Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (856)

Search Parameters:
Keywords = maintenance and replacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6279 KiB  
Article
Investigation of the Performance and Fuel Oil Corrosion Resistance of Semi-Flexible Pavement with the Incorporation of Recycled Glass Waste
by Ayman Hassan AL-Qudah, Suhana Koting, Mohd Rasdan Ibrahim and Muna M. Alibrahim
Materials 2025, 18(15), 3442; https://doi.org/10.3390/ma18153442 - 22 Jul 2025
Abstract
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant [...] Read more.
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant maintenance costs. Incorporating glass waste (GW) into the construction of SFPs offers an eco-friendly solution, helping to reduce repair costs and environmental impact by conserving natural resources and minimizing landfill waste. The main objective of this research is to investigate the mechanical performance and fuel oil resistance of SFP composites containing different levels of glass aggregate (GlaSFlex composites). Fine glass aggregate (FGA) was replaced with fine virgin aggregate at levels of 0%, 20%, 40%, 60%, 80%, and 100% by mass. The results indicated the feasibility of utilizing FGA as a total replacement (100%) for fine aggregate in the OGA structural layer of SFPs. At 100% FGA, the composite exhibited excellent mechanical performance and durability, including a compressive strength of 8.93 MPa, a Marshall stability exceeding 38 kN, and a stiffness modulus of 19,091 MPa. Furthermore, the composite demonstrated minimal permanent deformation (0.04 mm), a high residual stability of 94.7%, a residual compressive strength of 83.3%, and strong resistance to fuel spillage with a mass loss rate of less than 1%, indicating excellent durability. Full article
(This article belongs to the Special Issue Advanced Materials for Pavement and Road Infrastructure)
Show Figures

Graphical abstract

19 pages, 3919 KiB  
Article
The Estimation of the Remaining Useful Life of Ceramic Plates Used in Iron Ore Filtration Through a Reliability Model and Machine Learning Methods Applied to Industrial Process Variables of a Pims
by Robert Bento Florentino and Luiz Gustavo Lourenço Moura
Appl. Sci. 2025, 15(14), 8081; https://doi.org/10.3390/app15148081 - 21 Jul 2025
Viewed by 103
Abstract
The intensive use of various sensors in industrial machines has the potential to indicate the real-time health status of critical equipment. This is achieved through the connectivity of their automation systems (PIMS and MES), enabling the optimization of the preventive maintenance interval, a [...] Read more.
The intensive use of various sensors in industrial machines has the potential to indicate the real-time health status of critical equipment. This is achieved through the connectivity of their automation systems (PIMS and MES), enabling the optimization of the preventive maintenance interval, a reduction in corrective maintenance and safety-related failures, an increase in productivity and reliability and a reduction in maintenance costs. Through the use of the CRISP-DM data analysis methodology, the fault logs of ceramic plates applied in an iron ore filtration process are coupled with sensor readings of the process variables over the time of operation to create exponential survival models via two techniques: a multiple linear regression model with averaged data and a random forest regression machine learning model with individual instant data. The instantaneous reliability of ceramic plates is then used in the online prediction of the remaining useful life of the components. The model obtained from the instantaneous reading of 12 sensors led to the estimation of the remaining useful life for ceramic plates with up to 5600 h of use, allowing the adoption of a strategy of replacing these components by condition instead of replacing them by a fixed time, leading to increased process reliability and improved stock planning. The linear regression model for reliability prediction had an R2 of 78.32%, whereas the random forest regression model had an R2 of 63.7%. The final model for predicting the remaining useful life had an R2 of 99.6%. Full article
Show Figures

Figure 1

22 pages, 14847 KiB  
Article
Formation Control of Underactuated AUVs Using a Fractional-Order Sliding Mode Observer
by Long He, Mengting Xie, Ya Zhang, Shizhong Li, Bo Li, Zehui Yuan and Chenrui Bai
Fractal Fract. 2025, 9(7), 465; https://doi.org/10.3390/fractalfract9070465 - 18 Jul 2025
Viewed by 209
Abstract
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining [...] Read more.
This paper proposes a control method that combines a fractional-order sliding mode observer and a cooperative control strategy to address the problem of path-following for underactuated autonomous underwater vehicles (AUVs) in complex marine environments. First, a fractional-order sliding mode observer is designed, combining fractional calculus and double-power convergence laws to enhance the estimation accuracy of high-frequency disturbances. An adaptive gain mechanism is introduced to avoid dependence on the upper bound of disturbances. Second, a formation cooperative control strategy based on path parameter coordination is proposed. By setting independent reference points for each AUV and exchanging path parameters, formation consistency is achieved with low communication overhead. For the followers’ speed control problem, an error-based expected speed adjustment mechanism is introduced, and a hyperbolic tangent function is used to replace the traditional arctangent function to improve the response speed of the system. Numerical simulation results show that this control method performs well in terms of path-following accuracy, formation maintenance capability, and disturbance suppression, verifying its effectiveness and robustness in complex marine environments. Full article
Show Figures

Figure 1

16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 265
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

17 pages, 4256 KiB  
Article
An Image-Based Concrete-Crack-Width Measurement Method Using Skeleton Pruning and the Edge-OrthoBoundary Algorithm
by Chunxiao Li, Hui Qin, Yu Tang, Hailiang Zhao, Shengshen Pan, Jinbo Liu and Wenjiang Luo
Buildings 2025, 15(14), 2489; https://doi.org/10.3390/buildings15142489 - 16 Jul 2025
Viewed by 214
Abstract
The accurate measurement of a crack width in concrete infrastructure is essential for structural safety assessment and maintenance. However, existing image-based methods either suffer from overestimation in complex geometries or are computationally inefficient. This paper proposes a novel hybrid approach combining a fast [...] Read more.
The accurate measurement of a crack width in concrete infrastructure is essential for structural safety assessment and maintenance. However, existing image-based methods either suffer from overestimation in complex geometries or are computationally inefficient. This paper proposes a novel hybrid approach combining a fast skeleton-pruning algorithm and a crack-width measurement technique called edge-OrthoBoundary (EOB). The skeleton-pruning algorithm prunes the skeleton, viewed as the longest branch in a tree structure, using a depth-first search (DFS) approach. Additionally, an intersection removal algorithm based on dilation replaces the midpoint circle algorithm to segment the crack skeleton into computable parts. The EOB method combines the OrthoBoundary and edge shortest distance (ESD) techniques, effectively correcting the propagation direction of the skeleton points while accounting for their width. The validation of real cracks shows the skeleton-pruning algorithm’s effectiveness, eliminating the need for a specified threshold and reducing time complexity. Experimental results with both actual and synthetic cracks demonstrate that the EOB method achieves the smallest RMS, MAE, and R values, confirming its accuracy and stability compared to the orthogonal projection (OP), OrthoBoundary, and ESD methods. Full article
Show Figures

Figure 1

16 pages, 2059 KiB  
Article
A CNN-SA-GRU Model with Focal Loss for Fault Diagnosis of Wind Turbine Gearboxes
by Liqiang Wang, Shixian Dai, Zijian Kang, Shuang Han, Guozhen Zhang and Yongqian Liu
Energies 2025, 18(14), 3696; https://doi.org/10.3390/en18143696 - 13 Jul 2025
Viewed by 238
Abstract
Gearbox failures are a major cause of unplanned downtime and increased maintenance costs, making accurate diagnosis crucial in ensuring wind turbine reliability and cost-efficiency. However, most existing diagnostic methods fail to fully extract the spatiotemporal features in SCADA data and neglect the impact [...] Read more.
Gearbox failures are a major cause of unplanned downtime and increased maintenance costs, making accurate diagnosis crucial in ensuring wind turbine reliability and cost-efficiency. However, most existing diagnostic methods fail to fully extract the spatiotemporal features in SCADA data and neglect the impact of class imbalance, thereby limiting diagnostic accuracy. To address these challenges, this paper proposes a fault diagnosis model for wind turbine gearboxes based on CNN-SA-GRU and Focal Loss. Specifically, a CNN-SA-GRU network is constructed to extract both spatial and temporal features, in which CNN is employed to extract local spatial features from SCADA data, Shuffle Attention is integrated to efficiently fuse channel and spatial information and enhance spatial representation, and GRU is utilized to capture long-term spatiotemporal dependencies. To mitigate the adverse effects of class imbalance, the conventional cross-entropy loss is replaced with Focal Loss, which assigns higher weights to hard-to-classify fault samples. Finally, the model is validated using real wind farm data. The results show that, compared with the cross-entropy loss, using Focal Loss improves the accuracy and F1 score by an average of 0.24% and 1.03%, respectively. Furthermore, the proposed model outperforms other baseline models with average gains of 0.703% in accuracy and 4.65% in F1 score. Full article
Show Figures

Figure 1

15 pages, 576 KiB  
Review
Police Fitness: An International Perspective on Current and Future Challenges
by Robin Orr, Elisa F. D. Canetti, Suzanne Gough, Kirstin Macdonald, Joe Dulla, Robert G. Lockie, J. Jay Dawes, Sam D. Blacker, Gemma S. Milligan and Ben Schram
Sports 2025, 13(7), 219; https://doi.org/10.3390/sports13070219 - 7 Jul 2025
Viewed by 822
Abstract
Poor officer fitness can lead to decreased occupational task performance, injuries, increased absenteeism, and a variety of negative health sequalae further adding to the challenges of staffing law enforcement agencies. Optimizing the physical fitness for both serving officers and new recruits is critical [...] Read more.
Poor officer fitness can lead to decreased occupational task performance, injuries, increased absenteeism, and a variety of negative health sequalae further adding to the challenges of staffing law enforcement agencies. Optimizing the physical fitness for both serving officers and new recruits is critical as their loss is, and will increasingly be, difficult to replace. However, maintaining and recruiting a physically fit workforce faces several challenges. For serving officers, shiftwork is known to decrease motivation to exercise and negatively impact sleep and diet. Additional factors impacting their fitness includes age-related declines in fitness, increasing obesity, long periods of sedentarism, and negative COVID-19 effects. Concurrently, recruiting physically fit recruits is challenged by declining levels of fitness, reduced physical activity, and increasing obesity in community youth. Ability-based training (ABT), individualizing physical conditioning training based on the existing fitness levels of individuals within a group, offers a potential solution for delivering physical conditioning to groups of applicants, recruits, and officers with a range of physical fitness capabilities. Law enforcement agencies should consider implementing ABT during academy training and ongoing fitness maintenance to minimize injury risk and optimize task performance. Full article
Show Figures

Figure 1

19 pages, 3948 KiB  
Article
Equine Parvovirus-Hepatitis Population Dynamics in a Single Horse over 16 Years
by Alexandra J. Scupham
Viruses 2025, 17(7), 947; https://doi.org/10.3390/v17070947 - 4 Jul 2025
Viewed by 420
Abstract
Many viruses mutate rapidly to adapt to host defenses, and for some of these viruses, the result is long-term infection in individual hosts. The work described here examines the infection and long-term maintenance of a newly identified virus, equine parvovirus-hepatitis (EqPV-H), in an [...] Read more.
Many viruses mutate rapidly to adapt to host defenses, and for some of these viruses, the result is long-term infection in individual hosts. The work described here examines the infection and long-term maintenance of a newly identified virus, equine parvovirus-hepatitis (EqPV-H), in an individual horse. This description is possible because of a hypervariable region in the capsid gene; sequence variants were tracked by high-throughput sequencing of serum samples taken over a 16-year period. The data support the hypothesis that EqPV-H infection resulted in a sequence variant bottleneck. The continuing infection evolved into a complex viral population showing a pattern of emergence, dominance, and recession with replacement. This is the first temporal description of the capsid gene evolution of EqPV-H in a single animal. Full article
Show Figures

Figure 1

21 pages, 3327 KiB  
Review
Tread-Braked Wheels: Review and Recent Findings
by Gianluca Megna and Andrea Bracciali
Machines 2025, 13(7), 579; https://doi.org/10.3390/machines13070579 - 3 Jul 2025
Viewed by 241
Abstract
Tread braking is still extensively used on freight wagons due to lower purchasing and maintenance costs compared to disk braking. Cast iron brake blocks were replaced by composite materials (organic or sintered) that result in a lower wheel roughness, reducing rolling noise. Unfortunately, [...] Read more.
Tread braking is still extensively used on freight wagons due to lower purchasing and maintenance costs compared to disk braking. Cast iron brake blocks were replaced by composite materials (organic or sintered) that result in a lower wheel roughness, reducing rolling noise. Unfortunately, composite brake blocks have a lower thermal conductivity, negatively affecting the wheel mechanical behavior as the braking energy is almost entirely dissipated by the wheels, which are therefore subjected to higher temperatures. Mechanical properties of the wheel material, such as yield stress and Rolling Contact Fatigue (RCF) behavior, markedly decrease with temperature, resulting in higher wear rates and wheel tread damage. Contacted to analyze defects not clearly defined in the current regulations used for maintenance and inspections, the authors surveyed the literature and the technical documentation about tread-braked wheels. The paper provides an updated view about the state-of-the-art of the research on thermomechanical behavior of railway wheels and discusses the implication of the increased thermal stresses generated by composite brake blocks. Full article
(This article belongs to the Special Issue Wheel–Rail Contact: Mechanics, Wear and Analysis)
Show Figures

Figure 1

17 pages, 477 KiB  
Systematic Review
E-Health and M-Health in Obesity Management: A Systematic Review and Meta-Analysis of RCTs
by Manuela Chiavarini, Irene Giacchetta, Patrizia Rosignoli and Roberto Fabiani
Nutrients 2025, 17(13), 2200; https://doi.org/10.3390/nu17132200 - 1 Jul 2025
Viewed by 551
Abstract
Background: Obesity in adults is a growing health concern. The principal interventions used in obesity management are lifestyle-change interventions such as diet, exercise, and behavioral therapy. Although they are effective, current treatment options have not succeeded in halting the global rise in the [...] Read more.
Background: Obesity in adults is a growing health concern. The principal interventions used in obesity management are lifestyle-change interventions such as diet, exercise, and behavioral therapy. Although they are effective, current treatment options have not succeeded in halting the global rise in the prevalence of obesity or achieving sustained long-term weight maintenance at the population level. E-health and m-health are both integral components of digital health that focus on the use of technology to improve healthcare delivery and outcomes. The use of eHealth/mHealth might improve the management of some of these treatments. Several digital health interventions to manage obesity are currently in clinical trials. Objective: The aim of our systematic review is to evaluate whether digital health interventions (e-Health and m-Health) have effects on changes in anthropometric measures, such as weight, BMI, and waist circumference and behaviors such as energy intake, eating behaviors, and physical activity. Methods: A search was conducted for randomized controlled trials (RCTs) conducted through 4 October 2024 through three databases (Medline, Web of Science, and Scopus). Studies were included if they evaluated digital health interventions (e-Health and m-Health) compared to control groups in overweight or obese adults (BMI ≥ 25 kg/m2) and reported anthropometric or lifestyle behavioral outcomes. Study quality was assessed using the Cochrane Risk of Bias Tool (RoB 2). Meta-analyses were performed using random-effects or fixed-effects models as appropriate, with statistical significance set at p < 0.05. Results: Twenty-two RCTs involving diverse populations (obese adults, overweight individuals, postpartum women, patients with eating disorders) were included. Digital interventions included biofeedback devices, smartphone apps, e-coaching systems, web-based interventions, and mixed approaches. Only waist circumference showed a statistically significant reduction (WMD = −1.77 cm; 95% CI: −3.10 to −0.44; p = 0.009). No significant effects were observed for BMI (WMD = −0.43 kg/m2; p = 0.247), body weight (WMD = 0.42 kg; p = 0.341), or lifestyle behaviors, including physical activity (SMD = −0.01; p = 0.939) and eating behavior (SMD = −0.13; p = 0.341). Body-fat percentage showed a borderline-significant trend toward reduction (WMD = −0.79%; p = 0.068). High heterogeneity was observed across most outcomes (I2 > 80%), indicating substantial variability between studies. Quality assessment revealed predominant judgments of “Some Concerns” and “High Risk” across the evaluated domains. Conclusions: Digital health interventions produce modest but significant benefits on waist circumference in overweight and obese adults, without significant effects on other anthropometric or behavioral parameters. The high heterogeneity observed underscores the need for more personalized approaches and future research focused on identifying the most effective components of digital interventions. Digital health interventions should be positioned as valuable adjuncts to, rather than replacements for, established obesity treatments. Their integration within comprehensive care models may enhance traditional interventions through continuous monitoring, real-time feedback, and improved accessibility, but interventions with proven efficacy such as behavioral counseling and clinical oversight should be maintained. Full article
Show Figures

Figure 1

12 pages, 1522 KiB  
Article
Reduction of Current Harmonics in BLDC Motors Using the Proposed Sigmoid Trapezoidal Current Hysteresis Control
by Anuradha Thangavelu, Jebarani Evangeline Stephen, Srithar Samidurai, Ranganayaki Velusamy, Selligoundanur Subramaniyam Sivaraju, Subramaniam Usha and Sivakumar Palaniswamy
World Electr. Veh. J. 2025, 16(7), 355; https://doi.org/10.3390/wevj16070355 - 25 Jun 2025
Viewed by 268
Abstract
Brushless DC (BLDC) motors are widely used in applications such as Electric Vehicles (EVs) due to their high efficiency, low maintenance, and favorable torque-to-mass ratio. However, one major challenge in BLDC motors is the presence of current harmonics, which can lead to increased [...] Read more.
Brushless DC (BLDC) motors are widely used in applications such as Electric Vehicles (EVs) due to their high efficiency, low maintenance, and favorable torque-to-mass ratio. However, one major challenge in BLDC motors is the presence of current harmonics, which can lead to increased noise, vibration, and reduced efficiency, particularly at low speeds or light loads. These harmonics primarily arise from abrupt current transitions during phase commutation. To address this, thispaper presents an innovative approach that combines the Proposed Sigmoid Trapezoidal Current Model with hysteresis control to reduce current harmonics. The model facilitates smooth current changes by applying a sigmoid function, replacing sharp transitions with gradual ones, thus significantly minimizing harmonic distortion. Additionally, hysteresis PWM control enhances the system by precisely regulating the current and dynamically adjusting the switching frequency to maintain the current within a defined range. Simulation results confirm the effectiveness of this method, showing substantial reductions in current harmonics, speed ripple, and torque ripple. Specifically, the proposed method reduces torque ripple by 81% compared to traditional Electronic Commutation Control and improves torque ripple by 30% compared to the conventional method. Full article
Show Figures

Figure 1

11 pages, 831 KiB  
Article
Assessment of Carbon Footprint for Organization in Frozen Processed Seafood Factory and Strategies for Greenhouse Gas Emission Reduction
by Phuanglek Iamchamnan, Somkiat Saithanoo, Thaweesak Putsukee and Sompop Intasuwan
Processes 2025, 13(7), 1990; https://doi.org/10.3390/pr13071990 - 24 Jun 2025
Viewed by 374
Abstract
This study aims to assess the carbon footprint for the organization of frozen processed seafood manufacturing plants and propose sustainable strategies for reducing greenhouse gas emissions. Organizational activity data from 2024 were utilized to evaluate the carbon footprint and develop targeted mitigation measures. [...] Read more.
This study aims to assess the carbon footprint for the organization of frozen processed seafood manufacturing plants and propose sustainable strategies for reducing greenhouse gas emissions. Organizational activity data from 2024 were utilized to evaluate the carbon footprint and develop targeted mitigation measures. The findings indicate that Scope 1 emissions amounted to 12,685 tons of CO2eq, Scope 2 emissions amounted to 15,403 tons of CO2eq, and Scope 3 emissions amounted to 31,564 tons of CO2eq. The total greenhouse gas emissions across all three scopes were 59,652 tons of CO2eq, with additional greenhouse gas emissions recorded at 34,027 tons of CO2eq. Mitigation measures were considered for activities contributing to at least 10% of emissions in each scope. In Scope 1, the use of R507 refrigerant in the production cooling system accounted for 9907 tons of CO2eq, representing 78.10% of emissions. In Scope 2, electricity consumption contributed 15,403 tons of CO2eq, constituting 100% of emissions. In Scope 3, the procurement of surimi (processed fish meat) was responsible for 20,844 tons of CO2eq, accounting for 66.04% of emissions. Based on these findings, key mitigation strategies were proposed. For Scope 1, reducing emissions involves preventive maintenance of cooling systems to prevent leaks, replacing corroded pipelines, installing shut-off valves, and switching to alternative refrigerants with no greenhouse gas emissions. For Scope 2, energy-saving initiatives include promoting electricity conservation within the organization, maintaining equipment for optimal efficiency, installing energy-saving devices such as variable speed drives (VSD), upgrading to high-efficiency motors, and utilizing renewable energy sources like solar power. For Scope 3, emissions can be minimized by sourcing raw materials from suppliers with certified carbon footprint labels, prioritizing purchases from producers committed to carbon reduction, and selecting suppliers closer to manufacturing sites to reduce transportation-related emissions. Implementing these strategies will contribute to sustainable greenhouse gas emission reductions. Full article
(This article belongs to the Special Issue Sustainable Waste Material Recovery Technologies)
Show Figures

Figure 1

13 pages, 2141 KiB  
Article
Guidelines for Reducing the Greenhouse Gas Emissions of a Frozen Seafood Processing Factory Towards Carbon Neutrality Goals
by Phuanglek Iamchamnan, Somkiat Saithanoo, Thaweesak Putsukee and Sompop Intasuwan
Processes 2025, 13(7), 1989; https://doi.org/10.3390/pr13071989 - 24 Jun 2025
Viewed by 422
Abstract
This research aims to calculate the Carbon Footprint for Organization of a plant manufacturing frozen processed seafood and propose strategies to reduce greenhouse gas (GHG) emissions following the Net-Zero Pathway, using 2024 as the baseline year. The findings indicate that Scope 1 emissions [...] Read more.
This research aims to calculate the Carbon Footprint for Organization of a plant manufacturing frozen processed seafood and propose strategies to reduce greenhouse gas (GHG) emissions following the Net-Zero Pathway, using 2024 as the baseline year. The findings indicate that Scope 1 emissions amounted to 12,685 tons of CO2 eq, Scope 2 emissions totaled 15,403 tons of CO2eq, and Scope 3 emissions reached 31,564 tons of CO2eq, leading to a combined total of 59,652 tons of CO2eq across all scopes, with an additional 34,027 tons of CO2eq from other GHG sources. To achieve net-zero emissions by 2050, annual reductions of 3.46% per category are required. The short-term target for 2028f aims to reduce emissions to 10,929 tons of CO2eq for Scope 1, 13,270 tons of CO2eq for Scope 2, and 27,194 tons of CO2eq for Scope 3, resulting in total emissions of 51,392 tons of CO2eq. The proposed reduction strategies include optimizing Scope 1 emissions by preventing leaks in R507 refrigerant systems, replacing corroded pipelines, installing shut-off valves, and switching to low-GHG refrigerants. For Scope 2, measures focus on reducing electricity consumption through energy conservation initiatives, carrying out regular machinery maintenance, installing Variable Speed Drives (VSDs), upgrading to high-efficiency motors, and integrating renewable energy sources such as solar power. For Scope 3, emissions from raw material procurement can be minimized by sourcing from certified suppliers with established product carbon footprints, prioritizing carbon reduction labeling, and selecting nearby suppliers to reduce transportation-related emissions. These strategies will support the organization in achieving carbon neutrality and progressing toward the net-zero goal. Full article
(This article belongs to the Special Issue Sustainable Waste Material Recovery Technologies)
Show Figures

Figure 1

13 pages, 958 KiB  
Article
Risk Assessment Framework for Power Circuit Breakers Based on Condition, Replacement, and Criticality Indices
by Suphon Kumpalavalee, Thanapong Suwanasri, Cattareeya Suwanasri and Rattanakorn Phadungthin
Energies 2025, 18(13), 3298; https://doi.org/10.3390/en18133298 - 24 Jun 2025
Viewed by 275
Abstract
This paper develops a comprehensive framework for the risk assessment of 115 kV power circuit breakers (PCBs) by evaluating their condition, replacement needs, and criticality to the electrical network. The primary objective is to create a risk assessment tool that enhances maintenance practices [...] Read more.
This paper develops a comprehensive framework for the risk assessment of 115 kV power circuit breakers (PCBs) by evaluating their condition, replacement needs, and criticality to the electrical network. The primary objective is to create a risk assessment tool that enhances maintenance practices and improves operational efficiency. The framework begins with a condition assessment, quantified through the use of a health index, derived from historical diagnostic test results and routine checks. The next step involves a replacement assessment, using a replacement index that considers factors such as age, rating adequacy, and technological obsolescence to determine the necessity of replacement. Finally, a criticality assessment is performed using a criticality index, which evaluates the PCB’s role in the network by factoring in location, load importance, failure severity, and the consequences of failure on network operations. By integrating these indices, the framework offers a holistic view of the associated risks. The methodology is applied to assess the risk of 149 sample PCBs across 30 substations in Thailand, with relevant data collected for each unit. The resulting risk assessments support proactive maintenance, minimize downtime, optimize the allocation of limited resources, and enhance the overall efficiency, reliability, and safety of the electrical network. Full article
Show Figures

Figure 1

31 pages, 3525 KiB  
Article
A Whole-Life Carbon Assessment of a Single-Family House in North India Using BIM-LCA Integration
by Deepak Kumar, Kranti Kumar Maurya, Shailendra K. Mandal, Nandini Halder, Basit Afaq Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi
Buildings 2025, 15(13), 2195; https://doi.org/10.3390/buildings15132195 - 23 Jun 2025
Viewed by 412
Abstract
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) [...] Read more.
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) for Indian residential buildings by evaluating the full cradle-to-grave carbon footprint of a typical single-family house in Northern India. A BIM-based LCA framework was applied to a 110 m2 single-family dwelling over a 60-year life span. Operational use performance and climate analysis was evaluated via cove tool. The total carbon footprint over a 60-year lifespan was approximately 5884 kg CO2e, with operational energy use accounting for about 87% and embodied carbon approximately 11%. Additional impacts came from maintenance and replacements. Energy usage was calculated as 71.76 kWh/m2/year and water usage as 232.2 m3/year. Energy consumption was the biggest driver of emissions, but substantial impacts also stemmed from material production. Cement-based components and steel were the largest embodied carbon contributors. Under the business-as-usual (BAU) scenario, the operational emissions reach approximately 668,000 kg CO2e with HVAC and 482,000 kg CO2e without HVAC. The findings highlight the necessity of integrating embodied carbon considerations alongside operational energy efficiency in India’s building codes, emphasizing reductions in energy consumption and the adoption of low-carbon materials to mitigate the environmental impact of residential buildings. Future work should focus on the dynamic modeling of electricity decarbonization, improved regional datasets, and scenario-based LCA to better support India’s transition to net-zero emissions by 2070. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop