Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = marine gas hydrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4772 KiB  
Article
Integrated Statistical Analysis and Spatial Modeling of Gas Hydrate-Bearing Sediments in the Shenhu Area, South China Sea
by Xin Feng and Lin Tan
Appl. Sci. 2025, 15(16), 8857; https://doi.org/10.3390/app15168857 - 11 Aug 2025
Viewed by 147
Abstract
Gas hydrate-bearing sediments in marine environments represent both a future energy source and a geohazard risk, prompting increasing international research attention. In the Shenhu area of the South China Sea, a large volume of drilling and laboratory data has been acquired in recent [...] Read more.
Gas hydrate-bearing sediments in marine environments represent both a future energy source and a geohazard risk, prompting increasing international research attention. In the Shenhu area of the South China Sea, a large volume of drilling and laboratory data has been acquired in recent years, yet a comprehensive framework for evaluating the characteristics of key reservoir parameters remains underdeveloped. This study presents a spatially integrated and statistically grounded framework that captures regional-scale heterogeneity using multi-source in situ datasets. It incorporates semi-variogram modeling to assess spatial variability and provides statistical reference values for geological and geotechnical properties across the Shenhu Area. By synthesizing core sampling results, acoustic logging, and triaxial testing data, representative probability distributions and variability scales of hydrate saturation, porosity, permeability, and mechanical strength are derived, which are essential for numerical simulations of gas production and slope stability. Our results support the development of site-specific reservoir models and improve the reliability of early-phase hydrate exploitation assessments. This work facilitates the rapid screening of hydrate reservoirs, contributing to the efficient selection of potential production zones in hydrate-rich continental margins. Full article
Show Figures

Figure 1

24 pages, 9329 KiB  
Article
Formation Kinetics and Morphology Characteristics of Natural Gas Hydrates in Sandstone Fractures
by Chaozheng Ma, Xiaoxu Hu, Hongxiang Si, Jiyao Wang, Juntao Pan, Tingting Luo, Tao Han and Aowang Wang
Appl. Sci. 2025, 15(13), 7399; https://doi.org/10.3390/app15137399 - 1 Jul 2025
Cited by 1 | Viewed by 330
Abstract
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results [...] Read more.
Fractures in marine sediments are critical zones for hydrate formation. The kinetics and morphological characteristics of hydrates within sandstone fractures are comprehensively investigated in this study by employing a high-pressure visualization reaction vessel to examine their formation, dissociation, and reformation processes. The results are presented below: (1) In 3 mm Type I fractures, the induction time is longer than that observed in the other two fracture widths. Hydrates predominantly form on the fracture walls and gradually expand toward both sides of the fracture. (2) Gas enters the fracture from multiple directions, causing the hydrate in Type X fractures to expand toward the center from all sides, which shortens the induction time and increases the quantity of hydrate formation. (3) An increase in fracture roughness promotes nucleation of the hydrate at surface protrusions but inhibits the total quantity of hydrate formation. (4) Hydrate dissociation typically propagates from the fracture wall into the interior, exhibiting a wavy surface morphology. Gas production is influenced by the fracture width, with the highest gas production observed in a 3 mm fracture. (5) Due to the memory effect, the hydrate induction time for reformation is significantly shorter, though the quantity of hydrate formed is lower than that of the first formation. This study aims to provide micro-level insights into the distribution of hydrates in sandstone fractures, thereby facilitating more efficient and safe extraction of hydrates from fractures. Full article
Show Figures

Figure 1

24 pages, 6478 KiB  
Article
Numerical Simulation of Multi-Cluster Fracture Propagation in Marine Natural Gas Hydrate Reservoirs
by Lisha Liao, Youkeren An, Jinshan Wang, Yiqun Zhang, Lerui Liu, Meihua Chen, Yiming Gao and Jiayi Han
J. Mar. Sci. Eng. 2025, 13(7), 1224; https://doi.org/10.3390/jmse13071224 - 25 Jun 2025
Viewed by 241
Abstract
Natural gas hydrates (NGHs) are promising energy resources, although their marine exploitation is limited by low reservoir permeability and hydrate decomposition efficiency. Multi-cluster fracturing technology can enhance reservoir permeability, yet complex properties of hydrate sediments render the prediction of fracture behavior challenging. Therefore, [...] Read more.
Natural gas hydrates (NGHs) are promising energy resources, although their marine exploitation is limited by low reservoir permeability and hydrate decomposition efficiency. Multi-cluster fracturing technology can enhance reservoir permeability, yet complex properties of hydrate sediments render the prediction of fracture behavior challenging. Therefore, we developed a three-dimensional (3D) fluid–solid coupling model for hydraulic fracturing in NGH reservoirs based on cohesive elements to analyze the effects of sediment plasticity, hydrate saturation, fracturing fluid viscosity, and injection rate, as well as the stress interference mechanisms in multi-cluster simultaneous fracturing under different cluster spacings. Results show that selecting low-plastic reservoirs with high hydrate saturation (SH > 50%) and adopting an optimal combination of fracturing fluid viscosity and injection rate can achieve the co-optimization of stimulated reservoir volume (SRV) and cross-layer risk. In multi-cluster fracturing, inter-fracture stress interference promotes the propagation of fractures along the fracture plane while suppressing it in the normal direction of the fracture plane, and this effect diminishes significantly till 9 m cluster spacing. This study provides valuable insights for the selection of optimal multi-cluster fracturing parameters for marine NGH reservoirs. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

27 pages, 7871 KiB  
Article
Research on Reservoir Identification of Gas Hydrates with Well Logging Data Based on Machine Learning in Marine Areas: A Case Study from IODP Expedition 311
by Xudong Hu, Wangfeng Leng, Kun Xiao, Guo Song, Yiming Wei and Changchun Zou
J. Mar. Sci. Eng. 2025, 13(7), 1208; https://doi.org/10.3390/jmse13071208 - 21 Jun 2025
Viewed by 500
Abstract
Natural gas hydrates, with their efficient and clean energy characteristics, are deemed a significant pillar within the future energy sector, and their resource quantification and development have a profound impact on the transformation of global energy structure. However, how to accurately identify gas [...] Read more.
Natural gas hydrates, with their efficient and clean energy characteristics, are deemed a significant pillar within the future energy sector, and their resource quantification and development have a profound impact on the transformation of global energy structure. However, how to accurately identify gas hydrate reservoirs (GHRs) is currently a hot research topic. This study explores the logging identification method of marine GHRs based on machine learning (ML) according to the logging data of the International Ocean Drilling Program (IODP) Expedition 311. This article selects six ML methods, including Gaussian process classification (GPC), support vector machine (SVM), multilayer perceptron (MLP), random forest (RF), extreme gradient boosting (XGBoost), and logistic regression (LR). The internal relationship between logging data and hydrate reservoir is analyzed through six ML algorithms. The results show that the constructed ML model performs well in gas hydrate reservoir identification. Among them, RF has the highest accuracy, precision, recall, and harmonic mean of precision and recall (F1 score), all of which are above 0.90. With an area under curve (AUC) of nearly 1 for RF, it is confirmed that ML technology is effective in this area. Research has shown that ML provides an alternative method for quickly and efficiently identifying GHRs based on well logging data and also offers a scientific foundation and technical backup for the future prospecting and mining of natural gas hydrates. Full article
Show Figures

Figure 1

35 pages, 7887 KiB  
Article
Triaxial Experimental Study of Natural Gas Hydrate Sediment Fracturing and Its Initiation Mechanisms: A Simulation Using Large-Scale Ice-Saturated Synthetic Cubic Models
by Kaixiang Shen, Yanjiang Yu, Hao Zhang, Wenwei Xie, Jingan Lu, Jiawei Zhou, Xiaokang Wang and Zizhen Wang
J. Mar. Sci. Eng. 2025, 13(6), 1065; https://doi.org/10.3390/jmse13061065 - 28 May 2025
Viewed by 340
Abstract
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional [...] Read more.
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional reservoirs. This study presents a comprehensive triaxial experimental investigation of the fracturing behavior and fracture initiation mechanisms of NGH-bearing sediments, using large-scale ice-saturated synthetic cubic models. The experiments systematically explore the effects of key parameters, including the injection rate, fluid viscosity, ice saturation, perforation patterns, and in situ stress, on fracture propagation and morphology. The results demonstrate that at low fluid viscosities and saturation levels, transverse and torsional fractures dominate, while longitudinal fractures are more prominent at higher viscosities. Increased injection rates enhance fracture propagation, generating more complex fracture patterns, including transverse, torsional, and secondary fractures. A detailed analysis reveals that the perforation design significantly influences the fracture direction, with 90° helical perforations inducing vertical fractures and fixed-plane perforations resulting in transverse fractures. Additionally, a plastic fracture model more accurately predicts fracture initiation pressures compared to traditional elastic models, highlighting a shift from shear to tensile failure modes as hydrate saturation increases. This research provides new insights into the fracture mechanisms of NGH-bearing sediments and offers valuable guidance for optimizing hydraulic fracturing strategies to enhance resource extraction in hydrate reservoirs. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
Show Figures

Figure 1

20 pages, 14743 KiB  
Article
Seismic Prediction of Shallow Unconsolidated Sand in Deepwater Areas
by Jiale Chen, Yingfeng Xie, Tong Wang, Haoyi Zhou, Zhen Zhang, Yonghang Li, Shi Zhang and Wei Deng
J. Mar. Sci. Eng. 2025, 13(6), 1044; https://doi.org/10.3390/jmse13061044 - 26 May 2025
Viewed by 457
Abstract
Recently, shallow gas fields and hydrate-bearing sand in the deepwater area of the northern South China Sea have been successively discovered, and the accurate prediction of shallow sands is an important foundation. However, most of the current prediction methods are mainly for deep [...] Read more.
Recently, shallow gas fields and hydrate-bearing sand in the deepwater area of the northern South China Sea have been successively discovered, and the accurate prediction of shallow sands is an important foundation. However, most of the current prediction methods are mainly for deep oil and gas reservoirs. Compared with those reservoirs with high degree of consolidation, shallow sandy reservoirs are loose and unconsolidated, whose geophysical characteristics are not well understood. This paper analyzes the logging data of shallow sandy reservoirs recovered in the South China Sea recently, which show that the sand content has a significant influence on Young’s modulus and Poisson’s ratio of the sediments. Therefore, this paper firstly constructs a new petrophysical model of unconsolidated strata targeting sandy content and qualitatively links the mineral composition and the elastic parameters of the shallow marine sediments and defines a new indicator for sandy content: the modified brittleness index (MBI). The effectiveness of MBI in predicting sandy content is then verified by measured well data. Based on pre-stack seismic inversion, the MBI is then inverted, which will identify the sandy deposits. The method proposed provides technical support for the subsequent shallow gas and hydrate exploration in the South China Sea. Full article
Show Figures

Figure 1

22 pages, 4552 KiB  
Article
Wellhead Stability During Development Process of Hydrate Reservoir in the Northern South China Sea: Sensitivity Analysis
by Qingchao Li, Qiang Li, Jingjuan Wu, Kaige He, Yifan Xia, Junyi Liu, Fuling Wang and Yuanfang Cheng
Processes 2025, 13(6), 1630; https://doi.org/10.3390/pr13061630 - 22 May 2025
Cited by 12 | Viewed by 627
Abstract
Natural gas hydrates are a promising alternative energy source for oil and gas in the future. However, geomechanical issues, such as wellhead instability, may arise, affecting the safe and efficient development of hydrates. In the present work, a sensitivity analysis was performed on [...] Read more.
Natural gas hydrates are a promising alternative energy source for oil and gas in the future. However, geomechanical issues, such as wellhead instability, may arise, affecting the safe and efficient development of hydrates. In the present work, a sensitivity analysis was performed on sediment subsidence and wellhead instability during the development of marine hydrates using a multi-field coupled model. This is accomplished by adjusting the corresponding parameters based on the basic data of the default case. Meanwhile, the corresponding influencing mechanisms were explored. Finally, design recommendations for operation parameters were proposed based on the research findings regarding wellhead stability. It was found that the wellhead undergoes rapid sinking during a certain period in the early stage of hydrate development, followed by a slower, continued sinking. The sensitivity analysis found that when the depressurization amplitude is small, the wellhead sinking is also minimal. To maintain wellhead stability during the development process, it is recommended that neither the depressurization amplitude or drawdown pressure exceed 3.0 MPa. Although a high heating temperature can increase gas production to some extent, the accompanying excessive hydrate dissociation may compromise the stability of both the formation and wellhead. To balance gas production and wellhead stability, it is recommended that the heating amplitude does not exceed 50 °C. In addition, the permeability influences the distribution of pore pressure, which in turn affects sediment subsidence and wellbore stability. Wellhead stability deteriorates as permeability increases. Therefore, it is crucial to accurately determine the reservoir characteristics (such as permeability) before developing hydrates to avoid wellhead instability. Finally, the investigation results reveal that using different versions of the investigation model can impact the accuracy of the results, and neglecting certain physical fields may lead to an underestimation of the wellhead sinking. Full article
Show Figures

Figure 1

19 pages, 9026 KiB  
Article
Design and Performance Analysis of a Composite Separator with Enhanced De-Bonding Efficiency of Gas Hydrate-Bearing Sediments
by Xing Fang, Yufa He, Zhong Li, Guorong Wang and Shunzuo Qiu
Appl. Sci. 2025, 15(10), 5323; https://doi.org/10.3390/app15105323 - 9 May 2025
Cited by 1 | Viewed by 472
Abstract
In the marine natural gas hydrate solid-fluidization mining process, current separation devices are insufficient in de-bonding the hydrate cementation between sand particles, affecting the hydrate collection efficiency. To address this issue, a composite separator was designed in this study that is used to [...] Read more.
In the marine natural gas hydrate solid-fluidization mining process, current separation devices are insufficient in de-bonding the hydrate cementation between sand particles, affecting the hydrate collection efficiency. To address this issue, a composite separator was designed in this study that is used to restrict the axial movement of cemented particles, thereby achieving the goal of enhanced de-bonding efficiency. A combined computational fluid dynamics–discrete element method simulation method was used to verify the de-bonding performance of this composite separator on weakly cemented hydrate particles with different sizes and to study the influence of the spiral flow channel structural parameters and inlet types on the de-bonding performance. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

16 pages, 4390 KiB  
Article
Effect of Fracturing Fluid Properties on the Flowback Efficiency of Marine and Continental Transitional Shale Gas Reservoirs in Ordos Basin
by Mingjun Chen, Xianyi Ning, Yili Kang, Jianjun Wu, Bing Li, Yang Shi, Zhehan Lai, Jiajia Bai and Maoling Yan
Processes 2025, 13(5), 1398; https://doi.org/10.3390/pr13051398 - 3 May 2025
Viewed by 513
Abstract
The characteristics of marine–continental transitional shale reservoirs and the performance parameters of fracturing fluids, such as pH and mineralization, play a crucial role in influencing the flowback efficiency of these fluids. Excessive retention of fracturing fluids within the reservoir can lead to a [...] Read more.
The characteristics of marine–continental transitional shale reservoirs and the performance parameters of fracturing fluids, such as pH and mineralization, play a crucial role in influencing the flowback efficiency of these fluids. Excessive retention of fracturing fluids within the reservoir can lead to a significant decrease in permeability, thereby diminishing gas well productivity. This study investigates shale samples sourced from the marine–continental transitional shale formation in the eastern Ordos Basin, along with field-collected fracturing fluid samples, including formation water, sub-formation water, distilled water, inorganic acids, and organic acids, through flowback experiments. The results show that: (1) the flowback rate of shale fracturing fluids exhibits a positive correlation with salinity, with low-salinity fluids showing a dual effect on clay mineral hydration. These fluids increase the pore volume of the sample from 0.003 cm3/g to 0.0037 cm3/g but also potentially reduce permeability by 31.15% to 99.96%; (2) the dissolution effects of inorganic and organic acids in the fracturing fluids enhance the flowback rate by 16.42% to 22.25%, owing to their chemical interactions with mineral constituents; (3) in the development of shale gas reservoirs, it is imperative to carefully devise reservoir protection strategies that balance the fracture-inducing effects of clay mineral hydration and expansion, while mitigating water sensitivity damage. The application of acid preflush, primarily including inorganic or organic acids, in conjunction with the advanced fracturing techniques, can enhance the connectivity of shale pores and fractures, thereby improving fracture conductivity, increasing the flowback rate of fracturing fluids, and ensuring sustained and high gas production from wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

6 pages, 174 KiB  
Editorial
Analytical and Experimental Technology for Marine Gas Hydrate
by Changling Liu and Qiang Chen
J. Mar. Sci. Eng. 2025, 13(4), 782; https://doi.org/10.3390/jmse13040782 - 14 Apr 2025
Viewed by 453
Abstract
Analytical and Experimental Technology is an essential and important means for basic theoretical research on marine natural gas hydrates [...] Full article
(This article belongs to the Special Issue Analytical and Experimental Technology for Marine Gas Hydrate)
25 pages, 5642 KiB  
Article
Effect of Methane Gas Hydrate Content of Marine Sediment on Ocean Wave-Induced Oscillatory Excess Pore Water Pressure and Geotechnical Implications
by Adango Miadonye and Mumuni Amadu
Fuels 2025, 6(1), 4; https://doi.org/10.3390/fuels6010004 - 8 Jan 2025
Viewed by 1479
Abstract
Methane gas hydrate-bearing sediments hold substantial natural gas reserves, and to understand their potential roles in the energy sector as the next generation of energy resources, considerable research is being conducted in industry and academia. Consequently, safe and economically feasible extraction methods are [...] Read more.
Methane gas hydrate-bearing sediments hold substantial natural gas reserves, and to understand their potential roles in the energy sector as the next generation of energy resources, considerable research is being conducted in industry and academia. Consequently, safe and economically feasible extraction methods are being vigorously researched, as are methods designed to estimate site-specific reserves. In addition, the presence of methane gas hydrates and their dissociation have been known to impact the geotechnical properties of submarine foundation soils and slopes. In this paper, we advance research on gas hydrate-bearing sediments by theoretically studying the effect of the hydromechanical coupling process related to ocean wave hydrodynamics. In this regard, we have studied two geotechnically and theoretically relevant situations related to the oscillatory wave-induced hydromechanical coupling process. Our results show that the presence of initial methane gas pressure leads to excessively high oscillatory pore pressure, which confirms the instability of submarine slopes with methane gas hydrate accumulation originally reported in the geotechnical literature. In addition, our results show that neglecting the presence of initial methane gas pressure in gas hydrate-bearing sediments in the theoretical description of the oscillatory excess pore pressure can lead to improper geotechnical planning. Moreover, the theoretical evolution of oscillatory excess pore water pressure with depth indicates a damping trend in magnitude, leading to a stable value with depth. Full article
(This article belongs to the Special Issue Feature Papers in Fuels)
Show Figures

Figure 1

14 pages, 6702 KiB  
Article
Study on the Occurrence of Double Bottom Simulating Reflectors in the Makran Accretionary Zone
by Jiangxin Chen, Wenyu Zhao, Siyou Tong, Leonardo Azevedo, Nengyou Wu, Bin Liu, Huaning Xu, Jianming Gong, Jing Liao, Jie Liang, Dongxu Luo and Yu Fu
J. Mar. Sci. Eng. 2025, 13(1), 68; https://doi.org/10.3390/jmse13010068 - 2 Jan 2025
Cited by 2 | Viewed by 922
Abstract
A Bottom Simulating Reflector (BSR) is a seismic feature closely related to marine gas hydrate as it is usually regarded as the seismic response of the base of the gas hydrate stability zone in seismic profiles. BSRs are widely distributed in the Makran [...] Read more.
A Bottom Simulating Reflector (BSR) is a seismic feature closely related to marine gas hydrate as it is usually regarded as the seismic response of the base of the gas hydrate stability zone in seismic profiles. BSRs are widely distributed in the Makran accretionary wedge, and double BSRs are observed at some locations. Double BSRs usually appear on seismic profiles as two layers of BSRs located at distinct depths but with large lateral seismic amplitude variations. Based on the multi-channel seismic reflection data acquired over the Makran accretionary wedge, this work studies the origin of the double BSR in the Makran accretionary wedge and its association with fluid escape events. Our modeling suggests that double BSRs correspond to both the paleo-seafloor and modern seafloor caused by late sedimentary activities. Also, the residual paleo-BSR migrates upward due to the increase in local geothermal gradient caused by diapirs and gas chimney thermal fluids. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

25 pages, 10233 KiB  
Article
Advanced Insights into Methane Hydrate Production: Influence of Pressure, Saturation, and Permeability Dynamics
by Yunjian Zhou, Yufa He, Yu Chen and Shihui Sun
Processes 2025, 13(1), 80; https://doi.org/10.3390/pr13010080 - 1 Jan 2025
Viewed by 1326
Abstract
The decomposition of hydrate during hydrate mining can reduce the strength of the formation and induce engineering geological disasters. Clarifying the decomposition characteristics of geological hydrate during hydrate mining is of great significance for preventing marine geological disasters. This study comprehensively examines the [...] Read more.
The decomposition of hydrate during hydrate mining can reduce the strength of the formation and induce engineering geological disasters. Clarifying the decomposition characteristics of geological hydrate during hydrate mining is of great significance for preventing marine geological disasters. This study comprehensively examines the effects of various extraction conditions, including production pressure, hydrate saturation, and permeability, on methane hydrate decomposition during depressurization-based extraction. Key findings show that reduced production pressure significantly increases gas and water production rates due to an enhanced pressure differential, albeit at the cost of potential geomechanical instability. Variations in hydrate saturation reveal that lower-saturation reservoirs initially exhibit higher production due to faster pressure propagation and greater porosity, whereas high-saturation layers may sustain production in the later stages. Permeability changes impact pressure diffusion and heat transfer within the formation; higher permeability leads to faster initial production but causes rapid energy depletion, requiring supplementary energy inputs to maintain production. These findings provide essential insights for optimizing methane hydrate extraction, ensuring high productivity while mitigating formation stability risks. Full article
(This article belongs to the Special Issue Modeling, Control, and Optimization of Drilling Techniques)
Show Figures

Figure 1

21 pages, 7616 KiB  
Article
Numerical Simulation of a Marine Landslide in Gas Hydrate-Bearing Sediments Using L-GSM
by Da Hui, Guangyao Wang, Yilin Huang, Guixun Zhu and Wenming Li
J. Mar. Sci. Eng. 2024, 12(12), 2274; https://doi.org/10.3390/jmse12122274 - 11 Dec 2024
Viewed by 824
Abstract
The marine gas hydrates within seabed sediments and their subsequent extraction may cause landslides. Predicting landslides in hydrate-bearing sediments is particularly challenging due to the intricate nature of the marine environment. To address this issue, we have developed a Lagrangian gradient smoothing method [...] Read more.
The marine gas hydrates within seabed sediments and their subsequent extraction may cause landslides. Predicting landslides in hydrate-bearing sediments is particularly challenging due to the intricate nature of the marine environment. To address this issue, we have developed a Lagrangian gradient smoothing method (L-GSM) based on gradient smoothing techniques. This approach effectively eliminates the tensile instability inherent in the original Smoothed Particle Hydrodynamics (SPH) method used for modeling solid flow. Then, we applied the L-GSM to investigate the mechanics of hydrate-bearing sediments by integrating a constitutive equation specific to these sediments, which were modeled based on the artificial methane-hydrate-bearing sediment. The robustness and precision of the L-GSM were verified through various numerical examples. Furthermore, we modeled the landslides associated with hydrate-bearing sediments under varying hydrate saturation levels. The numerical findings revealed that hydrate saturation significantly affects the dynamics of landslide movement. These satisfactory results suggest that the L-GSM has the potential to be applied to geotechnical problems associated with hydrate-bearing sediment. Full article
Show Figures

Figure 1

17 pages, 14845 KiB  
Article
Spatially Constrained 1D Inversions of Common-Midpoint Marine Controlled-Source Electromagnetic Data to Create a 3D Electrical Model
by Jorlivan Lopes Correa and Cícero Régis
Appl. Sci. 2024, 14(23), 11281; https://doi.org/10.3390/app142311281 - 3 Dec 2024
Viewed by 945
Abstract
The proposed 3D stitching of spatially constrained Common Midpoint (CMP) 1D inversions is a method that integrates 1D laterally constrained inversion of marine Controlled-Source Electromagnetic (CSEM) data in the CMP domain to generate a cube of resistivities from 3D surveys. An interpretive model [...] Read more.
The proposed 3D stitching of spatially constrained Common Midpoint (CMP) 1D inversions is a method that integrates 1D laterally constrained inversion of marine Controlled-Source Electromagnetic (CSEM) data in the CMP domain to generate a cube of resistivities from 3D surveys. An interpretive model is built in the form of a set of columns of homogeneous cells that form a 3D resistivity grid. The proposed methodology is an iterative process that updates the entire model until it minimizes the data misfit between the real and synthetic data. We connect the model cells by smoothing regularization applied in all three directions, which generates stable solutions. Additionally, we evaluate the inversion result constrained by hard information, for example, well log resistivity data. Two applications to synthetic data and the inversion of a real data set illustrate the method. The synthetic data were generated from 3D models, one with two resistive targets at different depths and a second with a target inside a conductive layer over a resistive basement. The real data were gathered off the southeast coast of Brazil, in an area of gas hydrate accumulation. The results indicate that the method can generate useful approximations to the resistivity structures under the survey area in a much shorter time than that of a full 3D inversion. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

Back to TopTop