Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,467)

Search Parameters:
Keywords = malondialdehyde (MDA) levels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3513 KB  
Article
Effects of Red Kojic Rice Supplementation on Growth, Immunity, Antioxidant Capacity, and Intestinal Health of Litopenaeus vannamei Fed a Diet with Fish Meal Replacement by Soybean Meal
by Qianping Huang, Hongkai Ye, Zhanzhan Wang, Bo Liu, Min Yang, Xiaobin Chen, Shengli Liu and Chuanpeng Zhou
Fishes 2026, 11(1), 58; https://doi.org/10.3390/fishes11010058 - 16 Jan 2026
Abstract
This study aimed to investigate the effects of adding Red kojic rice (RKR) on the growth performance, digestive enzyme activity, non-specific immunity, antioxidant capacity, and intestinal health of Litopenaeus vannamei fed a diet with fishmeal replacement by soybean meal. Shrimps (initial mean weight [...] Read more.
This study aimed to investigate the effects of adding Red kojic rice (RKR) on the growth performance, digestive enzyme activity, non-specific immunity, antioxidant capacity, and intestinal health of Litopenaeus vannamei fed a diet with fishmeal replacement by soybean meal. Shrimps (initial mean weight = 1.88 ± 0.03 g) were fed six experimental diets for 8 weeks, including a normal fishmeal control group (FM), a soybean meal-replaced fishmeal group (H0), and four soybean meal-replaced fishmeal groups supplemented with 0.5%, 1%, 2%, and 4% RKR, respectively, which are designated as H1, H2, H3, and H4, respectively. Each group had three replicates, with 30 shrimp per replicate. The results showed that the final average weight (FWG), weight gain rate (WG), and specific growth rate (SGR) of H2 group were significantly higher than those of H0, H3, and H4 groups (p < 0.05). The feed conversion ratio (FCR) of H2 group was significantly lower than that of H0 and H4 groups (p < 0.05). In contrast to the H0 group, the blood ACP activity in the H2 group was significantly increased (p < 0.05). The blood lysozyme (LYZ) activity in H3 group was significantly higher than that in H1 group (p < 0.05), while the opposite was true for phenoloxidase (PO). The activities of trypsin and amylase in hepatopancreas of H3 group were significantly higher than those of H0 and H1 groups (p < 0.05). Compared with the FM group, the hepatopancreatic malondialdehyde (MDA) levels in H0, H3, and H4 groups were significantly increased (p < 0.05). Compared with the H0 group, the hepatopancreatic MDA levels in H1 and H2 groups were significantly decreased (p < 0.05). Analysis of gene expression levels in hepatopancreas revealed that antioxidant (gpx, sod, cat, gst, nrf2, trx, and ho-1), non-specific immune (tnf-α, il-1β, and ifn-γ), and digestive (trypsin and α-amylase) genes were suppressed in the H0 group but enhanced by RKR supplementation. Similar expression patterns of those genes were observed in the intestine. Microbial community analysis showed reduced diversity and altered composition in the H0 group, which were partially restored by RKR. Network analysis showed “small-world” property in microbial co-occurrence network. Metabolomic analysis revealed that among the differential metabolites, Bismurrayaquinone A and Harmol exhibit highly significant differences. Correlation analysis revealed that beneficial bacteria Rhodococcus_C and Oceanobacillus in H2 group exhibited higher richness and showed significant correlation. In conclusion, supplementation of 0.5–2% RKR promoted the growth performance, digestive enzyme activity, non-specific immunity, antioxidant capacity, and intestinal health of shrimp fed a diet with fishmeal replacement by soybean meal. The optimal RKR supplementing content is 1%. Full article
(This article belongs to the Section Nutrition and Feeding)
18 pages, 1011 KB  
Article
Effects of Glycerol Fatty Acid Esters on Growth Performance, Methane Emissions, and Rumen Microbial Flora of Dabieshan Beef Cattle
by Junjie Nie, Xinye Li, Yongchang Luo, Hongxian Li, Yong Zhu, Chao Chen and Jinling Hua
Vet. Sci. 2026, 13(1), 92; https://doi.org/10.3390/vetsci13010092 - 16 Jan 2026
Abstract
Glycerol fatty acid esters (GFAEs) exhibit potential applications in ruminant production, including enhancing animal performance, improving nutrient utilization, and modulating rumen function. However, studies on indigenous Dabieshan beef cattle are lacking. This study aimed to evaluate GFAE’s effects on their performance, meat quality, [...] Read more.
Glycerol fatty acid esters (GFAEs) exhibit potential applications in ruminant production, including enhancing animal performance, improving nutrient utilization, and modulating rumen function. However, studies on indigenous Dabieshan beef cattle are lacking. This study aimed to evaluate GFAE’s effects on their performance, meat quality, and rumen function. Thirty 2-year-old cattle (294.73 ± 3.21 kg; mean ± SD), were randomly divided into three groups (n = 10): on a dry matter (DM) basis, CON (basal diet), 0.05 GFAE (basal + 0.05% GFAE), 0.1 GFAE (basal + 0.1% GFAE), fed for 60 days. The crude protein (CP) digestibility of the 0.05 GFAE group showed a significant 4.55% increase compared with the CON group, while that of the 0.1 GFAE group was significantly elevated by 2.76% relative to the CON group. For key meat quality indices of Dabieshan beef cattle, compared with the CON group, the 0.05 GFAE and 0.1 GFAE groups showed increases in L value by 10.14% and 7.11%, respectively (p = 0.042); decreases in shear force by 5.24% and 1.48%, respectively (p = 0.024); and increases in ether extract(EE) content by 10.91% and 2.33%, respectively (p = 0.019). Compared with the CON group, the 0.05 GFAE and 0.1 GFAE groups showed significant alterations in key serum biochemical indices of Dabieshan beef cattle: TP (total protein) levels elevated significantly by 6.44% and 13.04%, respectively (p = 0.010); total antioxidant capacity (T-AOC) increased significantly by 33.96% and 46.23%, respectively (p = 0.001); UREA concentrations decreased significantly, by 22.67% and 33.53%, respectively (p = 0.002); superoxide dismutase (SOD) activity rose significantly, by 7.30% and 7.99%, respectively (p = 0.020); and malondialdehyde (MDA) content declined significantly, by 20.25% and 28.03%, respectively (p = 0.040). Relative to the CON group, dietary supplementation with GFAE significantly increased ruminal butyrate concentrations, with the 0.05 GFAE and 0.1 GFAE supplemented groups exhibiting respective increments of 17.38% and 18.03% (p = 0.025). Both Groups 0.05 GFAE and 0.1 GFAE reduced CH4 emissions (p = 0.005) and elevated Prevotella abundance (p = 0.001). The study findings revealed that dietary supplementation with GFAE at concentrations of 0.05% and 0.1% of dry matter resulted in substantial decreases in daily methane emissions, representing respective reductions of 6.91% and 11.63% compared to the control group (p = 0.005). At the species level of the rumen microbial community, the relative abundance of the genus Prevotella_sp. was significantly elevated by 60.52% and 38.48% in the 0.05 GFAE and 0.1 GFAE groups, respectively, when contrasted with the CON group (p = 0.001). Collectively, these results demonstrate that the inclusion of dietary 0.05% GFAE supplementation conferred multifaceted benefits to Dabieshan beef cattle, thereby highlighting its potential as a viable strategy to enhance the sustainability of beef cattle production systems. Full article
Show Figures

Figure 1

18 pages, 3856 KB  
Article
A Follicle Size Window of Competence for In Vitro Embryo Production in High-Producing Dairy Cows: Evidence from OPU-IVP Performance and Follicular Fluid Profiling
by Mingmao Yang, Zhibing Wang, Baoli Shen, Shangnan Li, Yaochang Wei, Yifan Li, Longgang Yan, Mengkun Sun, Dong Zhou and Yaping Jin
Animals 2026, 16(2), 274; https://doi.org/10.3390/ani16020274 - 16 Jan 2026
Abstract
A key objective of the dairy industry is to balance genetic progress with reproductive efficiency. Ovum pick-up followed by in vitro embryo production (OPU-IVP) is a pivotal technology for accelerating genetic gain. However, the relationship between follicle size and oocyte developmental competence in [...] Read more.
A key objective of the dairy industry is to balance genetic progress with reproductive efficiency. Ovum pick-up followed by in vitro embryo production (OPU-IVP) is a pivotal technology for accelerating genetic gain. However, the relationship between follicle size and oocyte developmental competence in high-producing dairy cows under hormonal stimulation remains to be fully elucidated. This study systematically evaluated the effects of follicle diameter ovum pick-up on OPU-IVP outcomes and the underlying follicular fluid (FF) microenvironment. A total of 109 high-yielding Holstein cows were subjected to ovarian stimulation and OPU. Follicles were categorized as small (2.0–5.9 mm), medium (6.0–9.9 mm), or large (10.0–20.0 mm). Oocyte recovery, quality, and developmental competence were assessed. FF was analyzed for hormonal profiles, including anti-Müllerian hormone (AMH), estradiol (E2), follicle-stimulating hormone (FSH), and progesterone (PROG); oxidative stress markers, including malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC); and untargeted metabolomics (n = 10 per group). Consistently, oocytes from medium follicles exhibited superior developmental competence, achieving the highest maturation (89.93%), cleavage (72.19%), and blastocyst rates (41.88%). In contrast, large follicles had a low recovery rate (32.64%), a high proportion of degenerated oocytes (32.00%), and reduced embryonic efficiency. Metabolomic profiling revealed distinct microenvironmental differences, with medium follicles enriched in pathways like pyruvate metabolism and arachidonic acid metabolism indicating an optimal metabolic state. Hormonally, AMH decreased while E2 and PROG increased with follicle size. Large follicles exhibited significantly elevated MDA levels, indicating oxidative stress, without a concurrent rise in antioxidant capacity. In conclusion, while small follicles provide an abundant source of morphologically good oocytes, medium follicles (6.0–9.9 mm) represent a distinct “window of competence” for OPU-IVP, characterized by a follicular microenvironment most conducive to embryo production. Excessive reliance on large follicle aspiration should be avoided due to signs of over-maturity and oxidative damage. These findings provide a physiological basis for optimizing OPU strategies to enhance IVP efficiency in high-producing dairy cows. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

21 pages, 3426 KB  
Article
Graphene Oxide-Induced Toxicity in Social Insects: Study on Ants Through Integrated Analysis of Physiology, Gut Microbiota, and Transcriptome
by Ting Lei, Ziyuan Wang, Xinyu Wang, Shulan Zhao and Li’an Duo
Insects 2026, 17(1), 104; https://doi.org/10.3390/insects17010104 - 16 Jan 2026
Abstract
Ants act as keystone species in terrestrial ecosystems, providing important ecosystem services. The large-scale production and application of GO constitute a predominant contributor to its inevitable environmental dispersion. Most GO toxicity studies have focused on plants, animals, and microorganisms, with limited research on [...] Read more.
Ants act as keystone species in terrestrial ecosystems, providing important ecosystem services. The large-scale production and application of GO constitute a predominant contributor to its inevitable environmental dispersion. Most GO toxicity studies have focused on plants, animals, and microorganisms, with limited research on ground-dwelling ants. In the study, we used Camponotus japonicus as a model to investigate the toxic effects of GO on ants by integrating physiological characteristics, gut microbiota and transcriptome profiling. Results showed that GO exposure induced mitochondrial dysfunction, as evidenced by mitochondrial ROS accumulation and elevated mitochondrial membrane permeability. Physiological assessments revealed that GO exposure induced oxidative stress. Specifically, GO treatment significantly suppressed superoxide dismutase (SOD) and catalase (CAT) activities, while enhancing peroxidase (POD) and carboxylesterase (CarE) activities and increasing the levels of malondialdehyde (MDA) and trehalose. Gut microbiota analyses showed that GO remarkably reduced the relative abundance of beneficial bacterial symbionts (e.g., Candidatus Blochmannia) and destabilized the whole community structure. Furthermore, transcriptome profiling revealed 680 differentially expressed genes (DEGs) in the ants after GO exposure, most of which were significantly enriched in pathways associated with oxidative phosphorylation. This study suggests that GO may compromise ant-mediated ecosystem function and provides a reference for understanding the environmental risks of GO. Our findings also offer new insights for protecting the ecosystem services of ants. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

19 pages, 2055 KB  
Article
Punica granatum L. Modulates Antioxidant Activity in Vitrified Bovine Ovarian Tissue
by Solano Dantas Martins, Maria Alice Felipe Oliveira, Venância Antônia Nunes Azevedo, Francisco das Chagas Costa, Ingrid Gracielle Martins da Silva, Selene Maia de Morais, Sônia Nair Báo, José Roberto Viana Silva, Vânia Marilande Ceccatto and Valdevane Rocha Araújo
Int. J. Mol. Sci. 2026, 27(2), 903; https://doi.org/10.3390/ijms27020903 - 16 Jan 2026
Abstract
This study aimed to evaluate the effects of an ethanolic extract from Punica granatum L. (EE-PG) on bovine ovarian tissue vitrification, focusing on follicular morphology, ultrastructure, stromal cell density, collagen distribution, redox status, and mRNA expression of antioxidant-related genes. Bovine ovarian cortex fragments [...] Read more.
This study aimed to evaluate the effects of an ethanolic extract from Punica granatum L. (EE-PG) on bovine ovarian tissue vitrification, focusing on follicular morphology, ultrastructure, stromal cell density, collagen distribution, redox status, and mRNA expression of antioxidant-related genes. Bovine ovarian cortex fragments were divided into a fresh control group for in vivo tissue evaluation or vitrified either with the base vitrification solution (αMEM) alone or supplemented with different concentrations of EE-PG (10, 50, and 100 µg/mL), and subsequently stored in liquid nitrogen for 5 days. After warming, fragments were allocated for morphological and oxidative stress analyses or incubated for 24 h to resumption of cellular metabolism. The concentrations of 10 and 100 µg/mL preserved follicular morphology immediately after warming, and were therefore selected for ultrastructural evaluation. Both concentrations mitigated vitrification-induced damage. Gene expression analysis showed decreased levels of catalase (cat), Glutathione Peroxidase 1 (gpx1), and Nuclear Factor Erythroid 2-Related Factor 2 (nrf2) compared with the fresh control, whereas Superoxide Dismutase (SOD) enzymatic activity increased after incubation with 10 µg/mL EE-PG compared with all experimental groups. Moreover, Malondialdehyde (MDA) levels in tissues treated with 10 or 100 µg/mL were comparable to fresh controls after incubation. Overall, EE-PG at 10 or 100 µg/mL in the vitrification solution supported the maintenance of tissue morphology, redox balance—despite the downregulation of essential antioxidant genes, which may be associated with a reduced demand for enzymatic antioxidant defense—and cellular metabolism, indicating potential for improving bovine ovarian tissue vitrification outcomes. Full article
(This article belongs to the Special Issue New Advances in Animal Reproduction)
Show Figures

Figure 1

24 pages, 5047 KB  
Article
Gibberellic Acid-Induced Regulation of Antioxidant–Flavonoid Channels Provides Protection Against Oxidative Damage in Safflower Under Salinity Stress
by Zhiling Li, Xiaoyu Liu, Weijie Meng, Julong Shangguan, Jian Zhang, Imran Ali, Na Yao, Min Zhang, Naveed Ahmad and Xiuming Liu
Plants 2026, 15(2), 267; https://doi.org/10.3390/plants15020267 - 15 Jan 2026
Viewed by 42
Abstract
Salinity is a major constraint that compromises safflower performance by disrupting redox balance and metabolic homeostasis. Although hormonal mechanisms for improving plant resilience to abiotic stresses have been reported, the mechanistic role of gibberellic acid (GA3)-induced regulation of safflower tolerance to [...] Read more.
Salinity is a major constraint that compromises safflower performance by disrupting redox balance and metabolic homeostasis. Although hormonal mechanisms for improving plant resilience to abiotic stresses have been reported, the mechanistic role of gibberellic acid (GA3)-induced regulation of safflower tolerance to salinity remains unclear. This study aimed to investigate the impact of exogenous GA3 application under normal and saline conditions to evaluate its effects on growth, physiology, redox regulation, and flavonoid biosynthesis in safflower. Using phenotypic, physiological, biochemical, and gene expression analysis, it is suggested that GA3 significantly alleviates salt stress by integrating antioxidant defense and flavonoid biosynthesis. The results of phenotypic and physiological assessments showed that GA3 at 400 mg/L GA3 in safflower seedlings suggests enhanced vegetative growth and photosynthetic performance. Under salt stress, GA3 significantly alleviated oxidative damage by reducing H2O2, O2, and malondialdehyde (MDA) levels, while enhancing osmoprotective compounds such as proline, soluble sugars, proteins, and chlorophyll. GA3 also significantly increased the activity of antioxidant enzymes (SOD, POD, CAT, APX, GST, DHAR, and Prx), accompanied by the transcriptional upregulation of their corresponding genes, indicating GA3-mediated regulation of redox homeostasis at both biochemical and molecular levels. In parallel, GA3 enhanced the accumulation of major flavonoids, particularly hydroxy safflor yellow A (HSYA), with strong induction of key HSYA biosynthetic genes (CtF6H, CtCGT, Ct2OGD1), whereas salinity alone suppressed their expression. In contrast, the quercetin branch displayed a regulatory bottleneck at CtF3H, which remained suppressed under all treatments, although upstream genes were GA3-responsive. Together, these findings demonstrate that GA3 enhances salinity tolerance in safflower by simultaneously activating antioxidant defenses and stimulating flavonoid biosynthesis, providing mechanistic insight with practical implications for developing salt-resilient safflower varieties. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 1471 KB  
Article
Antioxidant and Anti-Inflammatory Effect of Thai Shallot (Allium ascalonicum cv. chiangmai) and Cha-Miang (Camellia sinensis var. assamica) Extracts on Human Embryonic Kidney Cell Line (HEK293)
by Jiraporn Laoung-on, Chalermpong Saenjum, Kongsak Boonyapranai and Sakaewan Ounjaijean
Life 2026, 16(1), 141; https://doi.org/10.3390/life16010141 - 15 Jan 2026
Viewed by 81
Abstract
Oxidative stress and inflammation are key drivers in the pathogenesis of various chronic diseases, including cardiovascular disease, neurodegenerative disorders, chronic kidney disease, and diabetes. This study evaluated the antioxidant and anti-inflammatory activities of SHE, CME, and FCME, all cultivated in northern Thailand. Human [...] Read more.
Oxidative stress and inflammation are key drivers in the pathogenesis of various chronic diseases, including cardiovascular disease, neurodegenerative disorders, chronic kidney disease, and diabetes. This study evaluated the antioxidant and anti-inflammatory activities of SHE, CME, and FCME, all cultivated in northern Thailand. Human embryonic kidney cells (HEK293) were exposed to FeSO4 to induce oxidative stress and to LPS to stimulate inflammation. Cell viability was assessed using the MTT assay, while intracellular ROS production was measured using the DCFH-DA. Lipid peroxidation was quantified using the thiobarbituric acid reactive substances assay, and the interleukin-6 (IL-6) release was determined by ELISAs. All extracts demonstrated low cytotoxicity; however, cell death increased at 48 h compared to 24 h. At 200 µg/mL, SHE, CME, and FCME significantly reduced the H2O2-induced ROS generation, with the combined treatment of SHE and FCME producing a more pronounced reduction than the individual treatments. Furthermore, the combination of SHE and FCME markedly decreased malondialdehyde (MDA) and IL-6 levels compared with other groups. These findings suggest that shallot and cha-miang extracts, particularly in combination, exhibit promising antioxidant and anti-inflammatory properties in kidney cell models. This combination could therefore be explored as a nutraceutical strategy for the prevention and management of chronic kidney disease, in which oxidative stress and inflammation play pivotal roles. Overall, our finding highlight the potential of the combined use of SHE and FCME as a functional ingredients in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

26 pages, 3232 KB  
Article
Tracheocutaneous Fistula Resolved by Pentadecapeptide BPC 157 Therapy Through the NO-System—Triple NO-Agent Approach in Rats
by Goran Madzarac, Tomislav Becejac, Toni Penovic, Dominik Drazenovic, Lucija Kralj, Marta Popović Dolic, Suncana Sikiric, Lidija Beketic Oreskovic, Ivana Oreskovic, Sanja Strbe, Ana Maria Tubikanec, Mihovil Penavic, Hrvoje Vranes, Ivan Krezic, Mario Kordic, Antun Koprivanac, Tinka Vidovic, Josipa Vlainic, Dinko Stancic Rokotov, Alenka Boban Blagaic, Sven Seiwerth, Anita Skrtic and Predrag Sikiricadd Show full author list remove Hide full author list
Pharmaceuticals 2026, 19(1), 145; https://doi.org/10.3390/ph19010145 - 14 Jan 2026
Viewed by 124
Abstract
Background/Objectives: This 7-day rat tracheocutaneous fistula study considered the not-studied issues of tracheocutaneous fistula course, wound healing, and fistula in the NO-system relations. Therefore, we focused on fistulas’ severe course, tracheocutaneous fistula → air leak → compensatory diaphragmatic/abdominal “heaving”, NO-system failed relations, and [...] Read more.
Background/Objectives: This 7-day rat tracheocutaneous fistula study considered the not-studied issues of tracheocutaneous fistula course, wound healing, and fistula in the NO-system relations. Therefore, we focused on fistulas’ severe course, tracheocutaneous fistula → air leak → compensatory diaphragmatic/abdominal “heaving”, NO-system failed relations, and therapy resolution. Stable gastric pentadecapeptide BPC 157 was proposed. Methods: Tracheocutaneous fistula rats received daily medication (/kg), alone or combined, BPC 157 therapy (10 µg, 10 ng, in drinking water or intraperitoneally) along with a triple NO-agent approach (L-NAME 5 mg, L-arginine 100 mg, and L-NAME+L-arginine, intraperitoneally). Results: Tracheocutaneous fistulas occurred as specific and NO-system-related as follows: NO system: blockade (L-NAME-aggravation) over-activity (L-arginine-amelioration) or immobilization (L-NAME+L-arginine oppose each other’s effects). Controls presented severe clinical signs of respiratory distress, failed healing, skin and tracheal defects, a not-healed and open, macro/microscopically, and fistulous tract that was well-formed and wide, tracheal shrinking below the fistula, and clinically, open-mouth breathing, “heaving abdomen”, cyanosis (bluish snout, ears, extremities), abundant secretion through the fistula, and weight loss. Fistula tissue NO level decreased, and the malondialdehyde (MDA) level increased. The BPC 157 therapy (both application routes) resulted in rapid recovery. Healing of defects (skin and trachea) and fistula closure, macro/microscopically, corresponded with clinical findings, avoiding observable clinical signs of dyspnea, reducing weight loss, and avoiding any sign of “heaving abdomen”. BPC 157-treated rats displayed regular breathing movements without observable signs of respiratory distress. Finally, when combined, BPC 157 therapy upgrades L-arginine amelioration, abolishes L-NAME-induced worsening, and restores full healing after NO immobilization (L-NAME+L-arginine). BPC 157 counteracted increase in NO level and counteracted increase in MDA level. Conclusions: Thus, first, acting systemically, BPC 157 reverses tracheocutaneous fistula course in rats. It acts through the NO system. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

15 pages, 1289 KB  
Article
Oxidative Stress Biomarkers in Carassius gibelio from Lakes of Varying Ecological Quality
by Dimitra Petrocheilou, Olga Petriki, Martha Kaloyianni and Dimitra C. Bobori
Hydrobiology 2026, 5(1), 4; https://doi.org/10.3390/hydrobiology5010004 - 14 Jan 2026
Viewed by 53
Abstract
The Water Framework Directive 2000/60/EC requires the assessment of the ecological quality in all surface waters using biological indices, yet the effective application of these indices often demands extensive and long-term monitoring data. Oxidative stress biomarkers offer a promising complementary approach, as they [...] Read more.
The Water Framework Directive 2000/60/EC requires the assessment of the ecological quality in all surface waters using biological indices, yet the effective application of these indices often demands extensive and long-term monitoring data. Oxidative stress biomarkers offer a promising complementary approach, as they can detect early biochemical responses of organisms to environmental degradation. In this study, we evaluated the suitability of two oxidative stress biomarkers—malondialdehyde (MDA) levels and DNA damage—in the gonads of a freshwater fish species, the Prussian carp Carassius gibelio (Bloch, 1782) as indicators of ecological condition in lakes of differing environmental quality. Fish were sampled from four lakes (Doirani, Vegoritida, Volvi, Petron; Northern Greece) representing a gradient of physicochemical and ecological quality. Both MDA concentrations and DNA damage showed significant (p < 0.05) differences among lakes. However, only DNA damage in the gonads was significantly (p < 0.05) associated with lake ecological quality as determined by the Greek Lake Fish Index (GLFI), with higher biomarker responses observed in lakes of poorer status. These findings demonstrate that oxidative stress biomarkers in C. gibelio reflect variations in lake ecological quality and may serve as sensitive, early-warning tools for biomonitoring and pollution assessment in freshwater ecosystems. Full article
Show Figures

Figure 1

15 pages, 499 KB  
Article
Correlation of Oxidative Stress Markers and Nuclear Abnormalities with Clinical Parameters in Individuals with Periodontitis
by Saulo Oswaldo Sánchez-Rivera, Yveth Marlene Ortiz-Garcia, Blanca Patricia Lazalde-Ramos, Cristina Hermila Martínez-Bugarín, Guillermo Moisés Zúñiga-González, Susana Vanessa Sánchez-De-La-Rosa, Belinda Claudia Gómez-Meda, Vianeth Martínez-Rodríguez, Cristian Gabriel Guerrero-Bernal, Gabriela Morales-Velazquez and Ana Lourdes Zamora-Perez
Dent. J. 2026, 14(1), 50; https://doi.org/10.3390/dj14010050 - 12 Jan 2026
Viewed by 220
Abstract
Background: Chronic periodontitis (CP) is a prevalent inflammatory disease worldwide, characterized by the destruction of periodontal tissue due to an immune response triggered by periodontopathogenic bacteria and the prolonged release of reactive oxygen species (ROS). Excess ROS leads to tissue damage through [...] Read more.
Background: Chronic periodontitis (CP) is a prevalent inflammatory disease worldwide, characterized by the destruction of periodontal tissue due to an immune response triggered by periodontopathogenic bacteria and the prolonged release of reactive oxygen species (ROS). Excess ROS leads to tissue damage through mechanisms such as lipid peroxidation and DNA damage. The aim of this study was to evaluate oxidative and genotoxic damage by quantifying 8-hydroxy-2-deoxiguanosine (8-OHdG), malondialdehyde (MDA), and nuclear abnormalities (NAs) in individuals with CP. Methods: The participants were divided into a CP group (n = 30) and a control group without CP (n = 30). Saliva was collected to quantify 8-OHdG (via ELISA) and MDA (via spectrophotometry). Buccal mucosa samples were collected to assess NAs. Periodontal parameters, probing depth (PD), clinical attachment level (CAL), plaque index (PI), and bleeding on probing (BOP), were recorded. Results: The levels of 8-OHdG and MDA were significantly higher in the CP group. NAs were also significantly increased. Positive correlations were observed between 8-OHdG, MDA levels and NAs with clinical parameters. Conclusions: The elevated levels of 8-OHdG, MDA and NAs reflect oxidative and genotoxic damage correlated with CP severity. These biomarkers could complement diagnosis, monitor progression, and assess treatment efficacy. Their elevation may also indicate increased systemic disease risk. Full article
Show Figures

Graphical abstract

23 pages, 10024 KB  
Article
Investigating the Protective Mechanisms of Ginseng-Natto Composite Fermentation Products in Alzheimer’s Disease: A Gut Microbiota and Metabolomic Approach
by Zhimeng Li, He Wang, Huiyang Yuan, Yue Zhang, Bo Yang, Guoxin Ji, Zhuangzhuang Yao, Mingfang Kuang, Xian Wu, Shumin Wang and Huan Wang
Pharmaceuticals 2026, 19(1), 123; https://doi.org/10.3390/ph19010123 - 10 Jan 2026
Viewed by 161
Abstract
Background: Alzheimer’s disease (AD), a progressive brain disorder, is the most common form of dementia and necessitates the development of effective intervention strategies. Ginseng-Natto composite fermentation products (GN) have demonstrated beneficial bioactivities in mouse models of AD; however, the underlying mechanism of action [...] Read more.
Background: Alzheimer’s disease (AD), a progressive brain disorder, is the most common form of dementia and necessitates the development of effective intervention strategies. Ginseng-Natto composite fermentation products (GN) have demonstrated beneficial bioactivities in mouse models of AD; however, the underlying mechanism of action through which GN ameliorates AD requires further elucidation. Methods: Mice received daily intragastric administration of low- or high-dose GN for 4 weeks, followed by intraperitoneal injection of scopolamine to induce the AD model. The pharmacological effects of GN were systematically evaluated using the Morris water maze test, ELISA, and H&E staining. To further investigate the underlying mechanisms, 16S rRNA gene sequencing and metabolomics were employed to analyze the regulatory effects of GN on the gut–brain axis. Additionally, Western blotting was performed to assess the impact of GN on blood–brain barrier (BBB) integrity. Results: GN intervention significantly ameliorated cognitive deficits and attenuated neuropathological injury in AD mice, restoring the brain levels of acetylcholine (ACh), acetylcholinesterase (AChE), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) to normal ranges. GN reshaped the gut microbiota by promoting beneficial bacteria and inhibiting pro-inflammatory strains. It also regulated key metabolic pathways related to amino acid and unsaturated fatty acid metabolism. This metabolic remodeling restored the compromised BBB integrity by upregulating tight junction proteins (ZO-1, Occludin and Claudin-1). Conclusions: Our findings demonstrate that GN ameliorates AD through a gut-to-brain pathway, mediated by reshaping the microbiota-metabolite axis and repairing the BBB. Thus, GN may represent a promising intervention candidate for AD. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

11 pages, 1877 KB  
Article
Regulatory Effects of an Antioxidant Combination on Seminal Quality and Gut Microbiota in Ningxiang Boars Under Heat Stress
by Lu Wang, Cheng Zhang, Siqi Li, Xueer Mei, Xijie Kuang, Qiye Wang and Huansheng Yang
Life 2026, 16(1), 99; https://doi.org/10.3390/life16010099 - 10 Jan 2026
Viewed by 124
Abstract
Heat stress during summer significantly impairs seminal quality in swine production. As a key genetic resource for enhancing indigenous Chinese fatty pig breeds, Ningxiang boars require effective nutritional strategies to maintain reproductive performance under thermal challenge. This study aimed to investigate the effects [...] Read more.
Heat stress during summer significantly impairs seminal quality in swine production. As a key genetic resource for enhancing indigenous Chinese fatty pig breeds, Ningxiang boars require effective nutritional strategies to maintain reproductive performance under thermal challenge. This study aimed to investigate the effects of a combined antioxidant dietary supplement on seminal quality, antioxidant status, and gut microbiota in heat-stressed Ningxiang boars. Ten Ningxiang boars were randomly assigned to two groups (n = 5 per group). The control group received a basal diet, while the experimental group was fed the same basal diet supplemented with 400 mg/kg vitamin E, 5 g/kg yeast-derived zinc, 250 mg/kg yeast-derived selenium, and 800 mg/kg N-carbamylglutamate (NCG). Results demonstrated that sperm and seminal plasma superoxide dismutase (SOD) activity was significantly elevated in the supplemented group compared to the control (p < 0.05), whereas malondialdehyde (MDA) levels and total antioxidant capacity (T-AOC) did not differ significantly (p > 0.05). 16S rRNA gene sequencing revealed that dietary supplementation combined antioxidant markedly altered gut microbiota composition: the abundance of short-chain fatty acid-producing bacteria, particularly members of the Muribaculaceae family, increased significantly (p < 0.05), while opportunistic pathogens within the Acholeplasmataceae family were reduced (p < 0.05). These findings suggest that dietary supplementation with this antioxidant combination improves seminal quality in Ningxiang boars, potentially by enhancing endogenous antioxidant defenses and modulating gut microbial balance. Full article
(This article belongs to the Special Issue Perspectives on Nutrition and Livestock Health)
Show Figures

Figure 1

18 pages, 2144 KB  
Article
Bacillus velezensis SQR9-Emitted Volatiles Enhance Arabidopsis Salt Tolerance via ROS Scavenging and Ion Transport Regulation
by Yucong Li, Liming Xia, Yanqiong Meng, Xinyu Shen, Xiang Wan, Fangqun Gan and Ruifu Zhang
Plants 2026, 15(2), 218; https://doi.org/10.3390/plants15020218 - 10 Jan 2026
Viewed by 222
Abstract
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate [...] Read more.
Salinity stress severely limits crop productivity worldwide. While plant growth-promoting rhizobacteria (PGPR) are known to alleviate abiotic stress, the specific mechanisms mediated by their volatile organic compounds (VOCs) remain largely elusive. In this study, an in vitro split-plate system was used to investigate the effects of VOCs emitted by Bacillus velezensis SQR9 on Arabidopsis thaliana seedlings under salt stress. Exposure to SQR9 VOCs significantly enhanced Arabidopsis salt tolerance, evidenced by increased biomass and root growth. Mechanistically, SQR9 VOCs mitigated salt-induced damage by increasing chlorophyll content, modulating osmolytes, and reducing malondialdehyde (MDA) levels. SQR9 VOCs alleviated oxidative stress by decreasing ROS (H2O2, O2) accumulation and enhancing antioxidant enzyme (SOD, CAT, POD) activities. Furthermore, SQR9 VOCs maintained ion homeostasis by significantly reducing leaf Na+ accumulation, maintaining a high K+/Na+ ratio, and upregulating key ion transporter genes. Analysis of the headspace from SQR9 cultured on MSgg medium identified 2,3-butanediol (2,3-BD) as a major active VOC. Exogenous application of 2,3-BD successfully mimicked the growth-promoting and salt-tolerance-enhancing effects of SQR9. Our findings demonstrate that SQR9 VOCs, particularly 2,3-BD, systemically prime Arabidopsis for salt tolerance by co-activating the antioxidant defense system and the SOS ion homeostasis pathway. Full article
Show Figures

Figure 1

22 pages, 7923 KB  
Article
Overexpression of the Pyrus sinkiangensis LEA4 Gene Enhances the Tolerance of Broussonetia papyrifera to the Low Temperature During Overwintering
by Xiaoxia Bao, Xueying Yang, Xue Wang, Hongliang Xin, Qianqin Li, Saisai Wang, Wenwen Xia and Jin Li
Int. J. Mol. Sci. 2026, 27(2), 688; https://doi.org/10.3390/ijms27020688 - 9 Jan 2026
Viewed by 165
Abstract
Korla fragrant pear (Pyrus sinkiangensis), valued for its unique flavor, suffers from freezing damage in its native Xinjiang. Previous studies indicated a strong correlation between low-temperature stress and the expression of LEA genes, particularly PsLEA4. This study cloned PsLEA4 from [...] Read more.
Korla fragrant pear (Pyrus sinkiangensis), valued for its unique flavor, suffers from freezing damage in its native Xinjiang. Previous studies indicated a strong correlation between low-temperature stress and the expression of LEA genes, particularly PsLEA4. This study cloned PsLEA4 from P. sinkiangensis and overexpressed it in paper mulberry (Broussonetia papyrifera). The encoded 368-amino-acid protein is localized to the endoplasmic reticulum. Under −4 °C stress, the proline and soluble protein contents in the overexpressing lines increased to 1.21-fold and 1.36-fold, respectively, compared to the wild type, while relative water content (RWC) reached 1.58-fold. And catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activities increased by 9%, 16%, and 38%, respectively. During overwintering, the transgenic line exhibited soluble protein content and RWC at 1.78-fold and 1.49-fold compared to those of the wild type, respectively. Malondialdehyde (MDA) and relative electrolyte leakage (REL) levels were only 66% and 63% of the wild type, while CAT and POD activities reached 1.87-fold, and SOD activity peaked at 2.49-fold. These adaptations were associated with improved cold tolerance and with bud break occurring 7–10 days earlier than in WT the following year. These findings could help to understand the molecular mechanisms of P. sinkiangensis for overwintering and provide new genetic resources to breed varieties of pear that can resist cold temperatures. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants, 2nd Edition)
Show Figures

Figure 1

11 pages, 511 KB  
Review
The Role of Oxidative Stress and Total Antioxidant Capacity in the Management of Impacted Third Molars: A Narrative Review
by Isis Mateos-Corral, Rogelio González-González, Marcelo Gómez Palacio-Gastelum, Ronell Bologna-Molina, Sandra López-Verdín, Omar Tremillo-Maldonado, Victor H. Toral-Rizo and Nicolás Serafín-Higuera
Dent. J. 2026, 14(1), 44; https://doi.org/10.3390/dj14010044 - 8 Jan 2026
Viewed by 234
Abstract
Oxidative stress (OS) has gained substantial relevance due to its involvement in the pathogenesis of numerous systemic diseases. It is characterized by an imbalance between the production of reactive oxygen species (ROS) and the capacity of endogenous antioxidant systems to neutralize them. Various [...] Read more.
Oxidative stress (OS) has gained substantial relevance due to its involvement in the pathogenesis of numerous systemic diseases. It is characterized by an imbalance between the production of reactive oxygen species (ROS) and the capacity of endogenous antioxidant systems to neutralize them. Various factors, including trauma, immunological alterations, and psychological stress, may contribute to this condition. The aim of this narrative review was to analyze OS markers and total antioxidant capacity (TAC) in asymptomatic and pericoronitis-associated impacted mandibular third molars (ITMs). This review examines the relationship between OS and impacted ITMs, highlighting the importance of timely clinical management to prevent chronic tissue damage. Current evidence indicates that OS biomarkers such as myeloperoxidase (MPO), malondialdehyde (MDA), uric acid (UA), and nitric oxide (NO) are elevated in patients with ITMs, including those classified as asymptomatic, and that a reduction in total antioxidant capacity (TAC) has been observed. The surgical removal of ITMs can effectively reduce OS levels. Following the procedure, oxidative markers typically return to normal within a relatively short period of time, and there is often a significant improvement in TAC. Full article
(This article belongs to the Section Oral and Maxillofacial Surgery)
Show Figures

Figure 1

Back to TopTop