Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,500)

Search Parameters:
Keywords = map subject

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14336 KiB  
Article
Geospatial Mudflow Risk Modeling: Integration of MCDA and RAMMS
by Ainur Mussina, Assel Abdullayeva, Victor Blagovechshenskiy, Sandugash Ranova, Zhixiong Zeng, Aidana Kamalbekova and Ulzhan Aldabergen
Water 2025, 17(15), 2316; https://doi.org/10.3390/w17152316 (registering DOI) - 4 Aug 2025
Abstract
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial [...] Read more.
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial assessment of mudflow hazard and susceptibility using GIS technologies and MCDA. The key condition for evaluating mudflow hazard is the identification of factors influencing the formation of mudflows. The susceptibility assessment was based on viewing the area as an object of spatial and functional analysis, enabling determination of its susceptibility to mudflow impacts across geomorphological zones: initiation, transformation, and accumulation. Relevant criteria were selected for analysis, each assigned weights based on expert judgment and the Analytic Hierarchy Process (AHP). The results include maps of potential mudflow hazard and susceptibility, showing areas of hazard occurrence and risk impact zones within the Talgar River basin. According to the mudflow hazard map, more than 50% of the basin area is classified as having a moderate hazard level, while 28.4% is subject to high hazard, and only 1.8% falls under the very high hazard category. The remaining areas are categorized as very low (4.1%) and low (14.7%) hazard zones. In terms of susceptibility to mudflows, 40.1% of the territory is exposed to a high level of susceptibility, 35.6% to a moderate level, and 5.5% to a very high level. The remaining areas are classified as very low (1.8%) and low (15.6%) susceptibility zones. The predictive performance was evaluated through Receiver Operating Characteristic (ROC) curves, and the Area Under the Curve (AUC) value of the mudflow hazard assessment is 0.86, which indicates good adaptability and relatively high accuracy, while the AUC value for assessing the susceptibility of the territory is 0.71, which means that the accuracy of assessing the susceptibility of territories to mudflows is within the acceptable level of model accuracy. To refine the spatial risk assessment, mudflow modeling was conducted under three scenarios of glacial-moraine lake outburst using the RAMMS model. For each scenario, key flow parameters—height and velocity—were identified, forming the basis for classification of zones by impact intensity. The integration of MCDA and RAMMS results produced a final mudflow risk map reflecting both the likelihood of occurrence and the extent of potential damage. The presented approach demonstrates the effectiveness of combining GIS analysis, MCDA, and physically-based modeling for comprehensive natural hazard assessment and can be applied to other mountainous regions with high mudflow activity. Full article
Show Figures

Figure 1

10 pages, 1055 KiB  
Article
Artificial Intelligence and Hysteroscopy: A Multicentric Study on Automated Classification of Pleomorphic Lesions
by Miguel Mascarenhas, Carla Peixoto, Ricardo Freire, Joao Cavaco Gomes, Pedro Cardoso, Inês Castro, Miguel Martins, Francisco Mendes, Joana Mota, Maria João Almeida, Fabiana Silva, Luis Gutierres, Bruno Mendes, João Ferreira, Teresa Mascarenhas and Rosa Zulmira
Cancers 2025, 17(15), 2559; https://doi.org/10.3390/cancers17152559 - 3 Aug 2025
Abstract
Background/Objectives: The integration of artificial intelligence (AI) in medical imaging is rapidly advancing, yet its application in gynecologic use remains limited. This proof-of-concept study presents the development and validation of a convolutional neural network (CNN) designed to automatically detect and classify endometrial [...] Read more.
Background/Objectives: The integration of artificial intelligence (AI) in medical imaging is rapidly advancing, yet its application in gynecologic use remains limited. This proof-of-concept study presents the development and validation of a convolutional neural network (CNN) designed to automatically detect and classify endometrial polyps. Methods: A multicenter dataset (n = 3) comprising 65 hysteroscopies was used, yielding 33,239 frames and 37,512 annotated objects. Still frames were extracted from full-length videos and annotated for the presence of histologically confirmed polyps. A YOLOv1-based object detection model was used with a 70–20–10 split for training, validation, and testing. Primary performance metrics included recall, precision, and mean average precision at an intersection over union (IoU) ≥ 0.50 (mAP50). Frame-level classification metrics were also computed to evaluate clinical applicability. Results: The model achieved a recall of 0.96 and precision of 0.95 for polyp detection, with a mAP50 of 0.98. At the frame level, mean recall was 0.75, precision 0.98, and F1 score 0.82, confirming high detection and classification performance. Conclusions: This study presents a CNN trained on multicenter, real-world data that detects and classifies polyps simultaneously with high diagnostic and localization performance, supported by explainable AI features that enhance its clinical integration and technological readiness. Although currently limited to binary classification, this study demonstrates the feasibility and potential of AI to reduce diagnostic subjectivity and inter-observer variability in hysteroscopy. Future work will focus on expanding the model’s capabilities to classify a broader range of endometrial pathologies, enhance generalizability, and validate performance in real-time clinical settings. Full article
Show Figures

Figure 1

17 pages, 1651 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 (registering DOI) - 2 Aug 2025
Viewed by 41
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
14 pages, 654 KiB  
Article
A Conceptual Framework for User Trust in AI Biosensors: Integrating Cognition, Context, and Contrast
by Andrew Prahl
Sensors 2025, 25(15), 4766; https://doi.org/10.3390/s25154766 (registering DOI) - 2 Aug 2025
Viewed by 99
Abstract
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) [...] Read more.
Artificial intelligence (AI) techniques have propelled biomedical sensors beyond measuring physiological markers to interpreting subjective states like stress, pain, or emotions. Despite these technological advances, user trust is not guaranteed and is inadequately addressed in extant research. This review proposes the Cognition–Context–Contrast (CCC) conceptual framework to explain the trust and acceptance of AI-enabled sensors. First, we map cognition, comprising the expectations and stereotypes that humans have about machines. Second, we integrate task context by situating sensor applications along an intellective-to-judgmental continuum and showing how demonstrability predicts tolerance for sensor uncertainty and/or errors. Third, we analyze contrast effects that arise when automated sensing displaces familiar human routines, heightening scrutiny and accelerating rejection if roll-out is abrupt. We then derive practical implications such as enhancing interpretability, tailoring data presentations to task demonstrability, and implementing transitional introduction phases. The framework offers researchers, engineers, and clinicians a structured conceptual framework for designing and implementing the next generation of AI biosensors. Full article
(This article belongs to the Special Issue AI in Sensor-Based E-Health, Wearables and Assisted Technologies)
Show Figures

Figure 1

24 pages, 11098 KiB  
Article
Fracture Mechanisms of Electrothermally Fatigued 631 Stainless Steel Fine Wires for Probe Spring Applications
by Chien-Te Huang, Fei-Yi Hung and Kai-Chieh Chang
Appl. Sci. 2025, 15(15), 8572; https://doi.org/10.3390/app15158572 (registering DOI) - 1 Aug 2025
Viewed by 158
Abstract
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained [...] Read more.
This study systematically investigates 50 μm-diameter 631 stainless steel fine wires subjected to both sequential and simultaneous electrothermomechanical loading to simulate probe spring conditions in microelectronic test environments. Under cyclic current loading (~104 A/cm2), the 50 μm 631SS wire maintained electrical integrity up to 0.30 A for 15,000 cycles. Above 0.35 A, rapid oxide growth and abnormal grain coarsening resulted in surface embrittlement and mechanical degradation. Current-assisted tensile testing revealed a transition from recovery-dominated behavior at ≤0.20 A to significant thermal softening and ductility loss at ≥0.25 A, corresponding to a threshold temperature of approximately 200 °C. These results establish the endurance limit of 631 stainless steel wire under coupled thermal–mechanical–electrical stress and clarify the roles of Joule heating, oxidation, and microstructural evolution in electrical fatigue resistance. A degradation map is proposed to inform design margins and operational constraints for fatigue-tolerant, electrically stable interconnects in high-reliability probe spring applications. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

19 pages, 1517 KiB  
Article
Continuous Estimation of sEMG-Based Upper-Limb Joint Angles in the Time–Frequency Domain Using a Scale Temporal–Channel Cross-Encoder
by Xu Han, Haodong Chen, Xinyu Cheng and Ping Zhao
Actuators 2025, 14(8), 378; https://doi.org/10.3390/act14080378 (registering DOI) - 31 Jul 2025
Viewed by 102
Abstract
Surface electromyographic (sEMG) signal-driven joint-angle estimation plays a critical role in intelligent rehabilitation systems, as its accuracy directly affects both control performance and rehabilitation efficacy. This study proposes a continuous elbow joint angle estimation method based on time–frequency domain analysis. Raw sEMG signals [...] Read more.
Surface electromyographic (sEMG) signal-driven joint-angle estimation plays a critical role in intelligent rehabilitation systems, as its accuracy directly affects both control performance and rehabilitation efficacy. This study proposes a continuous elbow joint angle estimation method based on time–frequency domain analysis. Raw sEMG signals were processed using the Short-Time Fourier Transform (STFT) to extract time–frequency features. A Scale Temporal–Channel Cross-Encoder (STCCE) network was developed, integrating temporal and channel attention mechanisms to enhance feature representation and establish the mapping from sEMG signals to elbow joint angles. The model was trained and evaluated on a dataset comprising approximately 103,000 samples collected from seven subjects. In the single-subject test set, the proposed STCCE model achieved an average Mean Absolute Error (MAE) of 2.96±0.24, Root Mean Square Error (RMSE) of 4.41±0.45, Coefficient of Determination (R2) of 0.9924±0.0020, and Correlation Coefficient (CC) of 0.9963±0.0010. It achieved a MAE of 3.30, RMSE of 4.75, R2 of 0.9915, and CC of 0.9962 on the multi-subject test set, and an average MAE of 15.53±1.80, RMSE of 21.72±2.85, R2 of 0.8141±0.0540, and CC of 0.9100±0.0306 on the inter-subject test set. These results demonstrated that the STCCE model enabled accurate joint-angle estimation in the time–frequency domain, contributing to a better motion intent perception for upper-limb rehabilitation. Full article
Show Figures

Figure 1

20 pages, 1942 KiB  
Article
Dispatch Instruction Disaggregation for Virtual Power Plants Using Multi-Parametric Programming
by Zhikai Zhang and Yanfang Wei
Energies 2025, 18(15), 4060; https://doi.org/10.3390/en18154060 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP [...] Read more.
Virtual power plants (VPPs) coordinate distributed energy resources (DERs) to collectively meet grid dispatch instructions. When a dispatch command is issued to a VPP, it must be disaggregated optimally among the individual DERs to minimize overall operational costs. However, existing methods for VPP dispatch instruction disaggregation often require solving complex optimization problems for each instruction, posing challenges for real-time applications. To address this issue, we propose a multi-parametric programming-based method that yields an explicit mapping from any given dispatch instruction to an optimal DER-level deployment strategy. In our approach, a parametric optimization model is formulated to minimize the dispatch cost subject to DER operational constraints. By applying Karush–Kuhn–Tucker (KKT) conditions and recursively partitioning the DERs’ adjustable capacity space into critical regions, we derive analytical expressions that directly map dispatch instructions to their corresponding resource allocation strategies and optimal scheduling costs. This explicit solution eliminates the need to repeatedly solve the optimization problem for each new instruction, enabling fast real-time dispatch decisions. Case study results verify that the proposed method effectively achieves the cost-efficient and computationally efficient disaggregation of dispatch signals in a VPP, thereby improving its operational performance. Full article
Show Figures

Figure 1

26 pages, 4572 KiB  
Article
Transfer Learning-Based Ensemble of CNNs and Vision Transformers for Accurate Melanoma Diagnosis and Image Retrieval
by Murat Sarıateş and Erdal Özbay
Diagnostics 2025, 15(15), 1928; https://doi.org/10.3390/diagnostics15151928 - 31 Jul 2025
Viewed by 233
Abstract
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise [...] Read more.
Background/Objectives: Melanoma is an aggressive type of skin cancer that poses serious health risks if not detected in its early stages. Although early diagnosis enables effective treatment, delays can result in life-threatening consequences. Traditional diagnostic processes predominantly rely on the subjective expertise of dermatologists, which can lead to variability and time inefficiencies. Consequently, there is an increasing demand for automated systems that can accurately classify melanoma lesions and retrieve visually similar cases to support clinical decision-making. Methods: This study proposes a transfer learning (TL)-based deep learning (DL) framework for the classification of melanoma images and the enhancement of content-based image retrieval (CBIR) systems. Pre-trained models including DenseNet121, InceptionV3, Vision Transformer (ViT), and Xception were employed to extract deep feature representations. These features were integrated using a weighted fusion strategy and classified through an Ensemble learning approach designed to capitalize on the complementary strengths of the individual models. The performance of the proposed system was evaluated using classification accuracy and mean Average Precision (mAP) metrics. Results: Experimental evaluations demonstrated that the proposed Ensemble model significantly outperformed each standalone model in both classification and retrieval tasks. The Ensemble approach achieved a classification accuracy of 95.25%. In the CBIR task, the system attained a mean Average Precision (mAP) score of 0.9538, indicating high retrieval effectiveness. The performance gains were attributed to the synergistic integration of features from diverse model architectures through the ensemble and fusion strategies. Conclusions: The findings underscore the effectiveness of TL-based DL models in automating melanoma image classification and enhancing CBIR systems. The integration of deep features from multiple pre-trained models using an Ensemble approach not only improved accuracy but also demonstrated robustness in feature generalization. This approach holds promise for integration into clinical workflows, offering improved diagnostic accuracy and efficiency in the early detection of melanoma. Full article
Show Figures

Figure 1

17 pages, 4557 KiB  
Article
Potential of LiDAR and Hyperspectral Sensing for Overcoming Challenges in Current Maritime Ballast Tank Corrosion Inspection
by Sergio Pallas Enguita, Jiajun Jiang, Chung-Hao Chen, Samuel Kovacic and Richard Lebel
Electronics 2025, 14(15), 3065; https://doi.org/10.3390/electronics14153065 - 31 Jul 2025
Viewed by 164
Abstract
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, [...] Read more.
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, especially under coatings. This paper critically examines these challenges and explores the potential of Light Detection and Ranging (LiDAR) and Hyperspectral Imaging (HSI) to form the basis of improved inspection approaches. We discuss LiDAR’s utility for accurate 3D mapping and providing a spatial framework and HSI’s potential for objective material identification and surface characterization based on spectral signatures along a wavelength range of 400-1000nm (visible and near infrared). Preliminary findings from laboratory tests are presented, demonstrating the basic feasibility of HSI for differentiating surface conditions (corrosion, coatings, bare metal) and relative coating thickness, alongside LiDAR’s capability for detailed geometric capture. Although these results do not represent a deployable system, they highlight how LiDAR and HSI could address key limitations of current practices and suggest promising directions for future research into integrated sensor-based corrosion assessment strategies. Full article
Show Figures

Figure 1

18 pages, 1115 KiB  
Article
A Structured Causal Framework for Operational Risk Quantification: Bridging Subjective and Objective Uncertainty in Advanced Risk Models
by Guy Burstein and Inon Zuckerman
Mathematics 2025, 13(15), 2467; https://doi.org/10.3390/math13152467 - 31 Jul 2025
Viewed by 178
Abstract
Evaluating risk in complex systems relies heavily on human auditors whose subjective assessments can be compromised by knowledge gaps and varying interpretations. This subjectivity often results in inconsistent risk evaluations, even among auditors examining identical systems, owing to differing pattern recognition processes. In [...] Read more.
Evaluating risk in complex systems relies heavily on human auditors whose subjective assessments can be compromised by knowledge gaps and varying interpretations. This subjectivity often results in inconsistent risk evaluations, even among auditors examining identical systems, owing to differing pattern recognition processes. In this study, we propose a causality model that can improve the comprehension of risk levels by breaking down the risk factors and creating a layout of risk events and consequences in the system. To do so, the initial step is to define the risk event blocks, each comprising two distinct components: the agent and transfer mechanism. Next, we construct a causal map that outlines all risk event blocks and their logical connections, leading to the final consequential risk. Finally, we assess the overall risk based on the cause-and-effect structure. We conducted real-world illustrative examples comparing risk-level assessments with traditional experience-based auditor judgments to evaluate our proposed model. This new methodology offers several key benefits: it clarifies complex risk factors, reduces reliance on subjective judgment, and helps bridge the gap between subjective and objective uncertainty. The illustrative examples demonstrate the potential value of the model by revealing discrepancies in risk levels compared to traditional assessments. Full article
(This article belongs to the Special Issue Advances in Risk Models and Actuarial Science)
Show Figures

Figure 1

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 309
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

17 pages, 666 KiB  
Review
Three Major Deficiency Diseases Harming Mankind (Protein, Retinoid, Iron) Operate Under Tryptophan Dependency
by Yves Ingenbleek
Nutrients 2025, 17(15), 2505; https://doi.org/10.3390/nu17152505 - 30 Jul 2025
Viewed by 136
Abstract
This story began half a century ago with the discovery of an unusually high presence of tryptophan (Trp, W) in transthyretin (TTR), one of the three carrier proteins of thyroid hormones. With the Trp-rich retinol-binding protein (RBP), TTR forms a plasma complex implicated [...] Read more.
This story began half a century ago with the discovery of an unusually high presence of tryptophan (Trp, W) in transthyretin (TTR), one of the three carrier proteins of thyroid hormones. With the Trp-rich retinol-binding protein (RBP), TTR forms a plasma complex implicated in the delivery of retinoid compounds to body tissues. W has the lowest concentration among all AAs involved in the sequencing of human body proteins. The present review proposes molecular maps focusing on the ratio of W/AA residues found in the sequence of proteins involved in immune events, allowing us to ascribe the guidance of inflammatory processes as fully under the influence of W. Under the control of cytokine stimulation, plasma biomarkers of protein nutritional status work in concert with major acute-phase reactants (APRs) and with carrier proteins to release, in a free and active form, their W and hormonal ligands, interacting to generate hot spots affecting the course of acute stress disorders. The prognostic inflammatory and nutritional index (PINI) scoring formula contributes to identifying the respective roles played by each of the components prevailing during the progression of the disease. Glucagon demonstrates ambivalent properties, remaining passive under steady-state conditions while displaying stronger effects after cytokine activation. In developing countries, inappropriate weaning periods lead to toddlers eating W-deficient cereals as a staple, causing a dramatic reduction in the levels of W-rich biomarkers in plasma, constituting a novel nutritional deficiency at the global scale. Appropriate counseling should be set up using W implementations to cover the weaning period and extended until school age. In adult and elderly subjects, the helpful immune protections provided by W may be hindered by the surge in harmful catabolites with the occurrence of chronic complications, which can have a significant public health impact but lack the uncontrolled surges in PINI observed in young infants and teenagers. Biomarkers of neurodegenerative and neoplastic disorders measured in elderly patients indicate the slow-moving elevation of APRs due to rampant degradation processes. Full article
Show Figures

Figure 1

20 pages, 1508 KiB  
Article
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Viewed by 305
Abstract
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South [...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW. Full article
Show Figures

Figure 1

23 pages, 6315 KiB  
Article
A Kansei-Oriented Morphological Design Method for Industrial Cleaning Robots Integrating Extenics-Based Semantic Quantification and Eye-Tracking Analysis
by Qingchen Li, Yiqian Zhao, Yajun Li and Tianyu Wu
Appl. Sci. 2025, 15(15), 8459; https://doi.org/10.3390/app15158459 - 30 Jul 2025
Viewed by 126
Abstract
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data [...] Read more.
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data on user cognition. To address these limitations, this study develops a comprehensive methodology grounded in Kansei engineering that combines Extenics-based semantic analysis, eye-tracking experiments, and user imagery evaluation. First, we used web crawlers to harvest user-generated descriptors for industrial floor-cleaning robots and applied Extenics theory to quantify and filter key perceptual imagery features. Second, eye-tracking experiments captured users’ visual-attention patterns during robot observation, allowing us to identify pivotal design elements and assemble a sample repository. Finally, the semantic differential method collected users’ evaluations of these design elements, and correlation analysis mapped emotional needs onto stylistic features. Our findings reveal strong positive correlations between four core imagery preferences—“dignified,” “technological,” “agile,” and “minimalist”—and their corresponding styling elements. By integrating qualitative semantic data with quantitative eye-tracking metrics, this research provides a scientific foundation and novel insights for emotion-driven design in industrial floor-cleaning robots. Full article
(This article belongs to the Special Issue Intelligent Robotics in the Era of Industry 5.0)
Show Figures

Figure 1

16 pages, 5245 KiB  
Article
Automatic Detection of Foraging Hens in a Cage-Free Environment with Computer Vision Technology
by Samin Dahal, Xiao Yang, Bidur Paneru, Anjan Dhungana and Lilong Chai
Poultry 2025, 4(3), 34; https://doi.org/10.3390/poultry4030034 - 30 Jul 2025
Viewed by 173
Abstract
Foraging behavior in hens is an important indicator of animal welfare. It involves both the search for food and exploration of the environment, which provides necessary enrichment. In addition, it has been inversely linked to damaging behaviors such as severe feather pecking. Conventional [...] Read more.
Foraging behavior in hens is an important indicator of animal welfare. It involves both the search for food and exploration of the environment, which provides necessary enrichment. In addition, it has been inversely linked to damaging behaviors such as severe feather pecking. Conventional studies rely on manual observation to investigate foraging location, duration, timing, and frequency. However, this approach is labor-intensive, time-consuming, and subject to human bias. Our study developed computer vision-based methods to automatically detect foraging hens in a cage-free research environment and compared their performance. A cage-free room was divided into four pens, two larger pens measuring 2.9 m × 2.3 m with 30 hens each and two smaller pens measuring 2.3 m × 1.8 m with 18 hens each. Cameras were positioned vertically, 2.75 m above the floor, recording the videos at 15 frames per second. Out of 4886 images, 70% were used for model training, 20% for validation, and 10% for testing. We trained multiple You Only Look Once (YOLO) object detection models from YOLOv9, YOLOv10, and YOLO11 series for 100 epochs each. All the models achieved precision, recall, and mean average precision at 0.5 intersection over union (mAP@0.5) above 75%. YOLOv9c achieved the highest precision (83.9%), YOLO11x achieved the highest recall (86.7%), and YOLO11m achieved the highest mAP@0.5 (89.5%). These results demonstrate the use of computer vision to automatically detect complex poultry behavior, such as foraging, making it more efficient. Full article
Show Figures

Figure 1

Back to TopTop