Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = marine diesel oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1652 KiB  
Article
Case Study on Emissions Abatement Strategies for Aging Cruise Vessels: Environmental and Economic Comparison of Scrubbers and Low-Sulphur Fuels
by Luis Alfonso Díaz-Secades, Luís Baptista and Sandrina Pereira
J. Mar. Sci. Eng. 2025, 13(8), 1454; https://doi.org/10.3390/jmse13081454 - 30 Jul 2025
Viewed by 230
Abstract
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. [...] Read more.
The maritime sector is undergoing rapid transformation, driven by increasingly stringent international regulations targeting air pollution. While newly built vessels integrate advanced technologies for compliance, the global fleet averages 21.8 years of age and must meet emission requirements through retrofitting or operational changes. This study evaluates, at environmental and economic levels, two key sulphur abatement strategies for a 1998-built cruise vessel nearing the end of its service life: (i) the installation of open-loop scrubbers with fuel enhancement devices, and (ii) a switch to marine diesel oil as main fuel. The analysis was based on real operational data from a cruise vessel. For the environmental assessment, a Tier III hybrid emissions model was used. The results show that scrubbers reduce SOx emissions by approximately 97% but increase fuel consumption by 3.6%, raising both CO2 and NOx emissions, while particulate matter decreases by only 6.7%. In contrast, switching to MDO achieves over 99% SOx reduction, an 89% drop in particulate matter, and a nearly 5% reduction in CO2 emissions. At an economic level, it was found that, despite a CAPEX of nearly USD 1.9 million, scrubber installation provides an average annual net saving exceeding USD 8.2 million. From the deterministic and probabilistic analyses performed, including Monte Carlo simulations under various fuel price correlation scenarios, scrubber installation consistently shows high profitability, with NPVs surpassing USD 70 million and payback periods under four months. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

5 pages, 175 KiB  
Proceeding Paper
General Concepts from the Risk Assessment and Hazard Identification of HTL-Derived Bio-Oil: A Case Study of the MARINES Project
by Nicholas J. Daras, Paraskevi C. Divari, Constantinos C. Karamatsoukis, Konstantinos G. Kolovos, Theodore Liolios, Georgia Melagraki, Christos Michalopoulos and Dionysios E. Mouzakis
Proceedings 2025, 121(1), 12; https://doi.org/10.3390/proceedings2025121012 - 25 Jul 2025
Viewed by 168
Abstract
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, [...] Read more.
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, including oxidative polymerization, corrosion, and micro-explosions during combustion. Key hazards include storage instability, particulate emissions (20–30% higher than diesel), and aquatic toxicity (LC50 < 10 mg/L for phenolics). Mitigation strategies such as inert gas blanketing, preheating, and spill containment are proposed. While offering renewable fuel potential, HTL bio-oil demands rigorous safety protocols for military/industrial deployment, warranting further experimental validation. Full article
27 pages, 4389 KiB  
Article
Application of Machine Learning for Fuel Consumption and Emission Prediction in a Marine Diesel Engine Using Diesel and Waste Cooking Oil
by Tadas Žvirblis, Kristina Čižiūnienė and Jonas Matijošius
J. Mar. Sci. Eng. 2025, 13(7), 1328; https://doi.org/10.3390/jmse13071328 - 11 Jul 2025
Viewed by 383
Abstract
This study creates and tests a machine learning model that can predict fuel use and emissions (NOx, CO2, CO, HC, PN) from a marine internal combustion engine when it is running normally. The model learned from data collected from [...] Read more.
This study creates and tests a machine learning model that can predict fuel use and emissions (NOx, CO2, CO, HC, PN) from a marine internal combustion engine when it is running normally. The model learned from data collected from conventional diesel fuel experiments. Subsequently, we evaluated its ability to transfer by employing the parameters associated with waste cooking oil (WCO) biodiesel and its 60/40 diesel mixture. The machine learning model demonstrated exceptional proficiency in forecasting diesel mode (R2 > 0.95), effectively encapsulating both long-term trends and short-term fluctuations in fuel consumption and emissions across various load regimes. Upon the incorporation of WCO data, the model maintained its capacity to identify trends; however, it persistently overestimated emissions of CO, HC, and PN. This discrepancy arose primarily from the differing chemical composition of the fuel, particularly in terms of oxygen content and density. A significant correlation existed between indicators of incomplete combustion and the utilization of fuel. Nonetheless, NOx exhibited an inverse relationship with indicators of combustion efficiency. The findings indicate that the model possesses the capability to estimate emissions in real time, requiring only a modest amount of additional training to operate effectively with alternative fuels. This approach significantly diminishes the necessity for prolonged experimental endeavors, rendering it an invaluable asset for the formulation of fuel strategies and initiatives aimed at mitigating carbon emissions in maritime operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 2143 KiB  
Article
Alternative Fuels in the Maritime Industry: Emissions Evaluation of Bulk Carrier Ships
by Diego Díaz-Cuenca, Antonio Villalba-Herreros, Teresa J. Leo and Rafael d’Amore-Domenech
J. Mar. Sci. Eng. 2025, 13(7), 1313; https://doi.org/10.3390/jmse13071313 - 8 Jul 2025
Viewed by 821
Abstract
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set [...] Read more.
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set of key performance indicators (KPIs) are evaluated, including total equivalent CO2 emissions (CO2eq), CO2eq emissions per unit of transport mass and CO2eq emissions per unit of transport mass per distance. The emissions analysis demonstrates that Liquified Natural Gas (LNG) paired with Marine Gas Oil (MGO) emerges as the most viable short-term solution in comparison with the conventional fuel oil propulsion. Synthetic methanol (eMeOH) paired with synthetic diesel (eDiesel) is identified as the most promising long-term fuel combination. When comparing the European Union (EU) emission calculation system (FuelEU) with the International Maritime Organization (IMO) emission metrics, a discrepancy in emissions reduction outcomes has been observed. The IMO approach appears to favor methanol (MeOH) and liquefied natural gas (LNG) over conventional fuel oil. This is attributed to the fact that the IMO metrics do not consider unburned methane emissions (methane slip) and emissions in the production of fuels (Well-to-Tank). Full article
Show Figures

Figure 1

19 pages, 3463 KiB  
Article
A Reliability Assessment of a Vessel’s Main Propulsion Engine
by Rabiul Islam and Samuel Martin
J. Mar. Sci. Eng. 2025, 13(7), 1278; https://doi.org/10.3390/jmse13071278 - 30 Jun 2025
Viewed by 260
Abstract
Ocean-going vessels rely on marine diesel engines, referred to as the main engine, to carry the vessel’s load and ensure safe travel. These engines play a critical role, as their operation impacts on all aspects of the vessel’s functionality. To meet increasing demands [...] Read more.
Ocean-going vessels rely on marine diesel engines, referred to as the main engine, to carry the vessel’s load and ensure safe travel. These engines play a critical role, as their operation impacts on all aspects of the vessel’s functionality. To meet increasing demands for extended run times while maintaining reliability, it is essential to address the risks of main engine failure. Previous studies have highlighted numerous accidents resulting from such failures. Consequently, the reliability of the main propulsion engine is a crucial component of safe vessel operation. This study addresses the lack of methodologies for predicting engine reliability using failure running hours (FRHs). A data-driven model was developed using FRH data collected from marine engineers during on-board maintenance operations. Additionally, fault tree analysis (FTA) was employed to calculate the reliability of individual subsystems and the overall main propulsion engine. The findings indicate that the lube oil system, freshwater cooling system, scavenge system, and fuel system reach 0% reliability at approximately 2000 h, 14,000 h, 2500 h, and 1400 h of operation, respectively. Additionally, the reliability of the main propulsion engine drops to 0% after around 900 h of operation. By incorporating this prediction model, ship operators can better schedule maintenance, significantly enhancing engine reliability and reducing maritime accidents. This approach contributes to safer and more efficient operations for commercial marine systems. This study represents a vital step toward improving the reliability of ocean-going vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4356 KiB  
Article
Impact of High-Concentration Biofuels on Cylinder Lubricating Oil Performance in Low-Speed Two-Stroke Marine Diesel Engines
by Enrui Zhao, Guichen Zhang, Qiuyu Li and Saihao Zhu
J. Mar. Sci. Eng. 2025, 13(6), 1189; https://doi.org/10.3390/jmse13061189 - 18 Jun 2025
Viewed by 1082
Abstract
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In [...] Read more.
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In this study, catering waste oil was blended with 180 cSt low-sulfur fuel oil (LSFO) to prepare biofuels with volume fractions of 24% (B24) and 50% (B50). These biofuels were evaluated in a MAN marine diesel engine under load conditions of 25%, 50%, 75%, and 90%. The experimental results showed that, at the same engine load, the use of B50 biofuel led to lower kinematic viscosity and oxidation degree of the cylinder residual oil, but higher total base number (TBN), nitration level, PQ index, and concentrations of wear elements (Fe, Cu, Cr, Mo). These results indicate that the wear of the cylinder liner–piston ring interface was more severe when using B50 biofuel than when using B24 biofuel. For the same type of fuel, as the engine load increased, the kinematic viscosity and TBN of the residual oil decreased, while the PQ index and the concentrations of Fe, Cu, Cr, and Mo increased, reflecting the aggravated wear severity. Ferrographic analysis further revealed that ferromagnetic wear particles in the oil mainly consisted of normal wear debris. When using B50 biodiesel, a small amount of fatigue wear particles were detected. These findings offer crucial insights for optimizing biofuel utilization and improving cylinder lubrication systems in marine engines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 5250 KiB  
Article
Hybrid Additives of 1,3-Diketone Fluid and Nanocopper Particles Applied in Marine Engine Oil
by Yuwen Xu, Yan Yang, Li Zhong, Xingyuan Jing, Xiaoyu Yin, Tao Xia, Jingsi Wang, Tobias Amann and Ke Li
Lubricants 2025, 13(6), 252; https://doi.org/10.3390/lubricants13060252 - 4 Jun 2025
Viewed by 566
Abstract
The lubrication performance of the cylinder liner–piston ring (CLPR) is crucial for the energy efficiency and operating reliability of marine diesel engines. To enhance the boundary lubrication of marine engine oil, a 1,3-diketone fluid HPTD (1-(4-hexylphenyl) tridecane-1,3-dione, HPTD) was introduced as an ash-free [...] Read more.
The lubrication performance of the cylinder liner–piston ring (CLPR) is crucial for the energy efficiency and operating reliability of marine diesel engines. To enhance the boundary lubrication of marine engine oil, a 1,3-diketone fluid HPTD (1-(4-hexylphenyl) tridecane-1,3-dione, HPTD) was introduced as an ash-free friction modifier. Besides that, octadecylamine-functionalized nanocopper particles (ODA-Cu) were also added to the marine oil to improve its anti-wear behavior. Through cylinder-on-disk friction tests, the appropriate contents of HPTD and ODA-Cu were determined, which then formed hybrid additives and modified the engine oil. The tribological performance of the modified oil was analyzed under various normal loads, reciprocating frequencies, and testing temperatures. Based on the synergy of the tribochemical reaction of HPTD and the mending effect of ODA-Cu on the sliding surface, the modified oil not only had lower sulfated ash content but also exhibited superior lubrication performance (i.e., reduced coefficient of friction by 15%, smaller wear track by 43%, and higher maximum non-seizure load by 11%) than the pristine engine oil. The results of this study would be helpful for the design of novel hybrid eco-friendly additives for marine engine oil. Full article
(This article belongs to the Special Issue Marine Tribology)
Show Figures

Figure 1

16 pages, 6647 KiB  
Article
Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption
by Rafael Picazo Espinosa, Jochen Uebe, Marija Katarzyte and Tatjana Paulauskiene
Gels 2025, 11(6), 386; https://doi.org/10.3390/gels11060386 - 24 May 2025
Viewed by 513
Abstract
Oil spills represent a significant environmental threat due to the toxicity of hydrocarbons, particularly in aquatic environments where oil rapidly spreads across the surface. Sustainable sorbents are needed for an efficient and eco-friendly response to oil spills. Cellulose aerogels produced from recycled paper [...] Read more.
Oil spills represent a significant environmental threat due to the toxicity of hydrocarbons, particularly in aquatic environments where oil rapidly spreads across the surface. Sustainable sorbents are needed for an efficient and eco-friendly response to oil spills. Cellulose aerogels produced from recycled paper and cardboard exhibit promising properties such as buoyancy, light weight, biocompatibility, and recyclability. Mechanical stability and reusability can be enhanced using cross-linkers such as starch. This study evaluated the impact of starch on cellulose aerogel morphology, sorption capacity for various petroleum products (crude oil, marine diesel, and lubricating oil), and reusability using scanning electron microscopy (SEM) and elemental mapping. Aerogels containing 0.5 and 1 wt% starch showed higher porosity, sorption capacity, and reusability. Starch did not affect hydrophobization or significantly alter nitrogen and carbon levels, indicating limited influence on surface chemistry and adsorption performance. Full article
(This article belongs to the Special Issue Cellulose Gels: Properties and Prospective Applications)
Show Figures

Figure 1

15 pages, 6083 KiB  
Article
Investigation of 1,3-Diketone and Nano-Copper Additives for Enhancing Boundary Lubrication Performance
by Jingsi Wang, Dezhi Teng, Jiawei Fan, Xi Zhang, Qihang Cui, Ke Li and Pay Jun Liew
J. Mar. Sci. Eng. 2025, 13(5), 912; https://doi.org/10.3390/jmse13050912 - 4 May 2025
Viewed by 588
Abstract
In this work, 1,3-diketone synthesized via the Claisen condensation method and nano-copper particles modified by the Brust–Schiffrin method were added into a commercial marine medium-speed diesel engine cylinder piston oil to evaluate their effects on boundary lubrication performance. Friction and wear tests conducted [...] Read more.
In this work, 1,3-diketone synthesized via the Claisen condensation method and nano-copper particles modified by the Brust–Schiffrin method were added into a commercial marine medium-speed diesel engine cylinder piston oil to evaluate their effects on boundary lubrication performance. Friction and wear tests conducted on CKS-coated piston ring and cast-iron cylinder liner samples demonstrated significant reductions in both friction and wear with the addition of 1,3-diketone and nano-copper particles. Compared to the original oil without additives, the friction force was reduced by up to 16.7%, while the wear of the piston ring and cylinder liner was decreased by up to 21.6% and 15.1% at 150 °C, respectively. A worn surface analysis indicated that the addition of 1,3-diketone and functionalized nano-copper particles influenced the depolymerization and tribo-chemical reactions of the anti-wear additive ZDDP (zinc dialkyldithiophosphate) in the original engine oil. This modification enhanced the oil’s anti-friction and anti-wear properties, offering valuable insights into the development of eco-friendly lubricants for energy-efficient systems. Full article
Show Figures

Figure 1

16 pages, 638 KiB  
Review
A Review on Global Recovery Policy of Used Lubricating Oils and Their Effects on the Environment and Circular Economy
by Catherine Cabrera-Escobar, Juan Moreno-Gutiérrez, Rubén Rodríguez-Moreno, Emilio Pájaro-Velázquez, Fátima Calderay-Cayetano and Vanesa Durán-Grados
Environments 2025, 12(5), 135; https://doi.org/10.3390/environments12050135 - 23 Apr 2025
Viewed by 1556
Abstract
This manuscript underscores the significance of converting and reusing lubricating oils for dual purposes as both lubricants and fuels. This approach not only benefits the environment, but also contributes to the circular economy. To this end, this article conducts a review and delves [...] Read more.
This manuscript underscores the significance of converting and reusing lubricating oils for dual purposes as both lubricants and fuels. This approach not only benefits the environment, but also contributes to the circular economy. To this end, this article conducts a review and delves into the applications and re-refining techniques employed to recover lubricating oil from waste lubricating oil (WLO). A global overview of waste oil recycling and political feasibility in the marketplace is presented, highlighting country-specific preferences for reusing such oils. Moreover, this manuscript analyzes several studies that utilize recycled oil as fuel in thermal equipment, including diesel engines. The findings indicate that CO emissions increased incrementally under both low- (from 3.22% to 21.23%) and high-load conditions (from 6.6% to 18.2%) compared to diesel fuel. Another study reveals that 10% and 20% blends of transformer oil and diesel exhibit lower fuel consumption than diesel fuel at high loads. In all the cases examined, WLO demonstrated slightly higher emission levels than marine diesel oil (MDO), yet lower than those observed with heavy fuel oil (HFO). Full article
Show Figures

Figure 1

17 pages, 7106 KiB  
Article
Effect of Biomimetic Fish Scale Texture on Reciprocating Friction Pairs on Interfacial Lubricating Oil Transport
by Tao Sun, Zhijun Yan, Lixia Xue, Yuanyuan Jiang and Shibo Wu
Biomimetics 2025, 10(4), 248; https://doi.org/10.3390/biomimetics10040248 - 17 Apr 2025
Viewed by 481
Abstract
Focusing on the difficulty of lubrication in the scavenging port area of a cylinder liner of an actual marine two-stroke diesel engine, the transportation of interface lubricating oil was studied. In this paper, a biomimetic fish scale texture composed of fan-shaped and arc-shaped [...] Read more.
Focusing on the difficulty of lubrication in the scavenging port area of a cylinder liner of an actual marine two-stroke diesel engine, the transportation of interface lubricating oil was studied. In this paper, a biomimetic fish scale texture composed of fan-shaped and arc-shaped curves is designed, and the numerical simulation model is established according to this texture. Through simulation research, the variation rules of pressure distribution, interfacial velocity, and outlet volume flow rate on the biomimetic fish scale texture surface at different velocities and temperatures are obtained. Moreover, the biomimetic fish scale texture is machined on the surface of a reciprocating friction pair by laser etching, and the oil transport speed of the interface is tested under different conditions. The results show that the existence of the biomimetic fish scale texture on the friction pair can effectively improve the pressure difference between interfaces during reciprocating motion. The pressure difference enhances the flow properties of interfacial lubricating oil, thereby improving its mass transport capacity. In addition, increasing the movement speed and oil temperature can increase the oil transport speed of interfacial lubricating oil. The results of the experiment suggest that, under continuous and discontinuous interface conditions, compared with a friction pair without texture, the improvement rate of the lubricating oil transport speed at the interface of the friction pair with the biomimetic fish scale texture can reach 40.7% and 69.1%, respectively. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

21 pages, 2600 KiB  
Article
Rheological Properties of Diesel-Based Fuels with Tyre Pyrolysis Oil as Admixture
by Leszek Chybowski, Marcin Szczepanek, Tomasz Pusty, Piotr Brożek and Robert Pełech
Energies 2025, 18(8), 1993; https://doi.org/10.3390/en18081993 - 12 Apr 2025
Viewed by 990
Abstract
The aim of the article is to present the impact of blending diesel fuel with tire pyrolysis (TPO) oil on the changes in the fuel’s rheological properties and to evaluate these changes in the context of meeting legal requirements for various types of [...] Read more.
The aim of the article is to present the impact of blending diesel fuel with tire pyrolysis (TPO) oil on the changes in the fuel’s rheological properties and to evaluate these changes in the context of meeting legal requirements for various types of fuels. This research presents the impact of normative D100 diesel oil with TPO as an admixture on the rheological properties of the blends. Measurements are made for the content of TPO in the blend equal to 5, 7, 10, 15, and 20% m/m. In addition, the reference measurements are made for pure diesel oil and pure pyrolytic oil. Kinematic viscosity density, dynamic viscosity, viscosity index, pour point, cloud point, and cold filter plugging point are determined. The density of each sample is found at 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100 °C. Viscosity is determined at the reference temperatures of 20, 40, and 100 °C, which are typically used as reference temperatures for petroleum products. Approximating models are built for all the analyzed parameters, which can be used in future studies. The fit of each model to empirical data is evaluated using the coefficient of determination R2. At the same time, the individual values of the analyzed indicators are compared to the limit values specified in selected standards and regulations, thus allowing us to assess the usefulness of individual fuels in terms of compliance with effective and reliable engine operation requirements. The fuels under study fulfill the normative requirements for the parameters for marine distillate fuels for blends with a pyrolysis oil content of 0–20% m/m and the requirements for standard-grade diesel oils indicated in the Regulation of the Minister of Economy of Poland for blends with a pyrolysis oil content of 0–7% m/m. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

23 pages, 3482 KiB  
Article
Eco-Friendly Biosurfactant: Tackling Oil Pollution in Terrestrial and Aquatic Ecosystems
by Kaio Wêdann Oliveira, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Gleice Paula Araújo, Attilio Converti, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Fermentation 2025, 11(4), 199; https://doi.org/10.3390/fermentation11040199 - 8 Apr 2025
Viewed by 1177
Abstract
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of [...] Read more.
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of affected environments. The use of biosurfactants is an effective option for the cleaning of storage tanks and the remediation of contaminated soils and effluents. The scope of this work was to assess the production and application of a Starmerella bombicola ATCC 22214 biosurfactant to remediate marine and terrestrial environment polluted by oil. The production of the biosurfactant was optimized in terms of carbon/nitrogen sources and culture conditions using flasks. The performance of the biosurfactant was tested in clayey soil, silty soil, and standard sand, as well as smooth surfaces and industrial effluents contaminated with oils (fuel oils B1 for thermal power generation, diesel, and motor oil). The ideal culture medium for the production of the biosurfactant contained 2% glucose and 5% glycerol, with agitation at 200 rpm, fermentation for 180 h and a 5% inoculum, resulting in a yield of 1.5 g/L. The biosurfactant had high emulsification indices (86.6% for motor oil and 51.7% for diesel) and exhibited good stability under different pH values, temperatures and concentrations of NaCl. The critical micelle concentration was 0.4 g/L, with a surface tension of 26.85 mN/m. In remediation tests, the biosurfactant enabled the removal of no less than 99% of motor oil from different types of soil. The results showed that the biosurfactant produced by Starmerella bombicola is a promising agent for the remediation of environments contaminated by oil derivatives, especially in industrial environments and for the treatment of oily effluents. Full article
Show Figures

Figure 1

20 pages, 8978 KiB  
Article
Method for Maintaining Technical Condition of Marine Diesel Engine Bearings
by Sergii Sagin, Arsenii Sagin, Yurii Zablotskyi, Oleksij Fomin, Václav Píštěk and Pavel Kučera
Lubricants 2025, 13(4), 146; https://doi.org/10.3390/lubricants13040146 - 25 Mar 2025
Cited by 3 | Viewed by 862
Abstract
The aim of the research was to determine the impact of antifriction coatings on the technical condition of marine diesel engine bearings. Various epilams were used as antifriction coatings, with a thin layer applied to the surfaces of the bearings of the marine [...] Read more.
The aim of the research was to determine the impact of antifriction coatings on the technical condition of marine diesel engine bearings. Various epilams were used as antifriction coatings, with a thin layer applied to the surfaces of the bearings of the marine diesel engines 12V32/40 MAN-Diesel&Turbo. The thickness of the epilam coating adsorbed on the metal surface was controlled by ellipsometry. It was found that the thickness of the epilam layer on the surfaces of marine diesel engine bearings could reach 11.2 nm to 17.0 nm. The adsorption time required does not exceed 10 min. It was shown that the epilam nanolayer applied to the metal surface led to an increase in the structural characteristics of the oil boundary layer (thickness: from 12.3 µm to 15.2–18.3 µm; contact angles: from 10.2 deg to 15.8–17.4 deg). It was experimentally confirmed that the epilam coating of bearing surfaces significantly reduced their wear. For the 12V32/40 MAN-Diesel&Turbo marine diesel engine, in the case of epilaminating, the wear of the bearing shell surface was reduced by 6.1–27.6%, with the greatest reduction in wear occurring for the stern (most loaded) bearings. This helped to maintain the technical condition of the bearings of marine diesel engines. Full article
(This article belongs to the Special Issue Anti-Wear Lubricating Materials)
Show Figures

Figure 1

12 pages, 3073 KiB  
Article
A Comparative Study of Combustion Characteristics for the Evaluation of the Feasibility of Crude Bioethanol as a Substitute for Marine Fuel Oil
by Ju-Wan Kim and Tae-Ho Lee
J. Mar. Sci. Eng. 2025, 13(3), 433; https://doi.org/10.3390/jmse13030433 - 25 Feb 2025
Viewed by 674
Abstract
In this study, the potential use of corn-based crude bioethanol was investigated as an alternative energy source for marine fuel oil under increasingly stringent maritime emissions regulations. A small-scale combustion chamber with a capacity of approximately 1 ton was developed, and comparative combustion [...] Read more.
In this study, the potential use of corn-based crude bioethanol was investigated as an alternative energy source for marine fuel oil under increasingly stringent maritime emissions regulations. A small-scale combustion chamber with a capacity of approximately 1 ton was developed, and comparative combustion tests were conducted with various fuel types, including MGO, diesel, kerosene, and BE100. In addition, component analysis was performed and compared using the ISO-8217 method. Complete combustion of the fuel was performed under the same experimental conditions of stable atmospheric pressure and temperature. BE100 exhibited an 8.3% increase in the oxygen concentration and a 5.9% reduction in the carbon dioxide emissions compared to MGO. Despite the low nitrogen oxide (NOx) emissions of MGO at approximately 34.4 ppm, BE100 demonstrated superior reduction potential, with a reading of 1.9 ppm. Sulfur oxides (SOx) were not detected in any of the fuels tested, underscoring the high quality of the currently available low-sulfur MGO. The exhaust gas temperatures were reduced by approximately 44.6% when using BE100, from 367.1 °C for MGO to 203.2 °C for BE100. However, the combustion efficiency of BE100 was 8.3% lower than that of MGO. While crude bioethanol shows promise in reducing exhaust gas emissions, its limited thermal output poses a challenge for direct substitution. Future studies should investigate the development of blended fuels combining bioethanol and conventional marine fuels to improve the performance and sustainability. Full article
Show Figures

Figure 1

Back to TopTop