Police Fitness: An International Perspective on Current and Future Challenges
Abstract
1. Introduction
2. Current Serving Law Enforcement Populations
2.1. Fitness in an Aging Workforce
2.2. Obesity and Health in an Aging Workforce
2.3. COVID-19 Effects on a Serving Population
3. Future Serving Populations
3.1. Fitness in Youth
3.2. Sedentarism and Physical Activity in Youth
3.3. Obesity and Health in Youth
3.4. COVID-19 Effects on a Future Serving Population
4. Ability-Based Training
5. Practical Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABT | Ability Based Training |
BMI | Body Mass Index |
CVD | Cardiovascular Disease |
References
- Bowen, J.M. Stress inoculation training and critical thinking skills: California law enforcement academies. Int. J. Train. Res. 2023, 22, 215–231. [Google Scholar] [CrossRef]
- Mawby, R.I. Comparing Police Systems Across the World; Springer Nature: London, UK, 2018. [Google Scholar]
- Orr, R.; Hinton, B.; Wilson, A.; Pope, R.; Dawes, J. Investigating the routine dispatch tasks performed by police officers. Safety 2020, 6, 54. [Google Scholar] [CrossRef]
- Dempsey, P.C.; Handcock, P.J.; Rehrer, N.J. Impact of police body armour and equipment on mobility. Appl. Ergon. 2013, 44, 957–961. [Google Scholar] [CrossRef]
- Anderson, G.S.; Plecas, D.; Segger, T. Police officer physical ability testing–Re-validating a selection criterion. Polic. Int. J. 2001, 24, 8–31. [Google Scholar] [CrossRef]
- Ramey, S.L.; Perkhounkova, Y.; Moon, M.; Tseng, H.-C.; Wilson, A.; Hein, M.; Hood, K.; Franke, W.D. Physical activity in police beyond self-report. J. Occup. Env. Med. 2014, 56, 338–343. [Google Scholar] [CrossRef]
- Baran, K.; Dulla, L.J.; Orr, R.; Dawes, J.J.; Pope, R. Duty loads carried by the Los Angeles sheriff’s department deputies. J. Aust. Strength Cond. 2018, 26, 34–38. [Google Scholar]
- James, L.; James, S.; Vila, B. The impact of work shift and fatigue on police officer response in simulated interactions with citizens. J. Exp. Criminol. 2018, 14, 111–120. [Google Scholar] [CrossRef]
- Vila, B.; Moore, J.M. Police Long Work Hours: Causes, Consequences and Alternatives; Emerald Group Publishing: West Yorkshire, UK, 2008; pp. 183–201. [Google Scholar]
- Johnson, M.; Braun, S.; Hecimovich, M.; Schultz, K.; Bauer, C.; Bohn, A.; Janot, J. Risk of metabolic syndrome among law enforcement officers due to physical activity and posture behaviors. J. Occ. Health 2024, 66, uiad005. [Google Scholar] [CrossRef]
- MacKenzie-Shalders, K.L.; Lee, K.W.; Wright, C.; Dulla, J.; Tsoi, A.; Orr, R.M. Dietary intake in law enforcement personnel: Occupation is an additional challenge for changing behavior. Nutrients 2022, 14, 1336. [Google Scholar] [CrossRef]
- Fekedulegn, D.; Burchfiel, C.M.; Hartley, T.A.; Andrew, M.E.; Charles, L.E.; Tinney-Zara, C.A.; Violanti, J.M. Shiftwork and sickness absence among police officers: The BCOPS study. Chronobiol. Int. 2013, 30, 930–941. [Google Scholar] [CrossRef]
- Peterson, S.A.; Wolkow, A.P.; Lockley, S.W.; O’Brien, C.S.; Qadri, S.; Sullivan, J.P.; Czeisler, C.A.; Rajaratnam, S.M.; Barger, L.K. Associations between shift work characteristics, shift work schedules, sleep and burnout in North American police officers: A cross-sectional study. BMJ Open 2019, 9, e030302. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M.; Hartmann, T.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U. The relationship between shift work, perceived stress, sleep and health in Swiss police officers. J. Crim. Justice 2010, 38, 1167–1175. [Google Scholar] [CrossRef]
- Foster, R.G. Sleep, circadian rhythms and health. Interface Focus 2020, 10, 20190098. [Google Scholar] [CrossRef]
- Åkerstedt, T. Shift work and disturbed sleep/wakefulness. Occ. Med. 2003, 53, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, S.; De Carli, F.; Nobili, L.; Mascialino, B.; Squarcia, S.; Penco, M.A.; Beelke, M.; Ferrilla, F. Sleepiness and sleep disorders in shift workers: A study on a group of Italian police officers. Sleep 2002, 25, 648–653. [Google Scholar]
- Roenneberg, T.; Foster, R.G.; Klerman, E.B. The circadian system, sleep, and the health/disease balance: A conceptual review. J. Sleep Res. 2022, 31, e13621. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Tiwari, S.; Singaravel, M. Circadian rhythm disruption: Health consequences. Biol. Rhythm. Res. 2016, 47, 191–213. [Google Scholar] [CrossRef]
- Dos Reis, F.L.; Bertoloto, J.C.F.; Rodrigues, T.d.C.; Cardoso Toniasso, S.d.C.; Baldin, C.P.; Rodrigues, J.B.; Joveleviths, D.; Brum, M.C.B. The efficacy of interventions in the workplace promoting exercise and a healthy diet among shift workers: A systematic review. PLoS ONE 2025, 20, e0325071. [Google Scholar] [CrossRef]
- Flahr, H.; Brown, W.J.; Kolbe-Alexander, T.L. A systematic review of physical activity-based interventions in shift workers. Prev. Med. Rep. 2018, 10, 323–331. [Google Scholar] [CrossRef]
- Violanti, J.M.; Hartley, T.A.; Gu, J.K.; Fekedulegn, D.; Andrew, M.E.; Burchfiel, C.M. Life expectancy in police officers: A comparison with the US general population. Int. J. Emerg. Ment. Health 2013, 15, 217. [Google Scholar]
- Orr, R.M.; Dawes, J.J.; Pope, R.; Terry, J. Assessing differences in anthropometric and fitness characteristics between police academy cadets and incumbent officers. J. Strength Cond. Res. 2018, 32, 2632–2641. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.; Orr, R.; Moreno, M.; Dawes, J.; Dulla, J. Time spent working in custody influences work sample test battery performance of deputy sheriffs compared to recruits. Int. J. Environ. Res. Public Health 2019, 16, 1108. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.; Pope, R.; Saaroni, O.; Dulla, J.; Dawes, J.; Orr, R. Job-specific physical fitness changes measured by the work sample test battery within deputy sheriffs between training academy and their first patrol assignment. Int. J. Exerc. Sci. 2020, 13, 1262–1274. [Google Scholar]
- Ramey, S.L.; Downing, N.R.; Knoblauch, A. Developing Strategic Interventions to Reduce Cardiovascular Disease Risk among Law Enforcement Officers The Art and Science of Data Triangulation. AAOHN J. 2008, 56, 54–62. [Google Scholar] [CrossRef]
- Kales, S.N.; Soteriades, E.S.; Christophi, C.A.; Christiani, D.C. Emergency duties and deaths from heart disease among firefighters in the United States. N. Engl. J. Med. 2007, 356, 1207–1215. [Google Scholar] [CrossRef]
- Ho, J.D.; Dawes, D.M.; Nelson, R.S.; Lundin, E.J.; Ryan, F.J.; Overton, K.G.; Zeiders, A.J.; Miner, J.R. Acidosis and catecholamine evaluation following simulated law enforcement “use of force” encounters. Acad Emerg. Med. 2010, 17, e60–e68. [Google Scholar] [CrossRef]
- Magnavita, N.; Capitanelli, I.; Garbarino, S.; Pira, E. Work-related stress as a cardiovascular risk factor in police officers: A systematic review of evidence. Int. Arch. Occup. Environ. Health 2018, 91, 377–389. [Google Scholar] [CrossRef]
- Easton, D.F.; Gupta, C.C.; Vincent, G.E.; Ferguson, S.A. Move the night way: How can physical activity facilitate adaptation to shift work? Commun. Biol. 2024, 7, 259. [Google Scholar] [CrossRef]
- Hegberg, N.J.; Hayes, J.P.; Hayes, S.M. Exercise intervention in PTSD: A narrative review and rationale for implementation. Front. Psychiatry 2019, 10, 133. [Google Scholar] [CrossRef]
- Björkman, F.; Ekblom, Ö. Physical exercise as treatment for PTSD: A systematic review and meta-analysis. Mil. Med. 2022, 187, e1103–e1113. [Google Scholar] [CrossRef]
- Mahindru, A.; Patil, P.; Agrawal, V. Role of physical activity on mental health and well-being: A review. Cureus 2023, 15, e33475. [Google Scholar] [CrossRef] [PubMed]
- Marins, E.F.; David, G.B.; Del Vecchio, F.B. Characterization of the physical fitness of police officers: A systematic review. J. Strength Cond. Res. 2019, 33, 2860–2874. [Google Scholar] [CrossRef] [PubMed]
- Korre, M.; Loh, K.; Eshleman, E.J.; Lessa, F.S.; Porto, L.G.; Christophi, C.A.; Kales, S.N. Recruit fitness and police academy performance: A prospective validation study. Occ. Med. 2019, 69, 541–548. [Google Scholar] [CrossRef]
- Lockie, R.G.; Balfany, K.; Bloodgood, A.M.; Moreno, M.R.; Cesario, K.A.; Dulla, J.M.; Dawes, J.J.; Orr, R.M. The influence of physical fitness on reasons for academy separation in law enforcement recruits. Int. J. Environ. Res. Public Health 2019, 16, 372. [Google Scholar] [CrossRef]
- Orr, R.M.; Ferguson, D.; Schram, B.; Dawes, J.J.; Lockie, R.; Pope, R. The relationship between aerobic test performance and injuries in police recruits. Int. J. Exerc. Sci. 2020, 13, 1052. [Google Scholar] [PubMed]
- Tait, J.L.; Drain, J.R.; Bulmer, S.; Gastin, P.B.; Main, L.C. Factors predicting training delays and attrition of recruits during basic military training. Int. J. Environ. Res. Public Health 2022, 19, 7271. [Google Scholar] [CrossRef]
- Chassé, E.; Laroche, M.-A.; Dufour, C.-A.; Guimond, R.; Lalonde, F. Association between musculoskeletal injuries and the Canadian Armed Forces physical employment standard proxy in Canadian military recruits. Mil. Med. 2020, 185, e1140–e1146. [Google Scholar] [CrossRef]
- Lockie, R.G.; Orr, R.M.; Montes, F.; Dawes, J.J. Exploring the Impact of Firefighter Trainee Fitness on Academy Graduation or Release. J. Strength Cond. Res. 2024, 38, 999–1003. [Google Scholar] [CrossRef]
- Canetti, E.F.; Orr, R.M.; Brown, W.; Schram, B.; Lockie, R.G.; Dawes, J.J. The use of musculoskeletal fitness measures as indicators of performance in police occupational tasks. Int. J. Exerc. Sci. 2024, 17, 819. [Google Scholar]
- Beck, A.Q.; Clasey, J.L.; Yates, J.W.; Koebke, N.C.; Palmer, T.G.; Abel, M.G. Relationship of physical fitness measures vs. occupational physical ability in campus law enforcement officers. J. Strength Cond. Res. 2015, 29, 2340–2350. [Google Scholar] [CrossRef]
- Harper, M.; Wagner, M. Enhancing Officer Safety & Survivability. Police Chief Online. 2021. Available online: https://www.policechiefmagazine.org/enhancing-officer-safety-survivability/ (accessed on 25 March 2025).
- Muirhead, H.; Orr, R.; Schram, B.; Kornhauser, C.; Holmes, R.; Dawes, J.J. The relationship between fitness and marksmanship in police officers. Safety 2019, 5, 54. [Google Scholar] [CrossRef]
- Adams, I.; Mourtgos, S.; Wilson, J. Guest editorial: Police staffing: Global perspectives and local realities. Polic. Int. J. 2024, 47, 721–724. [Google Scholar] [CrossRef]
- Police Executive Research Forum. Survey on Police Workforce Trends. Available online: https://www.policeforum.org/workforcesurveyjune2021 (accessed on 25 March 2025).
- Blue Light Leavers. ‘I Don’t Want to Be a Police Officer Anymore!’ Understanding the Attrition Crisis in UK Policing. Available online: https://www.bluelightleavers.com/blog/I-Don't-Want%20to-Be-a-Police-Officer-Anymore (accessed on 25 March 2025).
- Police Executive Research Forum. New PERF Survey Shows Police Agencies Are Losing Officers Faster Than They Can Hire New Ones. Available online: https://www.policeforum.org/staffing2023 (accessed on 30 March 2025).
- International Association of Chiefs of Police. The State of Recruitment & Retention: A Continuing Crisis for Policing. Available online: https://www.theiacp.org/sites/default/files/2024-11/IACP_Recruitment_Report_Survey.pdf (accessed on 25 March 2025).
- Hanrahan, C.; Lathouris, O.; Burrows, M. Police officers overworked as unfilled vacancies and sick leave surge, driving thousands to leave the force. ABC News 28 September 2024.
- Smith, S. A crisis facing law enforcement: Recruiting in the 21st century. Police Chief 2016, 83. Available online: https://www.policechiefmagazine.org/a-crisis-facing-law-enforcement-recruiting-in-the-21st-century/ (accessed on 25 March 2025).
- ZIPPIA. Police Officer Demographics and Statistics in the US. Available online: https://www.zippia.com/police-officer-jobs/demographics/ (accessed on 12 February 2025).
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise; Human Kinetics: Champaign, IL, USA, 2022. [Google Scholar]
- Frick, K.A.; Agostinelli, P.J.; Swinford, J.F.; Harris, M.E.; Mobley, C.B.; Sefton, J. Age-related declines in health and fitness among law enforcement officers compared to population norms. Healthcare 2024, 12, 714. [Google Scholar] [CrossRef]
- Violanti, J.M.; Fekedulegn, D.; Shi, M.; Andrew, M.E. Hidden danger: A 22-years analysis of law enforcement deaths associated with duty-related illnesses (1997–2018). Polic. Int. J. 2020, 43, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Health and Safety Executive. Police Service—Statistics. Available online: https://www.hse.gov.uk/search/search-results.htm?query=police+injuries#gsc.tab=0&gsc.q=police%20injuries&gsc.page=1 (accessed on 25 March 2025).
- Lyons, K.; Radburn, C.; Orr, R.; Pope, R. A profile of injuries sustained by law enforcement officers: A critical review. Int. J. Environ. Res. Public Health 2017, 14, 142. [Google Scholar] [CrossRef]
- Andrew, N.; Wolfe, R.; Cameron, P.; Richardson, M.; Gabbe, B. The impact of sport and active recreation injuries on physical activity levels at 12 months post-injury. Scand. J. Med. Sci. Sports 2014, 24, 377–385. [Google Scholar] [CrossRef]
- Fulton, J.; Wright, K.; Kelly, M.; Zebrosky, B.; Zanis, M.; Drvol, C.; Butler, R. Injury risk is altered by previous injury: A systematic review of the literature and presentation of causative neuromuscular factors. Int. J. Sports Phys. Ther. 2014, 9, 583. [Google Scholar]
- Toohey, L.A.; Drew, M.K.; Cook, J.L.; Finch, C.F.; Gaida, J.E. Is subsequent lower limb injury associated with previous injury? A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1670–1678. [Google Scholar] [CrossRef]
- Koliaki, C.; Dalamaga, M.; Liatis, S. Update on the obesity epidemic: After the sudden rise, is the upward trajectory beginning to flatten? Curr. Obes. Rep. 2023, 12, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Can, S.H.; Hendy, H.M. Behavioral Variables Associated with Obesity in Police Officers. Ind. Health 2014, 52, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Thayyil, J.; Jayakrishnan, T.T.; Raja, M.; Cherumanalil, J.M. Metabolic syndrome and other cardiovascular risk factors among police officers. N. Am. J. Med. Sci. 2012, 4, 630–635. [Google Scholar] [CrossRef]
- Poirier, P.; Eckel, R.H. Obesity and cardiovascular disease. Curr. Atheroscler. Rep. 2002, 4, 448–453. [Google Scholar] [CrossRef]
- Poston, W.S.; Jitnarin, N.; Haddock, C.K.; Jahnke, S.A.; Tuley, B.C. Obesity and Injury-Related Absenteeism in a Population-Based Firefighter Cohort. Obesity 2011, 19, 2076–2081. [Google Scholar] [CrossRef]
- Dicks, N.D.; Shoemaker, M.E.; DeShaw, K.J.; Carper, M.J.; Hackney, K.J.; Barry, A.M. Contributions from incumbent police officer’s physical activity and body composition to occupational assessment performance. Front. Public Health 2023, 11, 1217187. [Google Scholar] [CrossRef]
- Baker, M.G.; Peckham, T.K.; Seixas, N.S. Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection. PLoS ONE 2020, 15, e0232452. [Google Scholar] [CrossRef]
- McGuire, S.S.; Klassen, A.B.; Heywood, J.; Sztajnkrycer, M.D. Prevalence of COVID-19 IgG antibodies in a cohort of municipal first responders. Prehosp Disaster Med. 2021, 36, 131–134. [Google Scholar] [CrossRef]
- Schwendinger, F.; Knaier, R.; Radtke, T.; Schmidt-Trucksäss, A. Low cardiorespiratory fitness post-COVID-19: A narrative review. Sports Med. 2023, 53, 51–74. [Google Scholar] [CrossRef]
- Ladlow, P.; O’Sullivan, O.; Bennett, A.N.; Barker-Davies, R.; Houston, A.; Chamley, R.; May, S.; Mills, D.; Dewson, D.; Rogers-Smith, K. The effect of medium-term recovery status after COVID-19 illness on cardiopulmonary exercise capacity in a physically active adult population. J. Appl. Phys. 2022, 132, 1525–1535. [Google Scholar] [CrossRef]
- World Health Organization. Post COVID-19 Condition (Long COVID). Available online: https://www.who.int/news-room/fact-sheets/detail/post-covid-19-condition-(long-covid) (accessed on 3 April 2025).
- Runacres, A.; Mackintosh, K.A.; Knight, R.L.; Sheeran, L.; Thatcher, R.; Shelley, J.; McNarry, M.A. Impact of the COVID-19 pandemic on sedentary time and behaviour in children and adults: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 11286. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, H.; Potts, H.W.; Fisher, A. Physical activity behavior before, during, and after COVID-19 restrictions: Longitudinal smartphone-tracking study of adults in the United Kingdom. J. Med. Internet Res. 2021, 23, e23701. [Google Scholar] [CrossRef]
- Bu, F.; Bone, J.K.; Mitchell, J.J.; Steptoe, A.; Fancourt, D. Longitudinal changes in physical activity during and after the first national lockdown due to the COVID-19 pandemic in England. Sci. Rep. 2021, 11, 17723. [Google Scholar] [CrossRef]
- Ripley-Gonzalez, J.W.; Zhou, N.; Zeng, T.; You, B.; Zhang, W.; Liu, J.; Dong, Y.; Guo, Y.; Dun, Y.; Liu, S. The long-term impact of the COVID-19 pandemic on physical fitness in young adults: A historical control study. Sci. Rep. 2023, 13, 15430. [Google Scholar] [CrossRef]
- Huizar, M.; Arena, R.; Laddu, D. “Covibesity,” a new pandemic. Obes. Med. 2020, 19, 100282. [Google Scholar]
- Zulfiqar, M.M.; Wooland, J.; Schram, B.; Dawes, J.J.; Lockie, R.; Orr, R. Battery fitness testing in law enforcement: A critical review of the literature. Int. J. Exerc. Sci. 2021, 14, 613. [Google Scholar] [PubMed]
- Kearney, M.S.; Levine, P.B.; Pardue, L. The puzzle of falling US birth rates since the Great Recession. J. Econ. Perspect. 2022, 36, 151–176. [Google Scholar] [CrossRef]
- Skakkebæk, N.E.; Lindahl-Jacobsen, R.; Levine, H.; Andersson, A.-M.; Jørgensen, N.; Main, K.M.; Lidegaard, Ø.; Priskorn, L.; Holmboe, S.A.; Bräuner, E.V. Environmental factors in declining human fertility. Nat. Rev. Endocrinol. 2022, 18, 139–157. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Léger, L.A.; Olds, T.S.; Cazorla, G. Secular trends in the performance of children and adolescents (1980–2000) an analysis of 55 studies of the 20m shuttle run test in 11 countries. Sports Med. 2003, 33, 285–300. [Google Scholar] [CrossRef]
- Pinhas-Hamiel, O.; Hamiel, U.; Bendor, C.D.; Bardugo, A.; Twig, G.; Cukierman-Yaffe, T. The global spread of severe obesity in toddlers, children, and adolescents: A systematic review and meta-analysis. Obes. Facts 2022, 15, 118–134. [Google Scholar] [CrossRef]
- Wahl-Alexander, Z.; Camic, C.L. Impact of COVID-19 on school-aged male and female health-related fitness markers. Pediatr. Exerc. Sci. 2021, 33, 61–64. [Google Scholar] [CrossRef]
- Tomes, C.D.; Sawyer, S.; Orr, R.; Schram, B. Ability of fitness testing to predict injury risk during initial tactical training: A systematic review and meta-analysis. Inj. Prev. 2020, 26, 67–81. [Google Scholar] [CrossRef]
- Murphy, M.C.; Merrick, N.; Mosler, A.B.; Allen, G.; Chivers, P.; Hart, N.H. Cardiorespiratory fitness is a risk factor for lower-limb and back injury in law enforcement officers commencing their basic training: A prospective cohort study. Res. Sports Med. 2024, 32, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.; Merrick, N.; Cowen, G.; Sutton, V.; Allen, G.; Hart, N.H.; Mosler, A.B. Physical and psychological factors related to injury, illness and tactical performance in law enforcement recruits: A systematic review. Inj. Prev. 2025, 31, 9–17. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2019, 53, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Harten, N. The Evolution of Body Size and Shape in Australian Children; University of South Australia: Adelaide, Australia, 1999. [Google Scholar]
- Orr, R.M.; Lockie, R.; Milligan, G.; Lim, C.; Dawes, J. Use of physical fitness assessments in tactical populations. Strength Cond. J. 2022, 44, 106–113. [Google Scholar] [CrossRef]
- Fain, E.; Weatherford, C. Comparative study of millennials’(age 20-34 years) grip and lateral pinch with the norms. J. Hand Ther. 2016, 29, 483–488. [Google Scholar] [CrossRef]
- Lockie, R.G.; Moreno, M.R.; McGuire, M.B.; Ruvalcaba, T.J.; Bloodgood, A.M.; Dulla, J.M.; Orr, R.M.; Dawes, J.J. Relationships between isometric strength and the 74.84-kg (165-lb) body drag test in law enforcement recruits. J. Human Kin. 2020, 74, 5. [Google Scholar] [CrossRef]
- Orr, R.; Pope, R.; Stierli, M.; Hinton, B. Grip strength and its relationship to police recruit task performance and injury risk: A retrospective cohort study. Int. J. Environ. Res. Public Health 2017, 14, 941. [Google Scholar] [CrossRef]
- Abbott, R.A.; Straker, L.M.; Erik Mathiassen, S. Patterning of children’s sedentary time at and away from school. Obesity 2013, 21, E131–E133. [Google Scholar] [CrossRef]
- Macdonald, K.; Milne, N.; Pope, R.; Orr, R. Directly Observed Physical Activity of Year 1 Children during School Class Time: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 3676. [Google Scholar] [CrossRef]
- Must, A.; Tybor, D. Physical activity and sedentary behavior: A review of longitudinal studies of weight and adiposity in youth. Int. J. Obes. 2005, 29, S84–S96. [Google Scholar] [CrossRef] [PubMed]
- Ghasemirad, M.; Ketabi, L.; Fayyazishishavan, E.; Hojati, A.; Maleki, Z.H.; Gerami, M.H.; Moradzadeh, M.; Fernandez, J.H.O.; Akhavan-Sigari, R. The association between screen use and central obesity among children and adolescents: A systematic review and meta-analysis. J. Health Popul. Nutr. 2023, 42, 51. [Google Scholar] [CrossRef] [PubMed]
- Puolitaival, T.; Sieppi, M.; Pyky, R.; Enwald, H.; Korpelainen, R.; Nurkkala, M. Health behaviours associated with video gaming in adolescent men: A cross-sectional population-based MOPO study. BMC Public Health 2020, 20, 1–8. [Google Scholar] [CrossRef]
- DiFrancisco-Donoghue, J.; De las Heras, B.; Li, O.; Middleton, J.; Jung, M.-K. Gaming in pandemic times: An international survey assessing the effects of COVID-19 lockdowns on young video gamers’ health. Int. J. Environ. Res. Public Health 2023, 20, 6855. [Google Scholar] [CrossRef]
- Bardid, F.; Rudd, J.R.; Lenoir, M.; Polman, R.; Barnett, L.M. Cross-cultural comparison of motor competence in children from Australia and Belgium. Front. Psychol. 2015, 6, 964. [Google Scholar] [CrossRef] [PubMed]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The relationship between motor competence and physical fitness from early childhood to early adulthood: A meta-analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef]
- Dapp, L.C.; Gashaj, V.; Roebers, C.M. Physical activity and motor skills in children: A differentiated approach. Psychol. Sport. Exerc. 2021, 54, 101916. [Google Scholar] [CrossRef]
- Barnett, L.M.; Webster, E.K.; Hulteen, R.M.; De Meester, A.; Valentini, N.C.; Lenoir, M.; Pesce, C.; Getchell, N.; Lopes, V.P.; Robinson, L.E. Through the looking glass: A systematic review of longitudinal evidence, providing new insight for motor competence and health. Sports Med. 2022, 52, 875–920. [Google Scholar] [CrossRef]
- Johnson, J.H. Overuse injuries in young athletes: Cause and prevention. Strength Cond. J. 2008, 30, 27–31. [Google Scholar] [CrossRef]
- Brenner, J.S.; Council on Sports Medicine and Fitness. Overuse injuries, overtraining, and burnout in child and adolescent athletes. Pediatrics 2007, 119, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
- Fridén, C.; Ekenros, L.; von Rosen, P. Previous injury, sex and well-being are associated with injury profiles in 422 adolescent elite athletes of age 15–16 years: A 20-week longitudinal study. BMJ Open Sport. Exerc. Med. 2023, 9, e001485. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, F.; von Rosen, P. Is there a strong association between substantial injuries and previous injuries in adolescent elite athletes? A 1-year prospective cohort study. Physiother. Theory Pract. 2023, 39, 1528–1535. [Google Scholar] [CrossRef]
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Summerbell, C.; Wabitsch, M. Child and adolescent obesity. Nat. Rev. Dis. Primers 2023, 9, 24. [Google Scholar] [CrossRef]
- Lobstein, T.; Jackson-Leach, R.; Moodie, M.L.; Hall, K.D.; Gortmaker, S.L.; Swinburn, B.A.; James, W.P.T.; Wang, Y.; McPherson, K. Child and adolescent obesity: Part of a bigger picture. Lancet 2015, 385, 2510–2520. [Google Scholar] [CrossRef]
- National Health Service. Children’s overweight and obesity. In Health Survey for England, 2022 Part 2; NHS Digital: Leeds, UK, 2024. [Google Scholar]
- Xu, J.; Hardy, L.L.; Guo, C.Z.; Garnett, S.P. The trends and prevalence of obesity and morbid obesity among Australian school-aged children, 1985–2014. J. Paediatr. Child. Health 2018, 54, 907–912. [Google Scholar] [CrossRef]
- Tran, B.; Allnutt, A.A.; Wong, A. COVID-19 pandemic and youth fitness: A systematic review. J. Prev. Complement. Med. 2023, 2, 3–10. [Google Scholar]
- Stavridou, A.; Kapsali, E.; Panagouli, E.; Thirios, A.; Polychronis, K.; Bacopoulou, F.; Psaltopoulou, T.; Tsolia, M.; Sergentanis, T.N.; Tsitsika, A. Obesity in children and adolescents during COVID-19 pandemic. Children 2021, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.J. Longitudinal trends in body mass index before and during the COVID-19 pandemic among persons aged 2–19 years—United States, 2018–2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1278–1283. [Google Scholar] [CrossRef]
- Basterfield, L.; Burn, N.L.; Galna, B.; Batten, H.; Goffe, L.; Karoblyte, G.; Lawn, M.; Weston, K.L. Changes in children’s physical fitness, BMI and health-related quality of life after the first 2020 COVID-19 lockdown in England: A longitudinal study. J. Sports Sci. 2022, 40, 1088–1096. [Google Scholar] [CrossRef]
- Okubo, Y.; Ishitsuka, K.; Goto, A. Impact of COVID-19 pandemic on physical health amongst children: Difference-in-differences analyses of nationwide school health checkup database. Pediatr. Obes. 2024, 19, e13126. [Google Scholar] [CrossRef]
- Orr, R.M.; Ford, K.; Stierli, M. Implementation of an ability-based training program in police force recruits. J. Strength Cond. Res. 2016, 30, 2781–2787. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Cesario, K.; Bloodgood, A.; Lockie, R. Circuit strength training with ability-based modifications for law enforcement recruits. TSAC Rep. 2018, 51, 26–33. [Google Scholar]
- Lockie, R.G.; Dawes, J.J.; Orr, R.M.; Dulla, J.M. Recruit fitness standards from a large law enforcement agency: Between-class comparisons, percentile rankings, and implications for physical training. J. Strength Cond. Res. 2020, 34, 934–941. [Google Scholar] [CrossRef]
- Maupin, D.; Canetti, E.F.; Schram, B.; Dulla, J.M.; Lockie, R.G.; Dawes, J.J.; Orr, R.M. Law enforcement recruit fitness: Changes across the fitness spectrum. Work 2024, 79, 947–963. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.R.; Rodas, K.A.; Bloodgood, A.M.; Dawes, J.J.; Dulla, J.M.; Orr, R.M.; Lockie, R.G. The influence of aerobic fitness on heart rate responses of custody assistant recruits during circuit training sessions. Int. J. Environ. Res. Public Health 2020, 17, 8177. [Google Scholar] [CrossRef]
- Vickery-Howe, D.M.; Dascombe, B.J.; Drain, J.R.; Clarke, A.C.; Hoolihan, B.; Carstairs, G.L.; Reddy, A.J.; Middleton, K.J. Physiological, Perceptual, and Biomechanical Responses to Load Carriage While Walking at Military-Relevant Speeds and Loads—Are There Differences between Males and Females? Biomechanics 2024, 4, 382–410. [Google Scholar] [CrossRef]
- Knapik, J.J.; Scott, S.J.; Sharp, M.A.; Hauret, K.G.; Darakjy, S.; Rieger, W.R.; Palkoska, F.A.; VanCamp, S.E.; Jones, B.H. The basis for prescribed ability group run speeds and distances in US Army basic combat training. Mil. Med. 2006, 171, 669–677. [Google Scholar] [CrossRef]
- Lockie, R.; Dulla, J.; Orr, R.; Dawes, J. Importance of ability-based training for law enforcement recruits. Strength Cond. J. 2021, 43, 80–90. [Google Scholar] [CrossRef]
- Cesario, K. The Effects of Ability-Based Training on the Physical Fitness of Custody Assistant Recruits. Master’s Thesis, California State University, Fullerton, CA, USA, 2019. [Google Scholar]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
LEVEL | Parallel Lift | Split Lift | Pull | Push | Bend | Twist |
---|---|---|---|---|---|---|
Squat | Lunge | Pull | Push | Trunk Flexion/Extension | Trunk Rotation | |
LEVEL −4 | Assisted Squat | Step Up | Cable Pull | Wall Push Up | Incline Sit Up | Swiss Ball Seated Hip Circling |
LEVEL −3 | Sit/Stand Squat | Isometric Lunge | Standing Pull Up | Hands Elevated (60 cm) | Eccentric Sit Up | As per −4, add Upper Body Twist |
LEVEL −2 | Partial Squat | Partial Lunge | Incline Pull Up | Push Ups on Knees | Swiss Ball Sit Up | Swiss Ball Seated Wood Chop |
LEVEL −1 | Swiss Ball Wall Squat | On-the-spot Lunge | Lying Pull Up | Hands Elevated (30 cm) | Fingertips-to-Knees Sit Up | Kneeling Wood Chop |
LEVEL 0 | Body Squat | Step Lunge | Jump Pull Up | Push Up on Toes | Wrist-to-Knees Sit Up | Standing Woodchop |
LEVEL 1 | Arms Overhead Squat | Walking Lunge | Bent Leg Band Pull Up | Feel Elevated (30 cm) | Full Sit Up | Loaded Standing Woodchop |
LEVEL 2 | Weighted Squat | Loaded Lunge | Pull Up | Feet Elevated (60 cm) | Full Sit Up Hands on Head | Med Ball Twist and Pass |
LEVEL 3 | Arms Overhead Loaded Squat | Directional Lunge | Loaded Pull Up | Loaded Push up | Weighted Full Sit Up | Dynamic Twist and Pass |
LEVEL 4 | Plyo Squat | Walking Lunge with Contralateral Press or Upright Row | Mobile Pull Up | Plyo Push Up | Full Sit Up to Stand with No Hands | Diagonal Mobile Wood Chop |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orr, R.; Canetti, E.F.D.; Gough, S.; Macdonald, K.; Dulla, J.; Lockie, R.G.; Dawes, J.J.; Blacker, S.D.; Milligan, G.S.; Schram, B. Police Fitness: An International Perspective on Current and Future Challenges. Sports 2025, 13, 219. https://doi.org/10.3390/sports13070219
Orr R, Canetti EFD, Gough S, Macdonald K, Dulla J, Lockie RG, Dawes JJ, Blacker SD, Milligan GS, Schram B. Police Fitness: An International Perspective on Current and Future Challenges. Sports. 2025; 13(7):219. https://doi.org/10.3390/sports13070219
Chicago/Turabian StyleOrr, Robin, Elisa F. D. Canetti, Suzanne Gough, Kirstin Macdonald, Joe Dulla, Robert G. Lockie, J. Jay Dawes, Sam D. Blacker, Gemma S. Milligan, and Ben Schram. 2025. "Police Fitness: An International Perspective on Current and Future Challenges" Sports 13, no. 7: 219. https://doi.org/10.3390/sports13070219
APA StyleOrr, R., Canetti, E. F. D., Gough, S., Macdonald, K., Dulla, J., Lockie, R. G., Dawes, J. J., Blacker, S. D., Milligan, G. S., & Schram, B. (2025). Police Fitness: An International Perspective on Current and Future Challenges. Sports, 13(7), 219. https://doi.org/10.3390/sports13070219