Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = main drive shaft bearing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2177 KiB  
Article
Current- and Vibration-Based Detection of Misalignment Faults in Synchronous Reluctance Motors
by Angela Navarro-Navarro, Vicente Biot-Monterde, Jose E. Ruiz-Sarrio and Jose A. Antonino-Daviu
Machines 2025, 13(4), 319; https://doi.org/10.3390/machines13040319 - 14 Apr 2025
Viewed by 844
Abstract
Misalignment faults in drive systems occur when the motor and load are not properly aligned, leading to deviations in the centerlines of the coupled shafts. These faults can cause significant damage to bearings, shafts, and couplings, making early detection essential. Traditional diagnostic techniques [...] Read more.
Misalignment faults in drive systems occur when the motor and load are not properly aligned, leading to deviations in the centerlines of the coupled shafts. These faults can cause significant damage to bearings, shafts, and couplings, making early detection essential. Traditional diagnostic techniques rely on vibration monitoring, which provides insights into both mechanical and electromagnetic fault signatures. However, its main drawback is the need for external sensors, which may not be feasible in certain applications. Alternatively, motor current signature analysis (MCSA) has proven effective in detecting faults without requiring additional sensors. This study investigates misalignment faults in synchronous reluctance motors (SynRMs) by analyzing both vibration and current signals under different load conditions and operating speeds. Fast Fourier transform (FFT) is applied to extract characteristic frequency components linked to misalignment. Experimental results reveal that the amplitudes of rotational frequency harmonics (1xfr, 2xfr, and 3xfr) increase in the presence of misalignment, with 1xfr exhibiting the most stable progression. Additionally, acceleration-based vibration analysis proves to be a more reliable diagnostic tool compared to velocity measurements. These findings highlight the potential of combining current and vibration analysis to enhance misalignment detection in SynRMs, improving predictive maintenance strategies in industrial applications. Full article
(This article belongs to the Special Issue New Advances in Synchronous Reluctance Motors)
Show Figures

Figure 1

19 pages, 3986 KiB  
Article
DAE-BiLSTM Model for Accurate Diagnosis of Bearing Faults in Escalator Principal Drive Systems
by Xiyang Jiang, Zhuangzhuang Zhang, Hongbing Yuan, Jing He and Yifei Tong
Processes 2025, 13(1), 202; https://doi.org/10.3390/pr13010202 - 13 Jan 2025
Cited by 1 | Viewed by 1066
Abstract
The extensive deployment of escalators has greatly improved travel convenience; however, significant concerns have been raised due to the increasing frequency of safety incidents in recent years. Ensuring the safe operation of escalators and detecting faults in a timely manner have become critical [...] Read more.
The extensive deployment of escalators has greatly improved travel convenience; however, significant concerns have been raised due to the increasing frequency of safety incidents in recent years. Ensuring the safe operation of escalators and detecting faults in a timely manner have become critical concerns for both manufacturers and maintenance personnel. Traditional periodic inspections are resource-intensive and increasingly deemed inadequate due to the growing diversity and number of escalators. In this article, a data acquisition and transmission system for the main drive shaft bearing of the escalator, based on the Internet of Things (IoT), is designed using the main drive shaft bearing as an example. Additionally, a fault classification model combining a deep autoencoder (DAE) and Bidirectional Long Short-Term Memory Network (BiLSTM) is proposed. The experimental results of this study demonstrate that the DAE-BiLSTM-based fault diagnosis model provides accurate fault detection and early warnings, achieving an accuracy rate exceeding 99%, while significantly reducing the computational costs and training time. Full article
(This article belongs to the Special Issue AI-Supported Methods and Process Modeling in Smart Manufacturing)
Show Figures

Figure 1

15 pages, 11357 KiB  
Article
Catastrophic Failure Analysis of a Wind Turbine Gearbox by the Finite Element Method and Fracture Analysis
by Jairo Aparecido Martins and Estaner Claro Romão
Designs 2025, 9(1), 4; https://doi.org/10.3390/designs9010004 - 5 Jan 2025
Viewed by 1653
Abstract
The wind turbine gearbox, used as a multiplier, is one of the main components directly related to a wind turbine’s efficiency and lifespan. Therefore, strict control of the gearbox and its manufacturing processes and even minor improvements in this component strongly and positively [...] Read more.
The wind turbine gearbox, used as a multiplier, is one of the main components directly related to a wind turbine’s efficiency and lifespan. Therefore, strict control of the gearbox and its manufacturing processes and even minor improvements in this component strongly and positively impact energy production/generation over time. Since only some papers in the literature analyze the mechanical aspect of wind turbines, focusing on some parts in depth, this paper fills the gap by offering an analysis of the gearbox component under the highest amount of stress, namely relating to the sun shaft, as well as a more holistic analysis of the main gear drives, its components, and the lubrification system. Thus, this work diagnoses the fracture mechanics of a 1600 kW gearbox to identify the main reason for the fracture and how the chain of events took place, leading to catastrophic failure. The diagnoses involved numerical simulation (finite element analysis—FEA) and further analysis of the lubrication system, bearings, planetary stage gears, helical stage gears, and the high-speed shaft. In conclusion, although the numerical simulation showed high contact stresses on the sun shaft teeth, the region with the unexpectedly nucleated crack was the tip of the tooth. The most likely factors that led to premature failure were the missed lubrication for the planetary bearings, a lack of cleanliness in regard to the raw materials of the gears (voids found), and problems with the sun shaft heat treatment. With the sun gear’s shaft, planet bearings, and planet gears broken into pieces, those small and large pieces dropped into the oil, between the gears, and into the tooth ring, causing the premature and catastrophic gearbox failure. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

28 pages, 15385 KiB  
Article
Analysis of Rigid-Flexible Coupled Collision Force in a Variable Load Offshore Wind Turbine Main Three-Row Cylindrical Roller Bearing
by Xiaoxu Pang, Dingkang Zhu, Xu Zuo, Dongfeng Wang, Wenlu Hao, Ming Qiu and Duo Liu
Lubricants 2024, 12(7), 252; https://doi.org/10.3390/lubricants12070252 - 11 Jul 2024
Cited by 1 | Viewed by 1262
Abstract
In response to the limitations and one-sidedness of the simulation results of a rigid three-row cylindrical roller bearing for an offshore wind turbine main shaft under constant-load conditions, this paper proposes a simulation analysis method under variable loads. A contact mechanics model and [...] Read more.
In response to the limitations and one-sidedness of the simulation results of a rigid three-row cylindrical roller bearing for an offshore wind turbine main shaft under constant-load conditions, this paper proposes a simulation analysis method under variable loads. A contact mechanics model and a flexible body model are established, and the rigid-flexible coupled treatment is applied to the bearing’s inner and outer ring and cages. Based on variable load conditions, the theoretical speeds, simulated speeds, and acceleration responses of the pure rigid model and the rigid-flexible coupled model are compared, and the model is validated. Finally, the dynamic and transient responses reveal the time-varying characteristics of bearing loads and stress distribution patterns under different driving speeds and contact friction coefficients in the rigid-flexible coupled model. The conclusions are as follows: the rotational error of the rigid model is 1.67 to 3.76 times greater than that of the rigid-flexible coupled model, and the acceleration trend of the rigid-flexible coupled model is more stable with smaller speed fluctuations. The average forces on the thrust roller and cages increase with the driving speed, while those on the radial roller, cages, and inner ring decrease with the driving speed. The average force on the near-blade end cage is approximately 1.19 to 1.59 times that of the far end. The average force on the roller and cages significantly decreases with decreasing friction coefficient, with a reduction ranging from 50.08% to 76.41%. The maximum stress of the bearing increases with increasing driving speed. The novel simulation method for a rigid-flexible, coupled, three-row cylindrical roller bearing model under variable load conditions proposed in this paper can more accurately simulate the dynamic response of offshore wind turbine main shaft bearings during service. The results obtained in this paper provide highly valuable guidance for the research and design of offshore wind turbine main shaft bearings. Full article
Show Figures

Figure 1

13 pages, 6117 KiB  
Article
Dynamic Balance Simulation and Optimization of Electric Vehicle Scroll Compressor Rotor System
by Mengli Yuan, Bin Yang, Xin Li, Annan Li, Feng Gao and Mengqi Ge
Appl. Sci. 2024, 14(12), 5024; https://doi.org/10.3390/app14125024 - 9 Jun 2024
Cited by 1 | Viewed by 2114
Abstract
In order to solve the problem of imbalance of internal forces in the system caused by the gravity force of the eccentric wheel and the orbiting scroll close to the drive bearing and the rotational inertia force during the operation of the electric [...] Read more.
In order to solve the problem of imbalance of internal forces in the system caused by the gravity force of the eccentric wheel and the orbiting scroll close to the drive bearing and the rotational inertia force during the operation of the electric scroll compressor, a dynamic model of the rotor system of the scroll compressor that takes into account the effect of the gas force was established using the multibody dynamics software ADAMS/View 2020. Dynamic simulation analysis of the rotor system is carried out, focusing on the force of the drive bearing; a parametric optimization method is adopted to optimize the position of the center-of-mass coordinates of the eccentric wheel of the relevant components, and the relevant parameters are derived after optimization. The results show that by adjusting the center-of-mass position of the eccentric wheel it is possible to optimize the unbalance force and unbalance moment of the main shaft drive system; compared with the pre-optimization, the force fluctuation ranges of the drive bearing in the horizontal and vertical directions are reduced, the peak value is reduced by 18%, and the impact force of the drive bearing during the initial period of compressor operation is effectively relieved. Through optimization calculation, the vibration and noise of the system are reduced, the operating stability of the scroll compressor is improved, and analytical methods and theoretical guidance are provided for the design and prediction of the dynamic behavior of the scroll compressors. Full article
Show Figures

Figure 1

20 pages, 11765 KiB  
Article
Failure Mechanism of Rear Drive Shaft in a Modified Pickup Truck
by Zhichao Huang, Jiaxuan Wang, Yihua Hu, Yuqiang Jiang, Yong Xu and Xiongfei Wan
Metals 2024, 14(6), 641; https://doi.org/10.3390/met14060641 - 28 May 2024
Cited by 2 | Viewed by 2913
Abstract
This paper investigates the failure mechanism of the rear drive shaft in a modified pickup truck which had operated for about 3000 km. The investigation included macroscopic and microscopic evaluation to document the morphologies of the fracture surface, measurement of the material composition, [...] Read more.
This paper investigates the failure mechanism of the rear drive shaft in a modified pickup truck which had operated for about 3000 km. The investigation included macroscopic and microscopic evaluation to document the morphologies of the fracture surface, measurement of the material composition, metallographic preparation and examination, mechanical testing, and finite element modelling and calculations. The results obtained suggest that rotation-bending fatigue was the primary cause of the drive shaft failure. The crack initiation is located in the root of the machined threads on the drive shaft surface and expanded along the side of the machining line surface. The main cause of fatigue cracks is attributable to a high stress concentration owing to a large unilateral bending impact under overload. Meanwhile, the bidirectional torsional force also produces a higher stress concentration and thus accelerates the fatigue crack to expand radially along the surface. Furthermore, the hardness of the central section of the drive shaft was marginally below standard. This deficiency results in harm to the bearings and other mechanical components, as well as expediting the enlargement of cracks. Finite element analysis revealed significant contact stress between the bearing and drive shaft, with stress levels exceeding the fatigue limit stress of the parent material. This highlights the need for reevaluation of the heat treatment process and vehicle loading quality to enhance the drive shaft’s longevity. Full article
(This article belongs to the Special Issue Failure of Metals: Fracture and Fatigue of Metallic Materials)
Show Figures

Figure 1

16 pages, 7757 KiB  
Article
Novel Structure of Shield Ring to Reduce Shaft Voltage and Improve Cooling Performance of Interior Permanent Magnet Synchronous Motor
by Jun-Kyu Kang, Jun-Hyeok Heo, Su-Hwan Kim and Jin Hur
Electronics 2024, 13(8), 1535; https://doi.org/10.3390/electronics13081535 - 17 Apr 2024
Cited by 3 | Viewed by 1464
Abstract
The voltage of the battery system is increased to increase the efficiency of the electric motor drive system. Additionally, the space vector pulse width modulation (SVPWM) technique is used to ensure high controllability. However, high-voltage and high-speed PWM switching controls for system efficiency [...] Read more.
The voltage of the battery system is increased to increase the efficiency of the electric motor drive system. Additionally, the space vector pulse width modulation (SVPWM) technique is used to ensure high controllability. However, high-voltage and high-speed PWM switching controls for system efficiency generate high common mode voltage (CMV), and shaft voltage is induced in the bearing. This results in a shortened bearing life and potential damage. Therefore, this paper proposes a method to reduce the shaft voltage of the motor through a novel hybrid shield ring structure. It also analyzes how to improve the cooling performance of the motor using a shield ring. First, the parasitic capacitance inside the motor is analyzed. Then, the shaft voltage reduction technology is analyzed according to the material of the shield ring. Finally, experiments validate the proposed method. Additionally, the temperature characteristics of the main part of the motor are analyzed through an experiment in consideration of the shield ring. Full article
Show Figures

Figure 1

12 pages, 5115 KiB  
Article
Avoid Bogie Bearing Failure of IGBT Inverter Fed EMUs and Locomotives
by Liguo Wang, Xiujuan Yang and Xiangzhen Yan
Electronics 2023, 12(13), 2998; https://doi.org/10.3390/electronics12132998 - 7 Jul 2023
Cited by 2 | Viewed by 2523
Abstract
Three current paths are proposed, and theoretical analysis and laboratory tests are carried out to investigate the root causes of bearing failure in IGBT inverter-fed locomotives and EMUs. The three types of current paths that run through the drive unit bearings and axle [...] Read more.
Three current paths are proposed, and theoretical analysis and laboratory tests are carried out to investigate the root causes of bearing failure in IGBT inverter-fed locomotives and EMUs. The three types of current paths that run through the drive unit bearings and axle box bearings used on EMUs and electric locomotives are classified as the primary side current path, the main traction system current path, and the current path between the vehicles of the EMU or electric locomotive and the vehicles it hauls. The research found that the EDM current path in the main traction system caused by common mode voltage is distinguished as the main cause resulting in the failure of the bogie motor bearings or the bearings of the load connected to the motor shaft. The cause of common mode voltage is analyzed, and the thresholds of current density and voltage without causing bearing damage are analyzed and presented. The lab tests carried out on the bearings on the main traction system’s current path verified that the current path does exist. The proof to identify electric erosion, such as craters and washboards, and corresponding measures to prevent the failure of bogie bearings are proposed. Further research about the other two current paths is urgent and necessary. Full article
(This article belongs to the Special Issue Smart Electronics, Energy, and IoT Infrastructures for Smart Cities)
Show Figures

Figure 1

16 pages, 7057 KiB  
Article
Vibration Test and Analysis of Crawler Pepper Harvester under Multiple Working Conditions
by Xinzhong Wang, Yuhao Cao, Weiquan Fang and Haoran Sheng
Sustainability 2023, 15(10), 8112; https://doi.org/10.3390/su15108112 - 16 May 2023
Cited by 8 | Viewed by 2135
Abstract
Nowadays, many scholars at home and abroad have studied the vibration of agricultural machinery, especially harvesting machinery. However, this research has lacked the analysis of vibration characteristics of harvesters under the condition of multi-vibration excitation in field work. Therefore, by taking the chassis [...] Read more.
Nowadays, many scholars at home and abroad have studied the vibration of agricultural machinery, especially harvesting machinery. However, this research has lacked the analysis of vibration characteristics of harvesters under the condition of multi-vibration excitation in field work. Therefore, by taking the chassis frame and main vibration sources of a 4JZ-1700 crawler pepper harvester as the research object, this paper aims to investigate the vibration characteristics of the pepper harvester under different working conditions, and the impact of the excitation of various working parts on the chassis frame. Firstly, a modal simulation was carried out with the modal module of ANSYS Workbench to study the natural frequency of the chassis frame. The results demonstrated that the natural frequency of the chassis frame was within 23–76 Hz. A DH5902 dynamic signal acquisition instrument was used to collect vibration signals from seven measuring points under different working conditions of the whole machine, and the collected time domain signals were extracted by Fourier transform. According to the time domain signal, the amplitude at the engine support was the largest under the static no-load condition, and the transmission of engine vibration was attenuated to a certain extent, which imposes a significant effect on the vibration isolation and vibration reduction of the harvester frame. Under the field walking condition, the amplitudes of the left front of the chassis frame and the driving shaft of the cleaning separation device were abnormal, which was mainly attributed to the unequal road surface and the high center of gravity of the cleaning separation device. Through frequency domain analysis, it can be found that the main vibration frequency of most measuring points of the harvester was close to the vibration frequency of the engine under the static no-load condition, and the excitation frequency of most measuring points approximated to the working frequency of the picking drum and the cleaning separation device under the field walking condition. In addition, there were plenty of phenomena in which the main frequency of vibration was detected in the high frequency region above 200 Hz, with messy frequency values. This is due to the poor lubrication of the bearing part of the harvester, causing intense friction between the rotating shaft and the bearing, which also drives the high frequency vibration of the chassis frame. In general, this study can provide a method reference for vibration analysis of agricultural machinery and propose effective measures to reduce vibration based on the conclusions. Full article
(This article belongs to the Special Issue Sustainable Technology in Agricultural Engineering)
Show Figures

Figure 1

13 pages, 7243 KiB  
Article
Simulative and Experimental Investigation of the Ring Creeping Damage Mechanism Considering the Training Effect in Large-Sized Bearings
by Daniel Billenstein, Martin Neidnicht, Daniel Becker, Christian Liewen, Jörg Rollmann and Bernd Lüneburg
Machines 2023, 11(5), 543; https://doi.org/10.3390/machines11050543 - 11 May 2023
Cited by 2 | Viewed by 2991
Abstract
In this work, an advanced, numerical simulation method based on finite element analyses was developed in order to simultaneously take into account both roller- and structural-induced ring creeping phenomena. Ring creeping in general refers to a failure mode caused by a (non-bolted) bearing [...] Read more.
In this work, an advanced, numerical simulation method based on finite element analyses was developed in order to simultaneously take into account both roller- and structural-induced ring creeping phenomena. Ring creeping in general refers to a failure mode caused by a (non-bolted) bearing ring rotating relatively to its adjacent component such as, e.g., shaft or housing during operation. In particular, the coefficient of friction at the contact interface between bearing ring and adjacent component has a crucial influence. In order to consider this effect, a bearing ring creeping test rig based on component-like specimen was developed. Experimental results with respect to (i) measured creeping parameters such as creeping distance and (ii) the coefficient of friction due to run-in effects were described. Finally, experimental and numerical results were compared qualitatively to approve the reasonableness of the simulation model. The developed simulation approach enables the consideration of the entire drive train system within the micro-scale creeping evaluation procedure and therefore supports both drive train and bearing design-specific optimization measures in order to increase the reliability and robustness of a main bearing arrangement. Full article
(This article belongs to the Special Issue Friction and Lubrication of Mechanical Drive Train Components)
Show Figures

Figure 1

28 pages, 7705 KiB  
Article
Topology Optimization and Multiobjective Optimization for Drive Axle Housing of a Rear Axle Drive Truck
by Bin Zheng, Shengyan Fu and Jilin Lei
Materials 2022, 15(15), 5268; https://doi.org/10.3390/ma15155268 - 30 Jul 2022
Cited by 10 | Viewed by 4682
Abstract
As one of the important load-bearing components of a truck, the drive axle housing must meet the requirements of stiffness and strength. The traditional design method uses redundancy design to meet the performance requirements. The joint design between the three-dimensional mathematical model and [...] Read more.
As one of the important load-bearing components of a truck, the drive axle housing must meet the requirements of stiffness and strength. The traditional design method uses redundancy design to meet the performance requirements. The joint design between the three-dimensional mathematical model and finite element model is adopted, and the optimal design of the drive axle housing is realized based on topology optimization and multiobjective optimization. Firstly, the static analysis of the drive axle housing of a rear axle drive truck was carried out with four typical working conditions. It was concluded that the four working conditions all operate under the yield limit of the material, and it was found that the maximum equivalent stress of the four working conditions occurs at the step of the half-shaft casing. Among the four working conditions, the most critical one is the maximum vertical force working condition. Then, based on the maximum vertical force working condition, the fatigue life analysis is conducted, and the minimum fatigue life appears at the transition position of the half-shaft sleeve and the arc transition position of the main reducer chamber. The remaining parts can meet the design requirements. The overall safety factor of the drive axle housing is mainly between 1 and 5 when operating under this working condition. Then, through modal analysis, the first to sixth natural frequency and vibration modes of the drive axle housing are extracted. Based on the modal analysis, the dynamic characteristics of the drive axle housing are further studied by harmonic response analysis and random vibration analysis. Finally, two kinds of lightweight optimization schemes for the drive axle housing are given. Topology optimization reduces the mass of the drive axle housing by 17.4%, but the overall performance slightly decreases. Then, the five dimensional parameters of the drive axle housing are selected as design variables. The mass, maximum deformation, equivalent stress, service life, and the first-, second- and third-order natural frequencies are defined as objective functions. Through the optimal space-filling design method, the experimental designs are performed and the sample points are obtained. Based on the results of experiment design, the multiobjective genetic algorithm and response surface method are combined to optimize the objective functions. The analysis results show that the mass is reduced by 4.35%, the equivalent stress is reduced by 21.05%, the minimum life is increased by 72.28%, and the first-, second-, and third-order natural frequency are also increased to varying degrees. Two different optimization strategies are provided for the design of the drive axle housing. Full article
Show Figures

Figure 1

22 pages, 8946 KiB  
Article
Design and Evaluation of Low-Cost Vibration-Based Machine Monitoring System for Hay Rotary Tedder
by Arkadiusz Mystkowski, Rafał Kociszewski, Adam Kotowski, Maciej Ciężkowski, Wojciech Wojtkowski, Michał Ostaszewski, Zbigniew Kulesza, Adam Wolniakowski, Grzegorz Kraszewski and Adam Idzkowski
Sensors 2022, 22(11), 4072; https://doi.org/10.3390/s22114072 - 27 May 2022
Cited by 12 | Viewed by 4804
Abstract
Vibration monitoring provides a good-quality source of information about the health condition of machines, and it is often based on the use of accelerometers. This article focuses on the use of accelerometer sensors in fabricating a low-cost system for monitoring vibrations in agricultural [...] Read more.
Vibration monitoring provides a good-quality source of information about the health condition of machines, and it is often based on the use of accelerometers. This article focuses on the use of accelerometer sensors in fabricating a low-cost system for monitoring vibrations in agricultural machines, such as rotary tedders. The aim of the study is to provide useful data on equipment health for improving the durability of such machinery. The electronic prototype, based on the low-cost AVR microcontroller ATmega128 with 10-bit ADC performing a 12-bit measurement, is able to acquire data from an accelerometer weighing up to 10 g. Three sensors were exposed to low accelerations with the use of an exciter, and their static characteristics were presented. Standard experimental tests were used to evaluate the constructed machine monitoring system. The self-contained prototype system was calibrated in a laboratory test rig, and sinusoidal and multisinusoidal excitations were used. Measurements in time and frequency domains were carried out. The amplitude characteristic of the preformed system differed by no more than 15% within a frequency range of 10 Hz–10 kHz, compared to the AVM4000 commercial product. Finally, the system was experimentally tested to measure acceleration at three characteristic points in a rotational tedder, i.e., the solid grease gearbox, the drive shaft bearing and the main frame. The RMS amplitude values of the shaft vibrations on the bearing in relation to the change in the drive shaft speed of two tedders of the same type were evaluated and compared. Additionally, the parameters of kurtosis and crest factor were compared to ascertain the bearing condition. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

18 pages, 1499 KiB  
Article
Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements
by Francesco Castellani, Luigi Garibaldi, Alessandro Paolo Daga, Davide Astolfi and Francesco Natili
Energies 2020, 13(6), 1474; https://doi.org/10.3390/en13061474 - 20 Mar 2020
Cited by 58 | Viewed by 4710
Abstract
Condition monitoring of gear-based mechanical systems in non-stationary operation conditions is in general very challenging. This issue is particularly important for wind energy technology because most of the modern wind turbines are geared and gearbox damages account for at least the 20% of [...] Read more.
Condition monitoring of gear-based mechanical systems in non-stationary operation conditions is in general very challenging. This issue is particularly important for wind energy technology because most of the modern wind turbines are geared and gearbox damages account for at least the 20% of their unavailability time. In this work, a new method for the diagnosis of drive-train bearings damages is proposed: the general idea is that vibrations are measured at the tower instead of at the gearbox. This implies that measurements can be performed without impacting the wind turbine operation. The test case considered in this work is a wind farm owned by the Renvico company, featuring six wind turbines with 2 MW of rated power each. A measurement campaign has been conducted in winter 2019 and vibration measurements have been acquired at five wind turbines in the farm. The rationale for this choice is that, when the measurements have been acquired, three wind turbines were healthy, one wind turbine had recently recovered from a planetary bearing fault, and one wind turbine was undergoing a high speed shaft bearing fault. The healthy wind turbines are selected as references and the damaged and recovered are selected as targets: vibration measurements are processed through a multivariate Novelty Detection algorithm in the feature space, with the objective of distinguishing the target wind turbines with respect to the reference ones. The application of this algorithm is justified by univariate statistical tests on the selected time-domain features and by a visual inspection of the data set via Principal Component Analysis. Finally, a novelty index based on the Mahalanobis distance is used to detect the anomalous conditions at the damaged wind turbine. The main result of the study is that the statistical novelty of the damaged wind turbine data set arises clearly, and this supports that the proposed measurement and processing methods are promising for wind turbine condition monitoring. Full article
(This article belongs to the Special Issue Lifetime Extension of Wind Turbines and Wind Farms)
Show Figures

Figure 1

Back to TopTop