Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,297)

Search Parameters:
Keywords = marine biodiversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3615 KiB  
Article
Identification of Suitable Habitats for Threatened Elasmobranch Species in the OSPAR Maritime Area
by Moritz Mercker, Miriam Müller, Thorsten Werner and Janos Hennicke
Fishes 2025, 10(8), 393; https://doi.org/10.3390/fishes10080393 - 7 Aug 2025
Abstract
Protecting threatened elasmobranch species despite limited data on their distribution and abundance is a critical challenge, particularly in the context of increasing human impacts on marine ecosystems. In the northeastern Atlantic, species such as the leafscale gulper shark, Portuguese dogfish, spurdog, and spotted [...] Read more.
Protecting threatened elasmobranch species despite limited data on their distribution and abundance is a critical challenge, particularly in the context of increasing human impacts on marine ecosystems. In the northeastern Atlantic, species such as the leafscale gulper shark, Portuguese dogfish, spurdog, and spotted ray are facing pressures from overfishing, bycatch, habitat degradation, and climate change. The OSPAR Commission has listed these species as threatened and/or declining and aims to protect them by reliably identifying suitable habitats and integrating these areas into Marine Protected Areas (MPAs). In this study, we present a spatial modelling framework using regression-based approaches to identify suitable habitats for these four species. Results show that suitable habitats of the spotted ray (25.8%) and spurdog (18.8%) are relatively well represented within existing MPAs, while those of the deep-water sharks are underrepresented (6.0% for leafscale gulper shark, and 6.8% for Portuguese dogfish). Our findings highlight the need for additional MPAs in deep-sea continental slope areas, particularly west and northwest of Scotland and Ireland. Such expansions would support OSPAR’s goal to protect 30% of its maritime area by 2030 and could benefit broader deep-sea biodiversity, including other vulnerable demersal species and benthic communities. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation of Fishes)
Show Figures

Figure 1

18 pages, 1656 KiB  
Article
Evaluating Zeolites of Different Origin for Eutrophication Control of Freshwater Bodies
by Irene Biliani, Eirini Papadopoulou and Ierotheos Zacharias
Sustainability 2025, 17(15), 7120; https://doi.org/10.3390/su17157120 - 6 Aug 2025
Abstract
Eutrophication has become the primary water quality issue for most of the freshwater and coastal marine ecosystems in the world. Caused by excessive nitrogen (N) and phosphorus (P) inputs, it has a significant impact on aquatic ecosystems, resulting in algal blooms, oxygen depletion, [...] Read more.
Eutrophication has become the primary water quality issue for most of the freshwater and coastal marine ecosystems in the world. Caused by excessive nitrogen (N) and phosphorus (P) inputs, it has a significant impact on aquatic ecosystems, resulting in algal blooms, oxygen depletion, and biodiversity loss. Zeolites have been identified as effective adsorbents for removal of these pollutants, improving water quality and ecosystem health. Kinetic and isotherm adsorption experiments were conducted to examine the adsorption efficiency of four zeolites of various origins (Greek, Slovakian, Turkish, and Bulgarian) and a specific modification (ZeoPhos) to determine the most effective material for N and P removal. The aim of the study is to discover the best zeolite for chemical adsorption in eutrophic waters by comparing their adsorption capacities and pollutant removal efficiencies along with SEM, TEM, and X-RD spectrographs. Slovakian ZeoPhos has been identified as the best-performing material for long-term and efficient water treatment systems for eutrophication management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

18 pages, 605 KiB  
Article
Enhancing the Regulatory Framework for Incineration at Sea in Peru: Implementing the 1996 London Protocol for Effective Maritime Environmental Governance
by Carlos Gonzalo Carranza Rodriguez, Yeon S. Chang and Hyewon Jang
Sustainability 2025, 17(15), 7060; https://doi.org/10.3390/su17157060 - 4 Aug 2025
Viewed by 162
Abstract
Incineration at sea is a significant source of marine pollution, threatening biodiversity and public health. Although Peru ratified the 1996 London Protocol in 2018, key deficiencies persist in its domestic legal framework, particularly the absence of clear and internationally aligned definitions for “incineration” [...] Read more.
Incineration at sea is a significant source of marine pollution, threatening biodiversity and public health. Although Peru ratified the 1996 London Protocol in 2018, key deficiencies persist in its domestic legal framework, particularly the absence of clear and internationally aligned definitions for “incineration” and “incinerator.” These gaps hinder effective enforcement by the National Maritime Authority (NMA-DICAPI) and limit regulatory compliance with international obligations. This study analyzes Peru’s current legislation in light of the London Protocol and includes a comparative overview of regional regulatory approaches in Latin America. Based on this analysis, the study identifies regulatory inconsistencies that compromise environmental protection and proposes three key legal reforms: (1) refining the definition of “incineration” to reflect international standards; (2) formally incorporating a definition for “incinerator”; and (3) establishing specific administrative and economic sanctions for related infractions. Through comparative analysis with Mexico and Colombia’s approaches, we propose targeted amendments including refined definitions aligned with IMO standards and explicit administrative/economic sanctions. Implementing these recommendations would enhance Peru’s legal clarity, enforcement capacity, and compliance with international maritime law, reinforcing its role as a responsible actor in marine environmental governance. Full article
22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 254
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

35 pages, 1467 KiB  
Review
Marine Derived Strategies Against Neurodegeneration
by Vasileios Toulis, Gemma Marfany and Serena Mirra
Mar. Drugs 2025, 23(8), 315; https://doi.org/10.3390/md23080315 - 31 Jul 2025
Viewed by 516
Abstract
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative [...] Read more.
Marine ecosystems are characterized by an immense biodiversity and represent a rich source of biological compounds with promising potential for the development of novel therapeutic drugs. This review describes the most promising marine-derived neuroprotective compounds with strong potential for the treatment of neurodegenerative disorders. We focus specifically on the retina and brain—two key components of the central nervous system—as primary targets for therapeutic interventions against neurodegeneration. Alzheimer’s disease and retinal degeneration diseases are used here as a representative model of neurodegenerative disorders, where complex molecular processes such as protein misfolding, oxidative stress, and neuroinflammation drive disease progression. We also examine gene therapy approaches inspired by marine biology, with particular attention to their application in retinal diseases, aimed at preserving or restoring photoreceptor function and vision. Full article
(This article belongs to the Special Issue Marine-Derived Novel Drugs in the Treatment of Alzheimer’s Disease)
Show Figures

Figure 1

14 pages, 1769 KiB  
Article
The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp.
by Ichrak Sekri, Wassim Guermazi, Mohamad El-khateeb, George N. Hotos and Habib Ayadi
J. Mar. Sci. Eng. 2025, 13(8), 1452; https://doi.org/10.3390/jmse13081452 - 29 Jul 2025
Viewed by 288
Abstract
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. [...] Read more.
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. Moderate intensity (8000 lux) of white light is sufficient to produce this microalga. The colors of light strongly affect the parameters of the growth of Nephroselmis under each light intensity (p < 0.05). The yellow and green light supported the highest growth rates for the three intensities. Blue and green light at 15,000 Lux stimulates high levels of chl-a corresponding to antenna size 2.80 and 2.46. Nephroselmis illuminated with red light synthesizes carotenoids reaching 13 µg mL−1 at 15,000 lux. This latter for each color stops the proliferation of Nephroselmis, and cells shift their metabolism towards the accumulation of protein. Nephroselmis accumulates more protein, followed by carbohydrates, lipids and polyphenols. Nephroselmis exhibited the highest protein (64% D.W) content when cultured under white light, and the green at 15,000 lux enhanced their production. Nephroselmis is rich in carbohydrates, which accounted for more than 20% D.W under all combinations of light intensities and colors. The accumulation of polyphenols and carotenoids under high-intensity red and white light may reflect an oxidative stress response, suggesting their role as protective antioxidants. The capacity of Nephroselmis sp. to thrive and synthesize valuable metabolites under variable light regimes underscores its potential as a robust candidate for the production of various molecules. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

21 pages, 2854 KiB  
Article
Unseen Threats at Sea: Awareness of Plastic Pellets Pollution Among Maritime Professionals and Students
by Špiro Grgurević, Zaloa Sanchez Varela, Merica Slišković and Helena Ukić Boljat
Sustainability 2025, 17(15), 6875; https://doi.org/10.3390/su17156875 - 29 Jul 2025
Viewed by 214
Abstract
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, [...] Read more.
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, owing to its frequent release into the marine environment during handling, storage, and marine transportation, all of which play a crucial role in global trade. The aim of this paper is to contribute to the ongoing discussions by highlighting the environmental risks associated with plastic pellets, which are recognized as a significant source of microplastics in the marine environment. It will also explore how targeted education and awareness-raising within the maritime sector can serve as key tools to address this environmental challenge. The study is based on a survey conducted among seafarers and maritime students to raise their awareness and assess their knowledge of the issue. Given their operational role in ensuring safe and responsible shipping, seafarers and maritime students are in a key position to prevent the release of plastic pellets into the marine environment through increased awareness and initiative-taking practices. The results show that awareness is moderate, but there is a significant lack of knowledge, particularly in relation to the environmental impact and regulatory aspects of plastic pellet pollution. These results underline the need for improved education and training in this area, especially among future and active maritime professionals. Full article
Show Figures

Figure 1

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 217
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

24 pages, 3509 KiB  
Article
Water: The Central Theme of the Proposed Sonora Estuarine Biocultural Corridor of Northwestern Mexico
by Diana Luque-Agraz, Martha A. Flores-Cuamea, Alessia Kachadourian-Marras, Lara Cornejo-Denman and Arthur D. Murphy
Water 2025, 17(15), 2227; https://doi.org/10.3390/w17152227 - 26 Jul 2025
Viewed by 384
Abstract
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more [...] Read more.
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more of six irrigation districts of national relevance. The objective is to learn about the socio-environmental problems of the CBES, focused on the issue of water, as well as community proposals for solutions. Intercultural, mixed methodology approach. Prospecting visits were carried out in the six estuaries of the CBES, and 84 semi-structured interviews were conducted with experts from all social sectors who know the problems of the CBES in three (out of six) estuaries associated with indigenous territories. The main problem is centered on the issue of water: they receive contaminated water from agroindustry, aquaculture, and the municipal service; the fresh water of the rivers is almost nil, rainfall has decreased while the heat increases, and marine and terrestrial biodiversity decreases. This affects the food and economic security of the local population and generates conflicts between the different productive activities. A multisectoral organization that integrates the six estuaries would improve community wellbeing and, in turn, climate resilience. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

16 pages, 2141 KiB  
Article
Mitochondrial Genomes of Distant Fish Hybrids Reveal Maternal Inheritance Patterns and Phylogenetic Relationships
by Shixi Chen, Fardous Mohammad Safiul Azam, Li Ao, Chanchun Lin, Jiahao Wang, Rui Li and Yuanchao Zou
Diversity 2025, 17(8), 510; https://doi.org/10.3390/d17080510 - 24 Jul 2025
Viewed by 284
Abstract
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse [...] Read more.
As distant hybridization has profound implications for evolutionary biology, aquaculture, and biodiversity conservation, this study aims to elucidate patterns of maternal inheritance, genetic divergence, and phylogenetic relationships by synthesizing mitochondrial genome (mitogenome) data from 74 distant hybrid fish species. These hybrids span diverse taxa, including 48 freshwater and 26 marine species, with a focus on Cyprinidae (n = 35) and Epinephelus (n = 14), representing the most frequently hybridized groups in freshwater and marine systems, respectively. Mitogenome lengths were highly conserved (15,973 to 17,114 bp); however, the genetic distances between hybrids and maternal species varied from 0.001 to 0.17, with 19 hybrids (25.7%) showing distances >0.02. Variable sites in these hybrids were randomly distributed but enriched in hypervariable regions, such as the D-loop and NADH dehydrogenase subunits 1, 3 and 6 (ND2, ND3, and ND6) genes, likely reflecting maternal inheritance (reported in Cyprinus carpio × Carassius auratus). Moreover, these genes were under purifying selection pressure, revealing their conserved nature. Phylogenetic reconstruction using complete mitogenomes revealed three distinct clades in hybrids: (1) Acipenseriformes, (2) a freshwater cluster dominated by Cypriniformes and Siluriformes, and (3) a marine cluster comprising Centrarchiformes, Pleuronectiformes, Scombriformes, Cichliformes, Anabantiformes, Tetraodontiformes, Perciformes, and Salmoniformes. The prevalence of Cyprinidae hybrids underscores their importance in aquaculture for hybridization, where traits such as rapid growth and disease resistance are enhanced. In contrast, marine hybrids are valued for their market value and adaptability. While mitogenome data robustly support maternal inheritance in most cases, exceptions suggest complex mechanisms, such as doubly uniparental inheritance (DUI), in distantly related crosses. Moreover, AT-skew of genes in hybrids revealed a paternal leakage of traits in mitogenomes. This study also highlights ecological risks, such as genetic swamping in native populations, emphasizing the need for responsible hybridization practices. These findings advance our understanding of the role of hybridization in fish evolution and aquaculture, providing a genomic framework and policy recommendations for optimizing breeding programs, hybrid introduction, and mitigating conservation challenges. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

21 pages, 5697 KiB  
Article
Subtidal Biodiversity of the Punta de Coles Marine Reserve, Moquegua, Peru
by Sheda Méndez-Ancca, Renzo Pepe-Victoriano, Yesica Alvarez Meza, Hebert Hernán Soto Gonzales, Juan Luis Ccamapaza Aguilar, Alex Tejada Cáceres, Danny Efraín Baldarrago Centeno, Abel Walter Zambrano-Cabanillas and Jorge González Aguilera
J. Mar. Sci. Eng. 2025, 13(8), 1400; https://doi.org/10.3390/jmse13081400 - 23 Jul 2025
Viewed by 314
Abstract
Marine reserves are key instruments for the conservation of biodiversity; however, benthic biodiversity studies often lack comprehensive data on species distribution and richness. The Punta Coles Natural Reserve (PCNR), located on the southern coast of Peru within the Humboldt Current System, represents a [...] Read more.
Marine reserves are key instruments for the conservation of biodiversity; however, benthic biodiversity studies often lack comprehensive data on species distribution and richness. The Punta Coles Natural Reserve (PCNR), located on the southern coast of Peru within the Humboldt Current System, represents a highly productive marine ecosystem, but information on its biodiversity is limited. The present study examines the benthic community of the hard substrate in the area of the PCNR via censuses by semiautonomous diving “Hookah” at depths between 1 and 15 m to provide baseline information to support its ecosystem management. Using NMDS and PERMANOVAs, we confirmed significant differences in species composition among depth strata, underscoring the role of depth as a key factor driving variability and species distribution in shallow zones. The community structure varies both spatially within the reserve and as a function of depth and is determined by the presence and distribution of key habitat-structuring organisms, as well as the configuration of the seabed. Our study highlights the ecological value of the PCNR, improves regional scientific knowledge, provides a useful baseline against which future anthropogenic pressures can be evaluated, and proposes the integration of subtidal kelp forests (Lessonia trabeculata), mussel beds (Aulacomya atra) and sea squirt (Pyura chilensis) network aggregations into conservation strategies to contribute to best management practices for PCNR. Full article
(This article belongs to the Special Issue Marine Biota Distribution and Biodiversity)
Show Figures

Figure 1

22 pages, 4093 KiB  
Article
Community Structure and Influencing Factors of Macro-Benthos in Bottom-Seeded Marine Pastures: A Case Study of Caofeidian, China
by Xiangping Xue, Long Yun, Zhaohui Sun, Jiangwei Zan, Xinjing Xu, Xia Liu, Song Gao, Guangyu Wang, Mingshuai Liu and Fei Si
Biology 2025, 14(7), 901; https://doi.org/10.3390/biology14070901 - 21 Jul 2025
Viewed by 197
Abstract
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this [...] Read more.
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this work. By performing CCA (canonical correspondence analysis) and cluster and correlation coefficient (Pearson) analyses, the temporal variation characteristics of benthic abundance, dominant species, community structure and biodiversity were analyzed. A total of 79 species of macro-benthic animals were found in four months, including 32 species of polychaetes, cnidarians, 1 species of Nemertean, 19 species of crustaceans, and 24 species of molluscs. The use of conventional grab-type mud collectors revealed that the Musculus senhousei dominated the survey (Y > 0.02). While only a small number of Ruditapes philippinarum were collected from bottom-dwelling species, a certain number of bottom-dwelling species (Ruditapes philippinarum and Scapharca subcrenata) were also collected during the trawl survey. Additionally, a significant population of Rapana venosa was found in the area. It is speculated that the dual effects of predation and competition are likely the primary reasons for the relatively low abundance of bottom-dwelling species. The density and biomass of macro-benthos were consistent over time, which was the highest in May, the second highest in January, and the lowest in September and November. The main environmental factors affecting the large benthic communities in the surveyed sea areas were pH, DO, NO2-N, T, SAL and PO43−-P. Combined with historical data, it was found that although the environmental condition in the Caofeidian sea area has improved, the Musculus senhousei has been dominant. In addition, the abundance of other species is much less than that of the Musculus senhousei, and the diversity of the benthic community is still reduced. Our work provides valuable data support for the management and improvement of bottom Marine pasture and promotes the transformation of Marine resources from resource plunder to a sustainable resource. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

10 pages, 3839 KiB  
Article
Sound Production Characteristics of the Chorus Produced by Small Yellow Croaker (Larimichthys polyactis) in Coastal Cage Aquaculture
by Young Geul Yoon, Hansoo Kim, Sungho Cho, Sunhyo Kim, Yun-Hwan Jung and Donhyug Kang
J. Mar. Sci. Eng. 2025, 13(7), 1380; https://doi.org/10.3390/jmse13071380 - 21 Jul 2025
Viewed by 306
Abstract
Recent advances in passive acoustic monitoring (PAM) have markedly improved the ability to study marine soundscapes by enabling long-term, non-invasive monitoring of biological sounds across large spatial and temporal scales. Among aquatic organisms, fish are primary contributors to biophony, producing sounds associated with [...] Read more.
Recent advances in passive acoustic monitoring (PAM) have markedly improved the ability to study marine soundscapes by enabling long-term, non-invasive monitoring of biological sounds across large spatial and temporal scales. Among aquatic organisms, fish are primary contributors to biophony, producing sounds associated with feeding, reproduction, and social behavior. However, the majority of previous research has focused on individual vocalizations, with limited attention to collective acoustic phenomena such as fish choruses. This study quantitatively analyzes choruses produced by the small yellow croaker (Larimichthys polyactis), an ecologically and commercially important species in the Northwest Pacific Ocean. Using power spectral density (PSD) analysis, we examined long-term underwater recordings from a sea cage containing approximately 2000 adult small yellow croakers. The choruses were centered around ~600 Hz and exhibited sound pressure levels 15–20 dB higher at night than during the day. These findings highlight the ecological relevance of fish choruses and support their potential use as indicators of biological activity. This study lays the foundation for incorporating fish choruses into soundscape-based PAM frameworks to enhance biodiversity and habitat monitoring. Full article
(This article belongs to the Special Issue Advanced Research in Marine Environmental and Fisheries Acoustics)
Show Figures

Figure 1

16 pages, 6248 KiB  
Article
Global Hotspots of Whale–Ship Collision Risk: A Multi-Species Framework Integrating Critical Habitat Zonation and Shipping Pressure for Conservation Prioritization
by Bei Wang, Linlin Zhao, Tong Lu, Linjie Li, Tingting Li, Bailin Cong and Shenghao Liu
Animals 2025, 15(14), 2144; https://doi.org/10.3390/ani15142144 - 20 Jul 2025
Viewed by 689
Abstract
The expansion of global maritime activities threatens marine ecosystems and biodiversity. Collisions between ships and marine megafauna profoundly impact vulnerable species such as whales, who serve as keystone predators. However, the specific regions most heavily affected by shipping traffic and the multi-species facing [...] Read more.
The expansion of global maritime activities threatens marine ecosystems and biodiversity. Collisions between ships and marine megafauna profoundly impact vulnerable species such as whales, who serve as keystone predators. However, the specific regions most heavily affected by shipping traffic and the multi-species facing collision risk remain poorly understood. Here, we analyzed global shipping data to assess the distribution of areas with high shipping pressure and identify global hotspots for whale–ship collisions. The results reveal that high-pressure habitats are primarily distributed within exclusive economic zones (EEZs), which are generally consistent with the distribution of collision hotspots. High-pressure habitats exhibit significant spatial mismatch: 32.9% of Marine Protected Areas endure high shipping stress and yet occupy merely 1.25% of protected ocean area. Additionally, 25.1% of collision hotspots (top 1% risk) affect four or more whale species, forming critical aggregation in regions like the Gulf of St. Lawrence and Northeast Asian marginal seas. Most of these high-risk areas lack protective measures. These findings offer actionable spatial priorities for implementing targeted conservation strategies, such as the introduction of mandatory speed restrictions and dynamic vessel routing in high-risk, multi-species hotspots. By focusing on critical aggregation areas, these strategies will help mitigate whale mortality and enhance marine biodiversity protection, supporting the sustainable coexistence of maritime activities with vulnerable marine megafauna. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

17 pages, 3477 KiB  
Article
Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater
by Huili Hao, Chengjun Qiu, Wei Qu, Yuan Zhuang, Zizi Zhao, Haozheng Liu, Wenhao Wang, Jiahua Su and Wei Tao
Chemosensors 2025, 13(7), 263; https://doi.org/10.3390/chemosensors13070263 - 20 Jul 2025
Viewed by 351
Abstract
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for [...] Read more.
7,12-Dimethylbenzo[a]anthracene (DMBA-7,12), a highly toxic and environmentally persistent polycyclic aromatic hydrocarbon (PAH), poses significant threats to marine biodiversity and human health due to its bioaccumulation through the food chain. Conventional chromatographic methods, while achieving comparable detection limits, are hindered by the need for expensive instrumentation and prolonged analysis times, rendering them unsuitable for rapid on-site monitoring of DMBA-7,12 in marine environments. Therefore, the development of novel, efficient detection techniques is imperative. In this study, we have successfully developed an electrochemical immunosensor based on a polydopamine (PDA)–chitosan (CTs) composite interface to overcome existing technical limitations. PDA provides a robust scaffold for antibody immobilization due to its strong adhesive properties, while CTs enhances signal amplification and biocompatibility. The synergistic integration of these materials combines the high efficiency of electrochemical detection with the specificity of antigen–antibody recognition, enabling precise qualitative and quantitative analysis of the target analyte through monitoring changes in the electrochemical properties at the electrode surface. By systematically optimizing key experimental parameters, including buffer pH, probe concentration, and antibody loading, we have constructed the first electrochemical immunosensor for detecting DMBA-7,12 in seawater. The sensor achieved a detection limit as low as 0.42 ng/mL. In spiked seawater samples, the recovery rates ranged from 95.53% to 99.44%, with relative standard deviations (RSDs) ≤ 4.6%, demonstrating excellent accuracy and reliability. This innovative approach offers a cost-effective and efficient solution for the in situ rapid monitoring of trace carcinogens in marine environments, potentially advancing the field of marine pollutant detection technologies. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Graphical abstract

Back to TopTop