Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = malondialdehyde-oxidized low-density lipoprotein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2323 KB  
Article
Effects of Asparagus Powder Supplementation on Glycemic Control, Lipid Profile, and Oxidative Stress in Overweight and Obese Adults: An Exploratory Randomized Controlled Trial
by Jittima Mongraykang, Tadsawiya Padkao, Orachorn Boonla, Yothin Teethaisong, Thapanee Roengrit, Sukrisd Koowattanatianchai and Piyapong Prasertsri
Life 2025, 15(10), 1584; https://doi.org/10.3390/life15101584 - 10 Oct 2025
Viewed by 657
Abstract
This study investigated the effects of asparagus powder supplementation on blood glucose regulation, insulin, lipid profile, and oxidative stress in overweight and obese individuals. Forty-four adults aged 18–59 years participated in a 12-week randomized controlled trial and were randomly assigned to receive either [...] Read more.
This study investigated the effects of asparagus powder supplementation on blood glucose regulation, insulin, lipid profile, and oxidative stress in overweight and obese individuals. Forty-four adults aged 18–59 years participated in a 12-week randomized controlled trial and were randomly assigned to receive either asparagus powder (40 mg/kg/day) or a placebo (maltodextrin, 40 mg/kg/day). Assessments included an oral glucose tolerance test (OGTT), fasting blood glucose (FBG), insulin, homeostasis model assessment of insulin resistance (HOMA-IR) and β-cell function (HOMA-B), lipid profile, and oxidative stress markers (malondialdehyde [MDA], protein carbonyl, and superoxide dismutase [SOD]). In the asparagus group, OGTT at 30 min and low-density lipoprotein cholesterol (LDL-C) significantly decreased, while SOD activity significantly increased (all p < 0.05). In contrast, the placebo group showed significant increases in OGTT at 30 min, insulin, HOMA-IR, HOMA-B, triglycerides (TG), the TG/high-density lipoprotein cholesterol (HDL-C) ratio, and the total cholesterol (TC)/HDL-C ratio (all p < 0.05). Between-group comparisons indicated that FBG, area under the BG curve at 30–120 min, TG, TG/HDL-C, and MDA levels were significantly lower in the asparagus group than in the placebo group (all p < 0.05), whereas OGTT, LDL-C, SOD activity, insulin, HOMA-IR, HOMA-B, and TC/HDL-C did not differ significantly. Other indices, including TC, HDL-C, and protein carbonyl, showed no significant within- or between-group differences. In conclusion, 12 weeks of asparagus powder supplementation partially improved glycemic control, lipid profile, and oxidative stress in overweight and obese individuals. These findings suggest a potential role of asparagus as a complementary nutritional strategy to reduce the risk of diabetes and cardiovascular disease in this population. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Chronic Diseases)
Show Figures

Figure 1

13 pages, 5517 KB  
Article
Subchronic Exposure to Microcystin-LR Induces Hepatic Inflammation, Oxidative Stress, and Lipid Metabolic Disorders in Darkbarbel Catfish (Tachysurus vachelli)
by Huaxing Zhou, Tong Li, Huan Wang, Ye Zhang, Yuting Hu, Amei Liu and Guoqing Duan
Toxins 2025, 17(6), 300; https://doi.org/10.3390/toxins17060300 - 12 Jun 2025
Cited by 2 | Viewed by 746
Abstract
Microcystin-leucine arginine (MC-LR) is a prominent water pollutant known for its potent hepatic toxicity. However, the effects of subchronic exposure to environmentally relevant concentrations of MC-LR on the fish liver remain poorly understood. This study aimed to systematically evaluate the impact of subchronic [...] Read more.
Microcystin-leucine arginine (MC-LR) is a prominent water pollutant known for its potent hepatic toxicity. However, the effects of subchronic exposure to environmentally relevant concentrations of MC-LR on the fish liver remain poorly understood. This study aimed to systematically evaluate the impact of subchronic MC-LR exposure on the liver of darkbarbel catfish (Tachysurus vachelli). A total of 270 one-year-old fish were exposed to MC-LR (0, 2, and 5 μg/L) for 28 days and sampled on days 14 (D14) and 28 (D28). Histopathological analysis revealed marked hepatic inflammation in the MC-LR treatment groups, manifested as cellular degeneration, hyperemia, and inflammation. MC-LR exposure induced oxidative stress, evidenced by elevated malondialdehyde (MDA) levels and compensatory upregulation of superoxide dismutase (SOD) activity on D28. While hepatic lipid profiles were not altered by low-dose MC-LR, significant elevation of low-density lipoprotein cholesterol (LDL-C) specifically on D28 indicated incipient lipid metabolic disorder. Metabolomic analysis demonstrated a higher sensitivity, highlighting the stress response of the liver to low-dose MC-LR exposure. The results suggest MC-LR exposure disrupted hepatic phosphatidylcholine (PC) biosynthesis and inhibited lipoprotein formation, thereby impairing lipid transport and contributing to lipid metabolic disorders. In summary, subchronic exposure to environmentally relevant concentrations of MC-LR-induced hepatic tissue inflammation, oxidative stress, and lipid metabolic disorders in darkbarbel catfish. Full article
Show Figures

Graphical abstract

25 pages, 6477 KB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Cited by 2 | Viewed by 1377
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

9 pages, 660 KB  
Article
Dietary Supplementation of Astragalus Polysaccharides Modulates Growth Physiology, Metabolic Homeostasis, and Innate Immune Responses in Rice Field Eels (Monopterus albus)
by Chengcheng Wu, Hang Yang, Yutong Yang, Quan Yuan, Weiwei Lv, Gelana Urgesa Ayana, Mingyou Li, Di Su, Wenzong Zhou and Qinghua Zhang
Fishes 2025, 10(5), 213; https://doi.org/10.3390/fishes10050213 - 6 May 2025
Viewed by 1567
Abstract
To investigate the dietary effects of Astragalus polysaccharides (APSs) on the growth performance, lipid metabolism, antioxidant activity, and non-specific immunity of Asian swamp eel (Monopterus albus) during the domestication stage, fish were randomly allocated into quadruplicate groups receiving Tenebrio molitor-based [...] Read more.
To investigate the dietary effects of Astragalus polysaccharides (APSs) on the growth performance, lipid metabolism, antioxidant activity, and non-specific immunity of Asian swamp eel (Monopterus albus) during the domestication stage, fish were randomly allocated into quadruplicate groups receiving Tenebrio molitor-based diets supplemented with Astragalus polysaccharides (APSs) at graded concentrations of 0 (CON), 700 (APS1), 1400 (APS2), and 2100 (APS3) mg/kg body weight for 28 days. The results showed that dietary APSs at 700–1400 mg/kg·bw significantly enhanced the weight gain rate (WG) and decreased the feed conversion ratio (FCR) of M. albus (p < 0.05). Concurrently, hematological analysis revealed that hemoglobin levels increased by 19.9% and 23.0% in the 700 and 1400 mg/kg APS groups, respectively (p < 0.05). In terms of lipid metabolism, supplementation with APSs significantly increased the serum high-density lipoprotein (HDL) content in all treatment groups (p < 0.05). Lower serum triglyceride (TG) levels were found in the APS2 group (p < 0.05), and decreased triglyceride (TG), cholesterol (CHO), and low-density lipoprotein (LDL) levels were displayed in the APS3 group (p < 0.05). Among the antioxidant parameters, the supplementation with 700 mg/kg·bw APSs significantly increased the glutathione peroxidase (GSH-Px) and catalase (CAT) activity levels of M. albus (p < 0.05). The APS2 group had a significantly increased total antioxidant capacity (T-AOC) and CAT activity levels (p < 0.05), and the APS3 group had significantly increased CAT activity levels (p < 0.05). In addition, the APS1 and APS3 groups had significantly reduced malondialdehyde (MDA) levels (p < 0.05). In terms of non-specific immunity, the APS1 and APS2 groups showed significantly increased superoxide dismutase (SOD) and lysozyme (LZM) activity levels of M. albus (p < 0.05), and the addition of 700 mg/kg·bw APSs significantly increased the levels of alkaline phosphatase (AKP) activity (p < 0.05). Furthermore, the levels of acid phosphatase (ACP) activity were significantly increased in all experimental groups (p < 0.05). In conclusion, the optimal APS addition for T. molitor as biocarrier bait is 700 mg/kg, corresponding to 352 mg/kg, which elicits improvements in the growth parameters, lipid homeostasis regulation, oxidative stress mitigation, and innate immune potentiation of M. albus during the domestication stage. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

15 pages, 3937 KB  
Article
Probiotic Supplementation Improves Lipid Metabolism Disorders and Immune Suppression Induced by High-Fat Diets in Coilia nasus Liver
by Jun Gao, Qi Mang, Yi Sun and Gangchun Xu
Biology 2025, 14(4), 381; https://doi.org/10.3390/biology14040381 - 7 Apr 2025
Cited by 2 | Viewed by 982
Abstract
High-fat diets (HFDs) usually trigger disruptions in lipid metabolic processes and immune suppression in fish. As an eco-friendly and potent additive, the inclusion of probiotics in fish diets ameliorates dysregulations in lipid metabolism, mitigates oxidative stress, and reduces inflammatory reactions triggered by HFDs. [...] Read more.
High-fat diets (HFDs) usually trigger disruptions in lipid metabolic processes and immune suppression in fish. As an eco-friendly and potent additive, the inclusion of probiotics in fish diets ameliorates dysregulations in lipid metabolism, mitigates oxidative stress, and reduces inflammatory reactions triggered by HFDs. However, little current research has focused on the improvement of the hazards of HFDs in fish by probiotics. Therefore, we employed 4-dimensional data-independent (4D-DIA) proteomic analysis to investigate the mechanism of the protective impact of probiotics against HFD-induced hepatic injury in Coilia nasus between the HFD group and the probiotic supplementation in HFD (PHFD) group. Additionally, lipid accumulation and antioxidant indicators in the liver were also measured via Oil Red O staining and activity detection. Administration of probiotics markedly attenuated the hepatic concentrations of triglycerides (TG), cholesterol (CHO), and low-density lipoprotein cholesterol (LDL-C) in C. nasus subjected to HFDs. Furthermore, it significantly upregulated the expression of the differentially expressed proteins (DEPs) implicated in cholesterol metabolism and fatty acid oxidation, while concurrently downregulating the DEPs associated with fatty acid synthesis. Additionally, probiotic supplementation significantly reduced the aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) levels induced by HFDs. It also upregulated the activities of catalase (CAT) and superoxide dismutase (SOD). Probiotic supplementation significantly upregulated the DEPs related to antioxidants, while significantly downregulating the DEPs associated with inflammatory responses and autophagy. These findings suggested that probiotics ameliorated HFD-induced hepatic lipid accumulation in C. nasus by enhancing cholesterol metabolism and fatty acid oxidation, concomitantly with the suppression of fatty acid synthesis pathways. Additionally, probiotics protected against HFD-induced hepatic injury by enhancing antioxidant defenses and suppressing inflammation in C. nasus. Full article
Show Figures

Figure 1

20 pages, 5033 KB  
Article
Effects of Frost Mulberry Leaf Superfine Powder on the Hypoglycemic and Gut Microbiota of High-Fat Diet/Streptozotocin-Induced Type 2 Diabetes Mellitus Mice
by Jingya Wu, Qiu Wu, Guojian Zhao, Jing Liang, Lei Sun, Ming Jia, Rui Sun and Mingguan Yang
Appl. Sci. 2025, 15(7), 3766; https://doi.org/10.3390/app15073766 - 29 Mar 2025
Cited by 1 | Viewed by 1478
Abstract
Frost mulberry leaves possess significant medicinal and nutritional values and feature extensive resource availability and convenient acquisition. The study investigated the physicochemical structure and functional properties of frost mulberry leaf superfine powder (FMLSP) and the effects of FMLSP on the hypoglycemic activity and [...] Read more.
Frost mulberry leaves possess significant medicinal and nutritional values and feature extensive resource availability and convenient acquisition. The study investigated the physicochemical structure and functional properties of frost mulberry leaf superfine powder (FMLSP) and the effects of FMLSP on the hypoglycemic activity and gut microbiota of type 2 diabetes mellitus (T2DM) mice. The results indicated that the total flavonoid content of FMLSP reached 91.30 mg/g, with significant inhibitory effects on both α-glucosidase and α-amylase activities. Animal experimental data showed that FMLSP could significantly reduce insulin content, improve insulin resistance, and protect liver and pancreatic tissues in T2DM mice. Meanwhile, FMLSP showed significant effects on lipid metabolism, especially the low-density lipoprotein cholesterol (LDL-C) content in T2DM mice was significantly reduced by 76.22%. In addition, FMLSP has excellent antioxidant effects, which greatly alleviated the oxidative stress phenomenon in T2DM mice, especially the malondialdehyde (MDA) content was significantly reduced by 72.17%. FMLSP also restored the diversity and structure of the gut microbiota, significantly increasing the abundance of beneficial bacteria such as Akkermansia, Lachnospiraceae_NK4A136_group, Alloprevotella, and Lactobacillus in T2DM mice and significantly decreasing the abundance of abundance of harmful bacteria such as Rikenellaceae_RC9_gut_group, Enterorhabdus. These results indicate that FMLSP may serve as a potential dietary intervention for the prevention and treatment of T2DM. Full article
Show Figures

Figure 1

15 pages, 3568 KB  
Article
Bisphenol S Induces Lipid Metabolism Disorders in HepG2 and SK-Hep-1 Cells via Oxidative Stress
by Kai-Xing Lin, Zi-Yao Wu, Mei-Lin Qin and Huai-Cai Zeng
Toxics 2025, 13(1), 44; https://doi.org/10.3390/toxics13010044 - 8 Jan 2025
Cited by 2 | Viewed by 1786
Abstract
Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of [...] Read more.
Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of BPS was selected. Biochemical indices such as triglyceride (TG) and total cholesterol (T-CHO), and oxidative stress indices such as malondialdehyde (MDA) and catalase (CAT) were measured. ROS and MDA levels were significantly increased after BPS treatment for 24 h and 48 h (p < 0.05), indicating an oxidative stress response. Alanine aminotransferase (ALT), T-CHO, and low-density lipoprotein cholesterol (LDL-C) levels also increased significantly after 24 or 48 h BPS treatments (p < 0.05). RT-PCR and Western blot analyses detected mRNA or protein expression levels of peroxisome proliferator-activated receptor α (PPARα) and sterol regulatory element-binding protein 1c (SREBP1C). The results indicated that BPS could inhibit the mRNA expression of PPARα and carnitine palmitoyl transferase 1B (CPT1B), reduce lipid metabolism, promote mRNA or protein expression of SREBP1C and fatty acid synthase (FASN), and increase lipid synthesis. Increased lipid droplets were observed using morphological Oil Red O staining. Our study demonstrates that BPS may cause lipid accumulation by increasing oxidative stress and perturbing cellular lipid metabolism. Full article
(This article belongs to the Special Issue Drug Metabolism and Toxicological Mechanisms)
Show Figures

Figure 1

16 pages, 1399 KB  
Article
Effect of Creatine Monohydrate Supplementation on Macro- and Microvascular Endothelial Function in Older Adults: A Pilot Study
by Holly E. Clarke, Neda S. Akhavan, Taylor A. Behl, Michael J. Ormsbee and Robert C. Hickner
Nutrients 2025, 17(1), 58; https://doi.org/10.3390/nu17010058 - 27 Dec 2024
Cited by 2 | Viewed by 15018
Abstract
Background/Objectives: A pilot study was conducted to investigate the effect of four weeks of creatine monohydrate (CrM) on vascular endothelial function in older adults. Methods: In a double-blind, randomized crossover trial, twelve sedentary, healthy older adults were allocated to either the CrM or [...] Read more.
Background/Objectives: A pilot study was conducted to investigate the effect of four weeks of creatine monohydrate (CrM) on vascular endothelial function in older adults. Methods: In a double-blind, randomized crossover trial, twelve sedentary, healthy older adults were allocated to either the CrM or placebo (PL) group for four weeks, at a dose of 4 × 5 g/day for 5 days, followed by 1 × 5 g/day for 23 days. Macrovascular function (flow-mediated dilation [FMD%], normalized FMD%, brachial-ankle pulse wave velocity [baPWV], pulse wave analysis [PWA]), microvascular function (microvascular reperfusion rate [% StO2/sec]), and biomarkers of vascular function (tetrahydrobiopterin [BH4], malondialdehyde [MDA], oxidized low-density lipoprotein [oxLDL], glucose, lipids) were assessed pre- and post-supplementation with a four-week washout period. Results: CrM significantly increased FMD% (pre-CrM, 7.68 ± 2.25%; post-CrM, 8.9 ± 1.99%; p < 0.005), and normalized FMD% (pre-CrM, 2.57 × 10−4 ± 1.03 × 10−4%/AUCSR; post-CrM, 3.42 × 10−4 ± 1.69 × 10−4%/AUCSR; p < 0.05), compared to PL. Microvascular reperfusion rates increased following CrM (pre-CrM, 2.29 ± 1.42%/sec; post-CrM, 3.71 ± 1.44%/sec; p < 0.05), with no change following PL. A significant reduction in fasting glucose (pre-CrM, 103.64 ± 6.28; post-CrM, 99 ± 4.9 mg/dL; p < 0.05) and triglycerides (pre-CrM, 99.82 ± 35.35; post-CrM, 83.82 ± 37.65 mg/dL; p < 0.05) was observed following CrM. No significant differences were observed for any other outcome. Conclusions: These pilot data indicate that four weeks of CrM supplementation resulted in favorable effects on several indices of vascular function in older adults. Full article
(This article belongs to the Special Issue Dietary Management and Nutritional Health for Age-Related Diseases)
Show Figures

Figure 1

10 pages, 1114 KB  
Article
Evaluation of Serum Lipids, Biochemical Parameters, Selected Antioxidant Elements and Oxidative Stress Profiles in Late Pregnant Jennies with Hyperlipemia
by Qingze Meng, Yang Shao, Wei Li, Jia Lu, Xinyue Wang and Liang Deng
Vet. Sci. 2024, 11(12), 664; https://doi.org/10.3390/vetsci11120664 - 18 Dec 2024
Cited by 2 | Viewed by 2879
Abstract
Donkeys are particularly at risk of hyperlipemia. Hyperlipemia is a metabolic disease caused by the mobilization of fatty acids from adipose tissue, which often impacts pregnant and lactating jennies (female donkeys) during periods of negative energy balance. This study aimed to evaluate the [...] Read more.
Donkeys are particularly at risk of hyperlipemia. Hyperlipemia is a metabolic disease caused by the mobilization of fatty acids from adipose tissue, which often impacts pregnant and lactating jennies (female donkeys) during periods of negative energy balance. This study aimed to evaluate the levels of lipids, biochemical parameters, selected antioxidant elements and oxidative stress parameters in late pregnant jennies affected by hyperlipemia. Compared with the healthy jennies, the hyperlipemic animals exhibited significantly elevated levels of triglycerides (TGs), total cholesterol (T-CHO) and low-density lipoprotein cholesterol (p < 0.05), coupled with reduced levels of high-density lipoprotein cholesterol and albumin (ALB) (p < 0.05). The serum levels of biochemical parameters related to liver function, such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase (AKP) and cholinesterase (CHE), showed a significant increase in the hyperlipemia group compared to the healthy group (p < 0.05). The serum level of selenium was significantly lower (p < 0.05) and positively correlated with TGs (r = 0.85) and ALB (r = 0.73) in the hyperlipemia group. The hyperlipemic jennies showed diminished serum levels of antioxidant capacity and increased levels of malondialdehyde (MDA). The area under the curve values for T-CHO, ALB, AKP, CHE, total superoxide dismutase, glutathione and MDA were relatively high. Thus, our findings reflect metabolic disorders, liver dysfunction and oxidative stress in late pregnant hyperlipemic jennies, providing a basis for the improvement of clinical diagnostic methods and early prevention and control of hyperlipemia in jennies. Full article
(This article belongs to the Special Issue The Progress of Equine Medical Research in China and Beyond)
Show Figures

Figure 1

16 pages, 2298 KB  
Article
Isoliquiritigenin Prevents the Development of Nephropathy by an HFD in Rats Through the Induction of Antioxidant Production and Inhibition of the MD-2/TLR4/NF-κB Pathway
by Mohammed Abdo Yahya, Ghedeir M. Alshammari, Magdi A. Osman, Laila Naif Al-Harbi and Setah Naif Alotaibi
Biology 2024, 13(12), 984; https://doi.org/10.3390/biology13120984 - 28 Nov 2024
Cited by 3 | Viewed by 1525
Abstract
This study tested the ISL against renal damage induced by a high-fat diet (HFD) and explored its underlying mechanisms. Adult male rats were assigned to four groups: (1) control on a standard diet (STD), (2) ISL on STD (30 mg/kg), (3) HFD, and [...] Read more.
This study tested the ISL against renal damage induced by a high-fat diet (HFD) and explored its underlying mechanisms. Adult male rats were assigned to four groups: (1) control on a standard diet (STD), (2) ISL on STD (30 mg/kg), (3) HFD, and (4) HFD + ISL (30 mg/kg). After 12 weeks of dietary intervention, ISL treatment led to significant reductions in body weight gain, visceral fat, and glucose and insulin levels in HFD-fed rats. Notably, ISL decreased serum urea and creatinine, increased serum albumin, and improved urinary profiles by lowering the urinary albumin and the albumin/creatinine ratio. Histological analyses revealed that ISL enhanced the glomerular structure and mitigated tubular damage, as evidenced by reduced urinary excretion of the kidney injury markers NGAL and KIM-1. Additionally, ISL significantly lowered cholesterol, triglycerides, and free fatty acids in both the control and HFD groups while also decreasing oxidized low-density lipoproteins (ox-LDLs) and malondialdehyde (MDA). Importantly, ISL enhanced renal antioxidant levels, increasing glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Moreover, ISL downregulated mRNA levels of MD-2, Toll-like receptor-4 (TLR-4), and NF-κB, leading to reduced NF-κB p65 levels in renal tissues. In conclusion, ISL offers substantial protection against HFD-induced renal toxicity through mechanisms that attenuate metabolic stress, enhance antioxidant defenses, and inhibit the MD-2/TLR4/NF-κB inflammatory pathway. Full article
(This article belongs to the Special Issue Bioavailability, Metabolism, and Health Effects of Phenolic Compounds)
Show Figures

Figure 1

16 pages, 2109 KB  
Article
Investigating the Effects of Gossypetin on Cardiovascular Function in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats
by Karishma Naidoo and Andile Khathi
Int. J. Mol. Sci. 2024, 25(22), 12105; https://doi.org/10.3390/ijms252212105 - 11 Nov 2024
Cited by 1 | Viewed by 1835
Abstract
Gossypetin (GTIN) is a naturally occurring flavonoid recognised for its pharmacological properties. This study examined the effects of GTIN on cardiovascular function in a diet-induced pre-diabetic rat model, which has not been previously studied. Pre-diabetes was induced using a high-fat high-carbohydrate (HFHC) diet [...] Read more.
Gossypetin (GTIN) is a naturally occurring flavonoid recognised for its pharmacological properties. This study examined the effects of GTIN on cardiovascular function in a diet-induced pre-diabetic rat model, which has not been previously studied. Pre-diabetes was induced using a high-fat high-carbohydrate (HFHC) diet supplemented with 15% fructose water for 20 weeks. Thereafter, the pre-diabetic animals were sub-divided into five groups (n = 6), where they were either orally treated with GTIN (15 mg/kg) or metformin (MET) (500 mg/kg), both in the presence and absence of dietary intervention for 12 weeks. The results demonstrated that the pre-diabetic (PD) control group exhibited significantly higher plasma triglyceride, total cholesterol, low-density lipoprotein and very low-density lipoprotein levels, along with decreased high-density lipoprotein (HDL) levels in comparison to the non-pre-diabetic (NPD) group. This was accompanied by significantly higher mean arterial pressure (MAP), body mass index (BMI), waist circumference (WC) and plasma endothelial nitric oxide (eNOS) levels in PD control. Additionally, there were increased heart malondialdehyde levels, reduced heart superoxide dismutase and glutathione peroxidase activity as well as increased plasma interleukin-6, tumour necrosis factor alpha and c-reactive protein levels present in the PD control group. Notably, both GTIN-treated groups showed significantly reduced plasma lipid levels and increased HDL, as well as decreases in MAP, BMI, WC and eNOS levels in comparison to PD control. Additionally, GTIN significantly decreased heart lipid peroxidation, enhanced antioxidant activity and decreased plasma inflammation markers. These findings may suggest that GTIN administration in both the presence and absence of dietary intervention may offer therapeutic potential in ameliorating cardiovascular disturbances associated with the PD state. However, future studies are needed to determine the physiological mechanisms by which GTIN improves cardiovascular function in the PD state. Full article
(This article belongs to the Special Issue Natural Compounds in Human Health and Disease)
Show Figures

Figure 1

10 pages, 521 KB  
Article
Serum Malondialdehyde-Modified Low-Density Lipoprotein Level May Be a Biomarker Associated with Aortic Stiffness Among Patients Undergoing Peritoneal Dialysis
by Yu-Chi Chang, Chih-Hsien Wang, Chi-Chong Tang, Yu-Li Lin, Yu-Hsien Lai, Chiu-Huang Kuo and Bang-Gee Hsu
Life 2024, 14(11), 1385; https://doi.org/10.3390/life14111385 - 28 Oct 2024
Cited by 2 | Viewed by 1640
Abstract
Background: Serum malondialdehyde-oxidized low-density lipoprotein (MDA-oxLDL) is associated with atherosclerosis and increased risk of cardiovascular disease (CVD). Vascular calcification frequently occurs with arterial stiffness in patients on peritoneal dialysis (PD). This cross-sectional study aimed to elucidate the correlation between aortic stiffness and MDA-oxLDL [...] Read more.
Background: Serum malondialdehyde-oxidized low-density lipoprotein (MDA-oxLDL) is associated with atherosclerosis and increased risk of cardiovascular disease (CVD). Vascular calcification frequently occurs with arterial stiffness in patients on peritoneal dialysis (PD). This cross-sectional study aimed to elucidate the correlation between aortic stiffness and MDA-oxLDL levels in patients on PD. Methods: Overall, 92 patients on PD were included. The carotid–femoral pulse wave velocity (cfPWV) was evaluated using cuff-based volumetric displacement, and blood samples were obtained from all patients. Aortic stiffness was classified based on cfPWV values (>10 m/s indicating aortic stiffness). Serum MDA-ox-LDL levels were quantified using commercial enzyme-linked immunosorbent assay kits. Results: In total, 33 (35.9%) patients were classified into the aortic stiffness group. Factors, including systolic blood pressure (SBP), serum triglyceride levels, C-reactive protein levels, age, weight, body mass index (BMI), waist circumference, MDA-oxLDL levels, and diabetes mellitus (DM) prevalence, were significantly higher in the aortic stiffness group. Multivariable logistic regression analysis revealed significant associations between aortic stiffness and MDA-oxLDL levels, BMI, and SBP. Furthermore, multivariable forward stepwise linear regression analysis revealed serum MDA-oxLDL levels as a significant independent predictor of cfPWV values. Conclusions: Serum MDA-oxLDL levels correlate positively with cfPWV values and may predict aortic stiffness among PD patients, highlighting its potential role in assessing CVD risk in this population. Full article
Show Figures

Graphical abstract

21 pages, 6332 KB  
Article
Unveiling the Potential of Silymarin, Spirulina platensis, and Chlorella vulgaris towards Cardiotoxicity via Modulating Antioxidant Activity, Inflammation, and Apoptosis in Rats
by Hanem F. El-Gendy, Hanem K. Khalifa, Ahmed Omran, Reda M. S. Korany, Shaimaa Selim, Eman Hussein, Rashed A. Alhotan, Anam Ayyoub and Shimaa R. Masoud
Life 2024, 14(10), 1289; https://doi.org/10.3390/life14101289 - 11 Oct 2024
Cited by 5 | Viewed by 2694
Abstract
This study assessed the possible pharmacological effects of Chlorella vulgaris (Cg), Spirulina platensis (St), and silymarin (Sl) against thioacetamide (TA)-induced cardiotoxicity in rats, with a focus on their antioxidant, cardioprotective, and anti-inflammatory properties. The following is the random grouping of sixty male rats [...] Read more.
This study assessed the possible pharmacological effects of Chlorella vulgaris (Cg), Spirulina platensis (St), and silymarin (Sl) against thioacetamide (TA)-induced cardiotoxicity in rats, with a focus on their antioxidant, cardioprotective, and anti-inflammatory properties. The following is the random grouping of sixty male rats into six groups of ten animals each: the control (negative control), TA-intoxicated group (positive control; 300 mg/kg body weight (BW)), Sl + TA group (100 mg Sl/kg BW + TA), St + TA group (400 mg St/kg BW + TA), Cg + TA (400 mg Cg/kg BW + TA), and St + Cg + TA group (400 St + 400 Cg mg/kg BW + TA) were all administered for 30 days. At the start of the study, groups 2 through 6 were administered TA intraperitoneally at a dosage of 300 mg/kg BW for two consecutive days, with a 24 h gap between each dose, to induce cardiac damage. Blood samples were obtained to measure hematological parameters and perform biochemical assays, including lipid profiles and cardiac enzymes. For histopathology and immunohistochemistry determination, tissue samples were acquired. The current findings showed that TA injection caused hematological alterations and cardiac injury, as evidenced by greater serum levels of troponin I, creatine kinase-MB, and total creatine kinase (p < 0.05), as well as significantly elevated serum malondialdehyde and decreased serum total antioxidant capacity (p < 0.05) concentrations. Moreover, an increase in blood low-density lipoprotein and total cholesterol concentration (p < 0.05) was recorded in the TA group. There were alterations in the heart tissue’s histological structure of the TA group compared to the control ones. These alterations were characterized by vacuolar degeneration of myocytes, loss of cross striation, coagulative necrosis, and fibrosis of interstitial tissue, which was ameliorated by the supplementation of SI, St, and Cg. The TA-intoxicated group showed weak expression of B-cell lymphoma protein 2 (p < 0.05) and strong immunoreactivity of tumor necrosis factor-α and B-cell lymphoma protein 2-associated X (p < 0.05). However, the groups receiving Sl, St, and Cg experienced the opposite. The administration of Sl, St, Cg, and St + Cg along with TA significantly improved and restored (p < 0.05) erythrogram indices, including RBCs, hemoglobin, total leukocytic count, lymphocytes, and monocyte, to the normal control values. The administration of Sl, St, and Cg alleviated the cardiotoxicity caused by TA via reducing oxidative stress, inflammatory markers, and apoptosis in heart tissue. In summary, the current findings suggest that the treatment with Sl, St, and Cg was beneficial in ameliorating and reducing the cardiotoxicity induced by TA in rats. Full article
Show Figures

Figure 1

18 pages, 10235 KB  
Article
Oxidative Stress, Inflammation, and Altered Lymphocyte E-NTPDase Are Implicated in Acute Dyslipidemia in Rats: Protective Role of Arbutin
by Reem S. Alruhaimi, Omnia E. Hussein, Sulaiman M. Alnasser, Mousa O. Germoush, Meshal Alotaibi, Emad H. M. Hassanein, Mohamed El Mohtadi and Ayman M. Mahmoud
Pharmaceuticals 2024, 17(10), 1343; https://doi.org/10.3390/ph17101343 - 8 Oct 2024
Cited by 2 | Viewed by 2247
Abstract
Background/Objectives: Dyslipidemia is frequently linked to various disorders, and its clinical relevance is now recognized. The role of inflammation and oxidative stress (OS) in dyslipidemia has been acknowledged. This study assessed the potential of arbutin (ARB) to prevent dyslipidemia and its associated OS [...] Read more.
Background/Objectives: Dyslipidemia is frequently linked to various disorders, and its clinical relevance is now recognized. The role of inflammation and oxidative stress (OS) in dyslipidemia has been acknowledged. This study assessed the potential of arbutin (ARB) to prevent dyslipidemia and its associated OS and inflammation in rats with acute hyperlipidemia. Methods: Rats received ARB orally for 14 days and a single intraperitoneal injection of poloxamer-407 on day 15. Results: Poloxamer-407 elevated circulating cholesterol (CHOL), triglycerides (TG), very low-density lipoprotein (vLDL), and LDL, and reduced high-density lipoprotein (HDL)-C and lipoprotein lipase (LPL). ARB ameliorated the circulating lipids and LPL, and suppressed 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) in rat liver and in vitro. Fatty acid synthase (FAS) in rat liver and its in vitro activity were suppressed by ARB, which also upregulated the LDL receptor (LDL-R) and ABCA1, and had no effect on ABCG5 and ABCG8 mRNA. ARB ameliorated liver malondialdehyde and nitric oxide and enhanced antioxidants in rats with dyslipidemia. Liver NF-κB p65 and blood inflammatory cytokines were increased in dyslipidemic rats, effects that were reversed by ARB. Moreover, ARB effectively suppressed lymphocyte E-NTPDase and E-ADA activities in dyslipidemic rats. The biochemical findings were supported by in silico data showing the affinity of ARB to bind LDL-R PCSK9 binding domain, HMGCR, FAS, and E-NTPDase. Conclusions: ARB possessed anti-dyslipidemia, anti-inflammatory, and antioxidant effects mediated via the modulation of CHOL and TG synthesis, LPL, lymphocyte E-NTPDase and E-ADA, and cytokine release in rats. Thus, ARB could be an effective agent to attenuate dyslipidemia and its associated OS and inflammation, pending further studies as well as clinical trials. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Effects of Natural Product Extracts)
Show Figures

Graphical abstract

17 pages, 869 KB  
Article
Age-Related Effects of Olive Oil Polyphenol Ingestion on Oxidation of Low-Density Lipoprotein in Healthy Japanese Men: A Randomized Controlled Double-Blind Crossover Trial
by Shogo Tsujino, Shohei Sadamitsu, Naohisa Nosaka, Tatsuya Fushimi, Yoshimi Kishimoto and Kazuo Kondo
Nutrients 2024, 16(19), 3342; https://doi.org/10.3390/nu16193342 - 1 Oct 2024
Viewed by 3904
Abstract
Background: The function of olive oil polyphenols in suppressing the oxidation of low-density lipoprotein (LDL) is well-known in Europeans. However, it remains unclear whether olive oil polyphenols exert antioxidant effects in Japanese people. Objectives: The objective of this study was to determine whether [...] Read more.
Background: The function of olive oil polyphenols in suppressing the oxidation of low-density lipoprotein (LDL) is well-known in Europeans. However, it remains unclear whether olive oil polyphenols exert antioxidant effects in Japanese people. Objectives: The objective of this study was to determine whether the ingestion of olive oil polyphenols suppresses LDL oxidation in the Japanese population and whether this effect depends on age. Methods: This randomized controlled double-blind crossover trial with a 2-week washout enrolled 80 healthy Japanese men aged 35–64 years. Participants ingested either 14 g of extra virgin olive oil containing 5.0 mg of olive oil polyphenols (test food) or 14 g of refined olive oil containing 0.3 mg of olive oil polyphenols (control food) for 3 weeks. The primary outcome was oxidized LDL (malondialdehyde-modified LDL; MDA-LDL). Subgroup analyses based on age (35–50 and 51–64 years) were also performed. Results: In all of the participants (35–64 years), there were no significant differences in MDA-LDL between the control and test groups. However, in the 35–50 years subgroup, ingestion of olive oil polyphenols led to a significantly larger reduction in MDA-LDL as compared with the control group (p < 0.025). Conclusions: The significantly lower dietary total polyphenol intake of the 35–50 years subgroup compared to the 51–64 years subgroup suggests that the suppressive function of olive oil polyphenol intake on LDL oxidation in Japanese men is influenced by dietary habits and is more clearly demonstrated in the younger age population with a relatively low total polyphenol intake. Full article
(This article belongs to the Special Issue Health Effects of Edible Oils and Their Functional Components)
Show Figures

Figure 1

Back to TopTop