Hansol Kim, Youngdo Jeong, Dong-Jin Jang, Sang-Jae Lee, Seong-Bo Kim and Sung Tae Kim
Pharmaceutics 2025, 17(6), 721; https://doi.org/10.3390/pharmaceutics17060721 - 29 May 2025
Viewed by 649
Abstract
Background/Objectives: Biodegradable polymers have emerged as promising platforms for drug delivery. Produced by microbiomes, polyhydroxyalkanoates (PHAs) offer excellent biocompatibility, biodegradability, and environmental sustainability. In this study, we report the surface functionalization of PHA-based nanoparticles (NPs) using the SpyTag–SpyCatcher system to enhance cellular uptake. [...] Read more.
Background/Objectives: Biodegradable polymers have emerged as promising platforms for drug delivery. Produced by microbiomes, polyhydroxyalkanoates (PHAs) offer excellent biocompatibility, biodegradability, and environmental sustainability. In this study, we report the surface functionalization of PHA-based nanoparticles (NPs) using the SpyTag–SpyCatcher system to enhance cellular uptake. Methods: Initial conjugation with mEGFP-SpyTag enabled visualization, followed by decoration with HER2-specific Affibody-SpyCatcher and/or TAT-SpyCatcher peptides. The prepared NPs retained a diameter of <200 nm and a negatively charged surface. Results: Affibody-functionalized NPs significantly enhanced internalization and cytotoxicity in HER2-overexpressing SK-BR-3 cells, whereas TAT-functionalized NPs promoted uptake across various cell types, independently of HER2 expression. Dual-functionalized NPs exhibited synergistic or attenuated effects based on the HER2 expression levels, highlighting the critical role of ligand composition in targeted delivery. Conclusions: The results of this study demonstrate that the SpyTag–SpyCatcher-mediated surface engineering of PHA NPs offers a modular and robust strategy for active targeting in nanomedicine. Full article
Show Figures

Graphical abstract

8 pages, 1851 KiB  
Proceeding Paper
Yeast Microbiome of Avicennia officinalis: Differences in Its Taxonomic and Functional Composition Within Plant Compartments
by Kizhakkeyveetil Abdul Saleem Nimsi, Kozhikotte Manjusha and Jasna Vijayan
Biol. Life Sci. Forum 2024, 39(1), 7; https://doi.org/10.3390/blsf2024039007 - 8 May 2025
Viewed by 380
Abstract
Mangrove ecosystems are renowned for their rich fungal diversity, housing a plethora of multicellular fungi and yeasts. In this investigation, we examined the yeast diversity associated with various compartments (rhizospheric soil, stems, roots, leaves, barks, and flowers) of the widely distributed mangrove tree, [...] Read more.
Mangrove ecosystems are renowned for their rich fungal diversity, housing a plethora of multicellular fungi and yeasts. In this investigation, we examined the yeast diversity associated with various compartments (rhizospheric soil, stems, roots, leaves, barks, and flowers) of the widely distributed mangrove tree, Avicennia officinalis, from the Kumbalam and Puthuvype mangroves in central Kerala, India. Our study revealed that the yeast strains were not uniformly distributed in various compartments. The highest abundance of yeasts was found in leaves (42%), followed by sediment (21%), and the lowest in flowers (5%). Among the 45 isolates, 27% comprised red yeasts. Dominant genera included Rhodotorula (27.5%), Debaryomyces (17.6%), Kluyveromyces (5.9%), Cryptococcus (9.8%), and Candida (7.8%), while genera such as Geotrichum, Lodderomyces, Ogataea, Galactomyces, and Saitozyma were represented by single isolates. Certain yeast species, such as C. tropicalis and Rhodotorula paludegina, exhibited a cosmopolitan distribution in various plant compartments of A. officinalis. An analysis of the proximate composition of different plant compartments of A. officinalis revealed variations in C, N, S, H, Ca, K, and the C/N ratio. Interestingly, these variations were positively correlated with the yeast community composition, suggesting a potential role of the elemental composition of plants in shaping the yeast biome of A. officinalis. However, our understanding of the inter-relationships among yeast communities in different plant compartments remains limited, highlighting the need for further comprehensive investigations in this field. Full article
Show Figures

Figure 1

16 pages, 248 KiB  
Article
Micronization of Low-Salinity Baltic Sea Blue Mussels: Enhancing Whole-Biomass Utilization and Nutritional Viability
by Indrek Adler, Jonne Kotta and Kristel Vene
Fishes 2025, 10(5), 199; https://doi.org/10.3390/fishes10050199 - 26 Apr 2025
Viewed by 484
Abstract
The micronization of low-salinity Baltic Sea blue mussels (Mytilus edulis/trossulus) was investigated as a novel valorisation pathway to eliminate the need for labor-intensive meat–shell separation. The small size of Baltic mussels poses a challenge for traditional meat–shell separation. This [...] Read more.
The micronization of low-salinity Baltic Sea blue mussels (Mytilus edulis/trossulus) was investigated as a novel valorisation pathway to eliminate the need for labor-intensive meat–shell separation. The small size of Baltic mussels poses a challenge for traditional meat–shell separation. This study investigates micronization as an alternative processing approach to enhance biomass utilization while preserving functional and nutritional properties. This study assessed the feasibility of whole-mussel micronization, focusing on its impact on particle size distribution, grittiness, and the potential separation of meat and shell fractions post-processing. The results demonstrated that micronization at 4000 rpm resulted in a fine powder (<63 µm), significantly reducing grittiness. However, mild chalkiness was observed at higher concentrations (4% solution), highlighting the need for formulation adjustments. While it was expected to facilitate the separation of soft tissue from shell material, the results indicated that this remained impractical due to structural or compositional similarities at finer scales. A sensory evaluation of the whole-mussel powder assessed its texture and palatability, revealing its potential suitability for functional food applications. The findings highlight the potential of micronization as a resource-efficient and scalable processing method, enhancing the economic and environmental value of Baltic mussels in the food industry. Full article
23 pages, 3482 KiB  
Article
Eco-Friendly Biosurfactant: Tackling Oil Pollution in Terrestrial and Aquatic Ecosystems
by Kaio Wêdann Oliveira, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Gleice Paula Araújo, Attilio Converti, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Fermentation 2025, 11(4), 199; https://doi.org/10.3390/fermentation11040199 - 8 Apr 2025
Viewed by 1177
Abstract
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of [...] Read more.
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of affected environments. The use of biosurfactants is an effective option for the cleaning of storage tanks and the remediation of contaminated soils and effluents. The scope of this work was to assess the production and application of a Starmerella bombicola ATCC 22214 biosurfactant to remediate marine and terrestrial environment polluted by oil. The production of the biosurfactant was optimized in terms of carbon/nitrogen sources and culture conditions using flasks. The performance of the biosurfactant was tested in clayey soil, silty soil, and standard sand, as well as smooth surfaces and industrial effluents contaminated with oils (fuel oils B1 for thermal power generation, diesel, and motor oil). The ideal culture medium for the production of the biosurfactant contained 2% glucose and 5% glycerol, with agitation at 200 rpm, fermentation for 180 h and a 5% inoculum, resulting in a yield of 1.5 g/L. The biosurfactant had high emulsification indices (86.6% for motor oil and 51.7% for diesel) and exhibited good stability under different pH values, temperatures and concentrations of NaCl. The critical micelle concentration was 0.4 g/L, with a surface tension of 26.85 mN/m. In remediation tests, the biosurfactant enabled the removal of no less than 99% of motor oil from different types of soil. The results showed that the biosurfactant produced by Starmerella bombicola is a promising agent for the remediation of environments contaminated by oil derivatives, especially in industrial environments and for the treatment of oily effluents. Full article
Show Figures

Figure 1

24 pages, 6282 KiB  
Article
Study on the Effect of Different Cathodic Protection Potentials on the Growth of Mixed Bacteria and Cathodic Protection Efficiency
by Zeyu Zuo, Jie Zhang, Qingle Hou, Chengjun Zhang, Ke Wang, Jizhou Duan, Xilei Chen and Baorong Hou
Chemistry 2025, 7(2), 54; https://doi.org/10.3390/chemistry7020054 - 1 Apr 2025
Viewed by 631
Abstract
Microbiologically influenced corrosion (MIC) is one of the key causes of material failure in marine engineering, and sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) are typical representatives of anaerobic and aerobic microorganisms, respectively. These microorganisms are widely present in marine environments and can [...] Read more.
Microbiologically influenced corrosion (MIC) is one of the key causes of material failure in marine engineering, and sulfate-reducing bacteria (SRB) and iron-oxidizing bacteria (IOB) are typical representatives of anaerobic and aerobic microorganisms, respectively. These microorganisms are widely present in marine environments and can form synergistic communities on the surface of metal materials, posing a corrosion threat to them. At the same time, the presence of mixed bacteria may have an effect on cathodic protection, so this study investigates the growth metabolism of mixed SRB and IOB under different cathodic protection potentials in an impressed current cathodic protection (ICCP) system in a marine environment containing SRB and IOB. It also examines the attachment of these microorganisms to the anode and cathode, and the impact on cathodic protection efficiency. The results indicate that in a marine environment containing IOB and SRB, the cathodic protection efficiency of the ICCP system increases with the negative shift of the protection potential. A more positive cathodic protection potential promotes the adhesion of mixed bacteria on the electrode surface and the formation of a biofilm, which reduces cathodic protection efficiency. In contrast, at a cathodic protection potential of −1.05 V (SCE), bacterial growth is inhibited, and a dense crystalline corrosion film primarily composed of Fe2O3 and Fe(OH)3 forms on the cathode surface. This film effectively protects the cathodic metal, significantly mitigating MIC. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

15 pages, 2126 KiB  
Article
Microbial Profiling of Smear-Ripened Cheeses: Identification of Starter Cultures and Environmental Microbiota
by Kristyna Korena, Anna Klimesova, Martina Florianova, Miroslava Krzyzankova, Daniela Karasova, Vladimir Babak and Helena Juricova
Appl. Sci. 2025, 15(7), 3787; https://doi.org/10.3390/app15073787 - 30 Mar 2025
Viewed by 621
Abstract
Smear-ripened cheeses are distinguished by their complex microbiota, which play an important role in ripening, flavour development, texture and microbiological safety. Although commercial production typically relies on defined starter and adjunct cultures, microorganisms from the production environment may also shape the product’s characteristics. [...] Read more.
Smear-ripened cheeses are distinguished by their complex microbiota, which play an important role in ripening, flavour development, texture and microbiological safety. Although commercial production typically relies on defined starter and adjunct cultures, microorganisms from the production environment may also shape the product’s characteristics. This study examined the microbial composition of smear-ripened cheeses from six commercial manufacturers using culture and culture-independent techniques, including 16S rRNA gene sequencing and sequencing of internal transcribed spacers. A limited number of microorganisms was recovered by culture, with 37 different isolates identified across all samples. Sequencing of the 16S rRNA gene and internal transcribed spacers revealed 75 and 7 distinct operational taxonomic units, respectively. The microbiota composition reflected the contribution of both mesophilic and thermophilic starter and adjunct cultures, alongside microorganisms originating from the production environment. These included various psychrotrophic bacteria, marine (i.e., osmotolerant) bacteria, and other halophiles from Proteobacteria (Psychrobacter, Pseudoalteromonas, Marinomonas, and Vibrio), Firmicutes (Vagococcus and Marinilactibacillus), Actinobacteriota (Glutamicibacter), Bacteroidota (Winogradskyella and Brumimicrobium), Campylobacterota (Malaciobacter) and Fusobacteriota (Psychrilyobacter) specific to the environment of particular manufacturers. The results indicate that, although pasteurised milk and defined starter cultures are used in commercial production, microorganisms originating from the cheese factory environment form a substantial part of the microbiota of smear-ripened cheese. Full article
Show Figures

Figure 1

Back to TopTop