Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = main channel roughness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9841 KiB  
Article
Experimental Investigations of Capillary Flow in Three-Dimensional-Printed Microchannels
by Behrouz Pirouz, Seyed Navid Naghib, Diamante Chirillo, Hana Javadi Nejad and Patrizia Piro
Fluids 2025, 10(4), 91; https://doi.org/10.3390/fluids10040091 - 2 Apr 2025
Viewed by 551
Abstract
In recent years, the application of microfluidic devices has increased, and three-dimensional (3D) printers for fabricating microdevices could be considered a suitable technique but, in some cases, may confront some issues. The main issues include channel roughness values, print orientation due to the [...] Read more.
In recent years, the application of microfluidic devices has increased, and three-dimensional (3D) printers for fabricating microdevices could be considered a suitable technique but, in some cases, may confront some issues. The main issues include channel roughness values, print orientation due to the 3D printer’s setup, filament materials, nozzle specifications, and condition. This study aims to analyze the capillary-driven flow in microdevices produced by 3D printers. Therefore, four 3D printer-based microchannels were investigated, and the capillary-driven flow of five liquids with different viscosities and contact angles was evaluated experimentally. The experimental results were compared with theoretical calculations using the Lucas−Washburn equation, and the impact of the width, length, and closed and open microchannel on flow behaviors was explored. The experimental results showed that the peak velocity for open and closed microchannels decreases with the length. Moreover, there were differences in flow behavior between open and closed microchannels. For the former, the maximum average velocity appeared in the microchannel with a width of 400 μm, while for the latter, it was for a width of 1000 μm. In addition, the flow velocity decreased when the viscosity increased, regardless of microchannel width. The decrease was more pronounced for the lower-viscosity liquids (ethanol and water) and smaller for the higher-viscosity ones (coffee and olive oil). Finally, the advantages and challenges of 3D printer-based microdevices are presented. Full article
Show Figures

Figure 1

21 pages, 3337 KiB  
Article
Combining UAS LiDAR, Sonar, and Radar Altimetry for River Hydraulic Characterization
by Monica Coppo Frias, Alexander Rietz Vesterhauge, Daniel Haugård Olesen, Filippo Bandini, Henrik Grosen, Sune Yde Nielsen and Peter Bauer-Gottwein
Drones 2025, 9(1), 31; https://doi.org/10.3390/drones9010031 - 6 Jan 2025
Cited by 1 | Viewed by 1676
Abstract
Accurate river hydraulic characterization is fundamental to assess flood risk, parametrize flood forecasting models, and develop river maintenance workflows. River hydraulic roughness and riverbed/floodplain geometry are the main factors controlling inundation extent and water levels. However, gauging stations providing hydrometric observations are declining [...] Read more.
Accurate river hydraulic characterization is fundamental to assess flood risk, parametrize flood forecasting models, and develop river maintenance workflows. River hydraulic roughness and riverbed/floodplain geometry are the main factors controlling inundation extent and water levels. However, gauging stations providing hydrometric observations are declining worldwide, and they provide point measurements only. To describe hydraulic processes, spatially distributed data are required. In situ surveys are costly and time-consuming, and they are sometimes limited by local accessibility conditions. Satellite earth observation (EO) techniques can be used to measure spatially distributed hydrometric variables, reducing the time and cost of traditional surveys. Satellite EO provides high temporal and spatial frequency, but it can only measure large rivers (wider than ca. 50 m) and only provides water surface elevation (WSE), water surface slope (WSS), and surface water width data. UAS hydrometry can provide WSE, WSS, water surface velocity and riverbed geometry at a high spatial resolution, making it suitable for rivers of all sizes. The use of UAS hydrometry can enhance river management, with cost-effective surveys offering large coverage and high-resolution data, which are fundamental in flood risk assessment, especially in areas that difficult to access. In this study, we proposed a combination of UAS hydrometry techniques to fully characterize the hydraulic parameters of a river. The land elevation adjacent to the river channel was measured with LiDAR, the riverbed elevation was measured with a sonar payload, and the WSE was measured with a UAS radar altimetry payload. The survey provided 57 river cross-sections with riverbed elevation, and 8 km of WSE and land elevation and took around 2 days of survey work in the field. Simulated WSE values were compared to radar altimetry observations to fit hydraulic roughness, which cannot be directly observed. The riverbed elevation cross-sections have an average error of 32 cm relative to RTK GNSS ground-truth measurements. This error was a consequence of the dense vegetation on land that prevents the LiDAR signal from reaching the ground and underwater vegetation, which has an impact on the quality of the sonar measurements and could be mitigated by performing surveys during winter, when submerged vegetation is less prevalent. Despite the error of the riverbed elevation cross-sections, the hydraulic model gave good estimates of the WSE, with an RMSE below 3 cm. The estimated roughness is also in good agreement with the values measured at a gauging station, with a Gauckler–Manning–Strickler coefficient of M = 16–17 m1/3/s. Hydraulic modeling results demonstrate that both bathymetry and roughness measurements are necessary to obtain a unique and robust hydraulic characterization of the river. Full article
Show Figures

Figure 1

26 pages, 30479 KiB  
Article
Experimental Investigation of T-Jump Stabilization Using Water Jets and Sinusoidal Corrugated Beds
by Maryam Tahmasbipour, Hossein Azizi Nadian, Javad Ahadiyan, Giuseppe Oliveto, Seyed Mohsen Sajjadi and Amir Mohammad Kiyani
Water 2024, 16(23), 3513; https://doi.org/10.3390/w16233513 - 6 Dec 2024
Viewed by 1140
Abstract
Hydraulic jump is a phenomenon that occurs in open channels with a sudden and rapid transition of the flow regime from supercritical to subcritical. One of the common approaches in controlling the energy dissipation of hydraulic jumps aims to expand the section of [...] Read more.
Hydraulic jump is a phenomenon that occurs in open channels with a sudden and rapid transition of the flow regime from supercritical to subcritical. One of the common approaches in controlling the energy dissipation of hydraulic jumps aims to expand the section of the stilling basin with the development of T-jumps. However, T-jumps without additional baffle and terminal elements are unacceptable for thorough energy dissipation. Therefore, this study investigates the main characteristics of T-jumps in an abruptly expanding channel and in the presence of bed water jets and sinusoidal roughness elements. Such complex configurations are hardly found in the literature. Inflow Froude numbers from 6.2 to 10.85, five relative jet flow rates from 0.10 to 0.27, and three rough beds with roughness wave slopes from 0.33 to 0.60 were selected. Experimental results revealed that increasing the bed corrugation would decrease the length of the jump, the length of the roller, and the sequent depth ratio. The same results were found in presence of bed water jets and sinusoidal roughness elements, but the T-jump would appear to be better stabilized. In fact, it was also observed that increasing the relative flow rate of the jet had a significant effect in controlling the T-jump and reducing its relative length. The simultaneous presence of bed water jets and sinusoidal roughness elements decreased the relative length of the T-jump by about 81% and the tailwater depth by about 42% in comparison with the classic hydraulic jumps on smooth beds. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

17 pages, 4468 KiB  
Article
A Visually Meaningful Color-Video Encryption Scheme That Combines Frame Channel Fusion and a Chaotic System
by Dezhi An, Dawei Hao, Jun Lu, Shengcai Zhang and Jiaxin Zhang
Electronics 2024, 13(12), 2376; https://doi.org/10.3390/electronics13122376 - 17 Jun 2024
Viewed by 1662
Abstract
Compared to text and images, video can show information more vividly and intuitively via a moving picture; therefore, video is widely used in all walks of life. However, videos uploaded or stored in various video applications have not been treated with any protection, [...] Read more.
Compared to text and images, video can show information more vividly and intuitively via a moving picture; therefore, video is widely used in all walks of life. However, videos uploaded or stored in various video applications have not been treated with any protection, and these videos contain a lot of sensitive information that is more likely to be compromised. To solve this problem, video encryption schemes have been proposed. However, the main concern with existing video encryption schemes is that the private information in the encrypted video should be effectively protected, and, thus, the pixel distribution of the original video can be greatly damaged in the process of encryption, resulting in no or poor visual usability of the encrypted video. To this end, a novel color-video encryption scheme is proposed, which can effectively protect video privacy information while retaining certain visual information, thus enhancing the usability of encrypted videos. Firstly, the R, G, and B channels of the original color video are viewed as a whole for splitting. The dimensions of the blocks are three-dimensional, and permutation encryption is performed in three-dimensional blocks, which eliminates the redundancy of information between the video frame channels. Secondly, after permutation encryption, the channels of the video frame are separated, and then each channel is divided into blocks. The shape of the blocks is a square, and substitution encryption and permutation encryption operations are performed in turn. The whole encryption process is combined with the 2D-LSM chaotic system to improve the security of the scheme, as well as to reduce the time. Extensive experiments have been carried out, and the results show that the proposed scheme allows the encrypted video to retain rough visual information and, at the same time, effectively protects privacy, achieving the goal of encrypted video security and usability. Full article
Show Figures

Figure 1

19 pages, 4144 KiB  
Article
Investigation of the Influence of Reed Vegetation on the Hydraulic Characteristics of the Huai River Inflow Channel
by Jin Zhang, Li Cheng, Bowen Zhang, Mingbin Yuan, Shuo Jia, Deyin Miao and Caian Huang
Water 2024, 16(11), 1540; https://doi.org/10.3390/w16111540 - 27 May 2024
Viewed by 1267
Abstract
When there is vegetation on the beach or main channel bed, it will have a significant impact on the river channel. This study was based on physical model experiments to investigate the flow conditions of the Jinhu section of the Huaihe River estuary, [...] Read more.
When there is vegetation on the beach or main channel bed, it will have a significant impact on the river channel. This study was based on physical model experiments to investigate the flow conditions of the Jinhu section of the Huaihe River estuary, revealing the influence of reed vegetation on water flow resistance. A new comprehensive roughness formula was proposed, and the predictive effectiveness of the formula was verified. The theoretical results indicate that under the condition of vegetation not being submerged, the comprehensive roughness is directly proportional to the square root of vegetation density in areas with vegetation coverage, the square root of water surface vegetation coverage, and the 2/3 power of the hydraulic radius. The bottom slope does not affect it. Under the condition of vegetation inundation, the comprehensive roughness is smaller than that under the condition of no inundation. The experimental prediction results of the influence of reeds on roughness indicate that the measured roughness values and theoretical roughness calculation values are in good agreement. Under the same operating conditions, the roughness gradually decreases with an increase in flow rate. Under the full-reed working condition, the calculated roughness value and the measured roughness value have the same trend of change, both decreasing with the increase in flow rate. The experimental prediction results of the influence of reeds on the relationship between water level and flow rate show that the roughness value of 0 increases with the increase in reed grass surface coverage rate Ki, and an increase in Ki can lead to an increase in comprehensive roughness. Full article
Show Figures

Figure 1

14 pages, 10027 KiB  
Article
Fractal Characteristics of Natural Fiber-Reinforced Soil in Arid Climate Due to Cracking
by Binbin Yang and Lichuang Jin
Fractal Fract. 2024, 8(4), 209; https://doi.org/10.3390/fractalfract8040209 - 3 Apr 2024
Cited by 1 | Viewed by 1547
Abstract
Fractal geometry is a geometry that focuses on irregular geometric forms and can quantitatively describe rough and uneven surfaces and interfaces. As the main material for making natural fiber geotextile, rice straw fiber can reduce the direct impact of rainfall on soil and [...] Read more.
Fractal geometry is a geometry that focuses on irregular geometric forms and can quantitatively describe rough and uneven surfaces and interfaces. As the main material for making natural fiber geotextile, rice straw fiber can reduce the direct impact of rainfall on soil and reduce the intensity of hydraulic erosion. This study investigates whether the use of rice straw fiber as an additive to reinforce arid soil can inhibit moisture evaporation and prevent cracking. Samples with different fiber contents added (0%, 1%, 2%, and 4%) are placed in an environmental chamber to simulate the effects of an arid climatic condition and control the temperature and humidity levels. The cracking process of the samples is recorded by using a digital camera, and the parameters of the evaporation and cracking processes are quantitatively examined through digital image processing. The results show that all of the samples with fiber have a higher residual water content and can retain 31.4%, 58.5%, and 101.9% more water than without the fibers, respectively. Furthermore, both the primary and secondary cracks as well as crack networks are inhibited in samples with a higher fiber content, that is, 2% or 4% fiber contents. The samples reinforced with fiber also have a smaller crack ratio. Compared with the samples without straw fiber, the final crack ratio of the samples with 1%, 2%, and 4% fiber is reduced by 8.05%, 24.09%, and 35.01% respectively. Finally, the final fractal dimensions of the cracks in samples with fiber contents are also reduced by 0.54%, 5.50%, and 6.40% for the samples with 1%, 2%, and 4% fiber, respectively. The addition of natural fiber as an additive to reduce evaporative cracking in soil can: (1) reduce the soil porosity; (2) enhance the binding force between the soil particles; and (3) block the hydrophobic channels. Therefore, the addition of rice straw fiber to soil can effectively reduce soil evaporation and inhibit soil cracking. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

18 pages, 8604 KiB  
Article
Numerical Investigation of Thermo-Flow Characteristics of Tubes with Transverse Micro-Fins
by Piotr Bogusław Jasiński
Energies 2024, 17(3), 714; https://doi.org/10.3390/en17030714 - 2 Feb 2024
Cited by 1 | Viewed by 1287
Abstract
The article presents the results of numerical studies of heat transfer and pressure drops in a channel with transverse micro-fins. The main aim of the study was to prepare the thermal and flow characteristics of such a channel for a variable longitudinal spacing [...] Read more.
The article presents the results of numerical studies of heat transfer and pressure drops in a channel with transverse micro-fins. The main aim of the study was to prepare the thermal and flow characteristics of such a channel for a variable longitudinal spacing of micro-fins. For the tested pipe with an internal diameter of D = 12 mm, the absolute height of the micro-fins was e = 0.243 mm, which is 2% of its diameter. The tests were carried out for turbulent flow in the range of Reynolds numbers of 5000–250,000 with the variable spacing of micro-ribs in the range of L = 0.28–13.52 mm, which corresponds to their dimensionless longitudinal distance, L/D = 0.023–1.126. For the studied geometries, the characteristics of the friction factor, ft(Re), and the Nusselt number, Nu(Re), are shown in the graphs. The highest values of Nu were observed for a spacing of L/D = 0.092 in the range of Re = 5000–60,000, while the lowest were observed for a geometry of L/D = 0.035 for Re = 60,000–250,000. The friction factors, however, were the highest for the two geometries L/D = 0.161 and L/D = 0.229 over the entire range of the tested Re numbers. A large discrepancy was observed between the friction factors calculated from the Colebrook–White equation (for irregular relative roughness depicted in the Moody diagram) and those obtained from simulations (for pipes with the same roughness height but regular geometry created by micro-fins). An analysis of the heat transfer efficiency of the tested geometries was also presented, taking into account the criterion of equal pumping power, i.e., the PEC (performance evaluation criteria) coefficient. The highest values of the PEC coefficient, up to 1.25–1.28, were obtained for micro-fin spacings of L/D = 0.069 and L/D = 0.092 in the Re number range of 20.000–30.000. Full article
(This article belongs to the Special Issue Advanced Simulation of Turbulent Flows and Heat Transfer)
Show Figures

Figure 1

21 pages, 3600 KiB  
Article
Improving the Robustness of Time Difference of Arrival Estimation Based on the Energy Center of Gravity Rearrangement
by Peng Zhang, Hongyuan Wen, Zhiyong Xu and Zhao Zhao
Sensors 2023, 23(24), 9720; https://doi.org/10.3390/s23249720 - 9 Dec 2023
Cited by 1 | Viewed by 1363
Abstract
An accurate estimation of the time difference of arrival (TDOA) is crucial in localization, communication, and navigation. However, a low signal-to-noise ratio (SNR) can decrease the reliability of the TDOA estimation result. Therefore, this study aims to improve the performance of the TDOA [...] Read more.
An accurate estimation of the time difference of arrival (TDOA) is crucial in localization, communication, and navigation. However, a low signal-to-noise ratio (SNR) can decrease the reliability of the TDOA estimation result. Therefore, this study aims to improve the performance of the TDOA estimation of dual-channel sensors for single-sound sources in low-SNR environments. This study introduces the theory of time rearrangement synchrosqueezing transform (TRST) into the time difference of arrival estimation. While the background noise TF points show random time delays, the signal time-frequency (TF) points originating from uniform directions that exhibit identical lags are considered in this study. In addition, the time difference rearrangement synchrosqueezing transform (TDST) algorithm is developed to separate the signal from the background noise by exploiting its distinct time delay characteristics. The implementation process of the proposed algorithm includes four main steps. First, a rough estimation of the time delay is performed by calculating the partial derivative of the short-time cross-power spectrum. Second, a rearrangement operation is conducted to separate the TF points of the signal and noise. Third, the TF points on both sides of the time-delay energy ridge are extracted. Finally, a refined TDOA estimation is realized by applying the inverse Fourier transformation on the extracted TF points. Furthermore, a second-order-based time difference reassigned synchrosqueezing transform algorithm is proposed to improve the robustness of the TDOA estimation by enhancing the TF energy aggregation. The proposed algorithms are verified by simulations and experiments. The results show that the proposed algorithms are more robust and accurate than the existing algorithms. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

15 pages, 2536 KiB  
Article
Determination of the Canal Discharge Capacity Ratio and Roughness to Assess Its Maintenance Status: Application in Egypt
by Mohamed Elsayed Gabr, Ehab M. Fattouh and Mohamed K. Mostafa
Water 2023, 15(13), 2387; https://doi.org/10.3390/w15132387 - 28 Jun 2023
Cited by 5 | Viewed by 4104
Abstract
Waterlogging and soil salinity issues can be handled using surface or subsurface drainage networks, soil bed elevation, and soil and crop management patterns. A properly operating and maintained drainage system is important for both rural and urban inhabitants to protect lives and property [...] Read more.
Waterlogging and soil salinity issues can be handled using surface or subsurface drainage networks, soil bed elevation, and soil and crop management patterns. A properly operating and maintained drainage system is important for both rural and urban inhabitants to protect lives and property from flooding and high groundwater levels, enhance health conditions, and safeguards water purity, soil salinity, and waterlogging. It also supports and increases crop yields and consequently rural incomes. This study assessed the maintenance condition of the main surface drains (Baloza and ELFarama) located in the Tina Plain (50,000 acres) and a portion of the Southeast El-Kantara regions (25,000 acres) in North Sinai, Egypt, based on the values of the Discharge Capacity Ratio (DCR) and Manning’s roughness (n). Ten measurement locations at the drain cross-section were used in the investigation. For the ELFarama Drain, the average values of n and DCR were found to be 0.029 and 86.2%, and for the Baloza Drain, they were 0.032 and 78.6%, respectively. Compared to the design values, the actual Manning’s roughness was higher, indicating that the drainage canals’ capacities had been reduced and that their upkeep was inadequate. In both drains, sedimentation is present and they need to be maintained, according to the hydrographic surveying results for the actual cross-sections compared to the planned cross-sections. A methodology for the channel maintenance method is presented. For removing vegetation and dredging sediment, a long-boom mechanical hydraulic excavator with a bucket is suggested and to be conducted every two years. To the results of this study, the amount of weed infestation in vegetated channels is the main factor that affects Manning’s roughness coefficient value. It is now easier to calculate the proportion of weeds that are submerged in vegetated channels using echo-sound sonar technology. The DCR is an affordable and simple methodology to assess the channel maintenance status for sustainable agriculture. Full article
(This article belongs to the Topic Research on River Engineering)
Show Figures

Figure 1

15 pages, 7252 KiB  
Article
Surface Properties of Global Land Surface Microwave Emissivity Derived from FY-3D/MWRI Measurements
by Ronghan Xu, Zharong Pan, Yang Han, Wei Zheng and Shengli Wu
Sensors 2023, 23(12), 5534; https://doi.org/10.3390/s23125534 - 13 Jun 2023
Cited by 8 | Viewed by 2699
Abstract
Land surface microwave emissivity is crucial to the accurate retrieval of surface and atmospheric parameters and the assimilation of microwave data into numerical models over land. The microwave radiation imager (MWRI) sensors aboard on Chinese FengYun-3 (FY-3) series satellites provide valuable measurements for [...] Read more.
Land surface microwave emissivity is crucial to the accurate retrieval of surface and atmospheric parameters and the assimilation of microwave data into numerical models over land. The microwave radiation imager (MWRI) sensors aboard on Chinese FengYun-3 (FY-3) series satellites provide valuable measurements for the derivation of global microwave physical parameters. In this study, an approximated microwave radiation transfer equation was used to estimate land surface emissivity from MWRI by using brightness temperature observations along with corresponding land and atmospheric properties obtained from ERA-Interim reanalysis data. Surface microwave emissivity at the 10.65, 18.7, 23.8, 36.5, and 89 GHz vertical and horizontal polarizations was derived. Then, the global spatial distribution and spectrum characteristics of emissivity over different land cover types were investigated. The seasonal variations of emissivity for different surface properties were presented. Furthermore, the error source was also discussed in our emissivity derivation. The results showed that the estimated emissivity was able to capture the major large-scale features and contains a wealth of information regarding soil moisture and vegetation density. The emissivity increased with the increase in frequency. The smaller surface roughness and increased scattering effect may result in low emissivity. Desert regions showed high emissivity microwave polarization difference index (MPDI) values, which suggested the high contrast between vertical and horizontal microwave signals in this region. The emissivity of the deciduous needleleaf forest in summer was almost the greatest among different land cover types. There was a sharp decrease in the emissivity at 89 GHz in the winter, possibly due to the influence of deciduous leaves and snowfall. The land surface temperature, the radio-frequency interference, and the high-frequency channel under cloudy conditions may be the main error sources in this retrieval. This work showed the potential capabilities of providing continuous and comprehensive global surface microwave emissivity from FY-3 series satellites for a better understanding of its spatiotemporal variability and underlying processes. Full article
Show Figures

Figure 1

21 pages, 12936 KiB  
Article
A New Principle for Building Simulation of Radiative Heat Transfer in the Presence of Spherical Surfaces
by Joseph Cabeza-Lainez
Buildings 2023, 13(6), 1447; https://doi.org/10.3390/buildings13061447 - 1 Jun 2023
Cited by 7 | Viewed by 1645
Abstract
Radiant heat interchanges are pivotal to assessing the energy use of buildings and facilities that channel some sort of solar radiation. Form factor integrals are needed for an accurate simulation of the main features of the envelope of such buildings. However, the expressions [...] Read more.
Radiant heat interchanges are pivotal to assessing the energy use of buildings and facilities that channel some sort of solar radiation. Form factor integrals are needed for an accurate simulation of the main features of the envelope of such buildings. However, the expressions required when the space under analysis is curved, for instance, in domes and vaults, are not feasible. The calculation process of algorithms is usually addressed by cumbersome analytical deductions or else by rough statistical approximations included in the simulations, such as ray-tracing methods. Neither of which works properly under curved geometries. The following article deals with an innovative methodology for employing an exact property that solves any spherical configuration of the radiant surfaces. The newly found relationship is validated by comparison with other solutions previously deducted by the author and by numerical simulations when available. Since there is no other exact method of calculating radiation exchanges within spherical fragments, we consider that this finding represents an advance which contributes to overcoming a variety of unexplained and practical problems of radiative heat transfer applicable to architectural developments, lighting elements and aircraft components. Full article
Show Figures

Figure 1

13 pages, 25394 KiB  
Article
Effects of L-PBF Scanning Strategy and Sloping Angle on the Process Properties of TC11 Titanium Alloy
by Xuben Lu, Chang Shu, Zhiyu Zheng, Xuedao Shu, Siyuan Chen, Khamis Essa, Zixuan Li and Haijie Xu
Metals 2023, 13(5), 983; https://doi.org/10.3390/met13050983 - 19 May 2023
Cited by 7 | Viewed by 2292
Abstract
TC11 titanium alloy is widely used in aerospace. To investigate the production of TC11 titanium alloy parts of high quality and performance, this paper adopts the Laser powder bed fusion (L-PBF) technique to prepare TC11 alloy specimens. We analyze in detail the effects [...] Read more.
TC11 titanium alloy is widely used in aerospace. To investigate the production of TC11 titanium alloy parts of high quality and performance, this paper adopts the Laser powder bed fusion (L-PBF) technique to prepare TC11 alloy specimens. We analyze in detail the effects of scanning strategy and forming angle on the forming quality and performance of TC11 alloy through a combination of theory and experiment. The results show that the upper surface quality of the strip-scanned molded parts is the highest, and the upper surface quality is better than that of the side surface under different scanning strategies. The fusion channel lap and surface adhesion powder were the main factors affecting the surface roughness. With increases in the forming angle, the surface roughness of the overhanging surface gradually decreases and the hardness gradually increases. The surface quality and hardness of the specimen are optimal when the forming angle is 90°. The research results provide the theoretical basis and technical support for L-PBF forming of TC11 titanium alloy parts. Full article
(This article belongs to the Special Issue Additive Manufacturing of Titanium Alloys 2022)
Show Figures

Figure 1

17 pages, 7428 KiB  
Article
Spatial-Temporal Characteristics and Influencing Factors of Lake Water and Groundwater Chemistry in Hulun Lake, Northeast China
by Wenlin Wang, Wenjing Li, Mengyong Xue, Xiaomin Gu, Chenghui Ye, Yanwen Jiao, Bo Liu, Yujie Han, Yi Tong and Xiaofei Zhang
Water 2023, 15(5), 937; https://doi.org/10.3390/w15050937 - 28 Feb 2023
Cited by 8 | Viewed by 3058
Abstract
Lakes in cold and arid regions are extremely vulnerable to global climate change, and the study of seasonal spatial and temporal fluctuations of lake-groundwater chemistry is of major significance for water resource management and environmental preservation. In this study, we combined hydrogeochemical, multivariate [...] Read more.
Lakes in cold and arid regions are extremely vulnerable to global climate change, and the study of seasonal spatial and temporal fluctuations of lake-groundwater chemistry is of major significance for water resource management and environmental preservation. In this study, we combined hydrogeochemical, multivariate statistical, and spatial interpolation methods to assess spatial and temporal variations of lake and groundwater chemistry in Hulun Lake during the frozen and non-frozen periods. The results show that sodium (Na+) is the most abundant cation in the Hulun Lake area. Bicarbonate (HCO3) and sulfate (SO42−) are the most predominant anions in the lake, river, and ground water during both seasons. The higher Na+ + K+ concentrations in the frozen season were related to longer circulation time and lower renewable rate. The water chemistry of the lake was of the HCO3-SO4-Cl-Na type and that of groundwater in the east and west regions was of the SO4-Cl-Na and HCO3-Na types, respectively. The chemical compositions of groundwater in the non-frozen season were mainly affected by evaporation and concentration, while rock weathering, evaporation, and human activities jointly controlled groundwater chemical component in the frozen period. Based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods, Ca2+, NO3, and SO42− were identified as the main controlling indicators of the chemical characteristics of groundwater and lake water. The increase of Ca2+ concentration in the center of the lake was related to groundwater discharge along the marginal tectonic fracture zone along the lake shores, which was the potential groundwater discharge area. The unconsolidated aquifer provides recharge channels for groundwater on the eastern side, which has a certain influence on the increase of nutrient concentration (NO3) in the lake on the eastern shore. This research adds to our rough understanding of the lake-groundwater interaction in Hulun Lake, and provides a scientific foundation for the sustainable use of water resources, as well as the eco-logical integrity preservation in cold and arid regions. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

23 pages, 9997 KiB  
Article
Application of Physical and Numerical Modeling for Determination of Waterway Safety under the Bridge in Kaunas City, Lithuania
by Tomasz Dysarz, Tomasz Kałuża, Karolis Mickevičius, Jonas Veigneris, Paweł Zawadzki, Sebastian Kujawiak, Stanisław Zaborowski, Joanna Wicher-Dysarz, Natalia Walczak, Jakub Nieć and Raimundas Baublys
Water 2023, 15(4), 731; https://doi.org/10.3390/w15040731 - 12 Feb 2023
Cited by 5 | Viewed by 3535
Abstract
The main problem presented in this paper is the safety inlet navigation of the waterway below the bridge in the city of Kaunas in Lithuania. The analyzed reach is located in the Nemunas river downstream of the Kaunas dam. It is a part [...] Read more.
The main problem presented in this paper is the safety inlet navigation of the waterway below the bridge in the city of Kaunas in Lithuania. The analyzed reach is located in the Nemunas river downstream of the Kaunas dam. It is a part of the waterway E–41 leading to the Klaipeda harbor on the southern coast of the Baltic Sea. The work was initiated by the Lithuanian company UAB “Inžinerinis projektavimas” with funds from the project called European Union Trans-European Transport Network (EU TEN-T). The main requirement imposed along this reach is to keep sufficient depth even in the range of the lowest flows. The depth is sufficient if it is not lower than 1.15 m for minimum flows such as Q95% and Q95% with ice. The hydraulic conditions for maximum flow Q50%, Q5%, and Q1% are also taken into account for control because the threat of hydraulic jump generation was also noticed. The research is based on georeferenced data from public and non-public sources. The hydrologic data were received from the Lithuanian Hydrometeorological Service. The physical model was created in the Water Laboratory of the Department of Hydraulic and Sanitary Engineering at Poznan University of Life Sciences, Poland. The preprocessing of spatial data in ArcGIS 10.8.2 and rules of hydraulic similarity were implemented in the process of physical model preparation. Three experiments were conducted in the laboratory with scaled values of Q95%, Q5%, and Q1%. The measurements of the water surface and evaluations of the average velocity were used to validate the 2D numerical model prepared in HEC-RAS 6.3.1. The basic layers of the HEC-RAS model were preprocessed in ArcGIS 10.8.2 by ESRI company. The numerical model was implemented to test different values of unknown roughness of the channel bottom. The simulations were conducted for the real values of Q95% and Q95% with ice and Q50%. The results of the simulations were depth and Froude number maps. These maps were classified into zones of no risk, middle risk, and high risk. ArcGIS in the post-processing phase was applied to identify the locations of the hazards. The magnitude of risk was expressed in terms of minimum depth achieved, maximum Froude number, as well as the length of the reaches with high risk related to these two factors. The threat of hydraulic jump formation below the bridge was also noticed. Conducted results confirmed that the combination of hydrodynamic simulations and geoprocessing in the pre- and post-processing stages could be a powerful tool in hydraulic engineering analyses. Additionally, it is worth noting that numerical modeling enables a wider analysis of potential conditions than could be possible with a physical model only. Full article
(This article belongs to the Special Issue Harbor, Waterway and Marinas Hydrodynamics)
Show Figures

Figure 1

19 pages, 2299 KiB  
Article
Thermal Conductivity Model of Porous Media Embedded with a Damaged Tree-like Branching Network Considering the Influence of Roughness
by Yihao Shao, Huai Yang, Xiuya Guo, Huili Wang, Limei Zhu, Xuan Ma, Ruijuan Chen, Shufen Ruan, Lulu Ren and Qian Zheng
Fractal Fract. 2023, 7(1), 5; https://doi.org/10.3390/fractalfract7010005 - 21 Dec 2022
Cited by 8 | Viewed by 1870
Abstract
In the study of heat transfer in tree-like branching network, neither the heat convection caused by fluid flow in the tree-like branching network nor the asymmetric structure of the tree-like branching network can be ignored. In this work, we assume the porous media [...] Read more.
In the study of heat transfer in tree-like branching network, neither the heat convection caused by fluid flow in the tree-like branching network nor the asymmetric structure of the tree-like branching network can be ignored. In this work, we assume the porous media is embedded with a tree-like branching network that are characterized by damaged pipes. We investigated the effects of surface roughness on heat conduction and heat convection in the porous media embedded with the damaged tree-like branching network based on the fractal features of tree-like branching networks and the basic theory of thermodynamics. The proposed model for thermal conductivity can be expressed as a function of micro-structural parameters of the composite, such as the relative roughness, the ratio of thermal conductivity of the wall to that of the fluid in the micro-channel, the diameter ratio, the length ratio, the branching level, the number of damaged channels, the total number of branching levels, and the main tube porosity of the porous media. The effects of the micro-structural parameters of the model on its effective thermal conductivity have been analyzed in detail. It is believed that the joint expression of heat conduction and heat convection could enrich and develop the physical study of heat transport in porous media. Full article
(This article belongs to the Special Issue Transport Phenomena in Porous Media and Fractal Geometry)
Show Figures

Figure 1

Back to TopTop