Spatial-Temporal Characteristics and Influencing Factors of Lake Water and Groundwater Chemistry in Hulun Lake, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Analysis of the Samples
2.3. Research Methodology
2.3.1. Hydrogeochemical Analysis
2.3.2. Multivariate Statistical Methods
2.3.3. Geostatistical Interpolation Methods
2.3.4. Hierarchical Cluster Analysis
2.3.5. Principal Component Analysis Methods
3. Results and Discussion
3.1. Chemical Characteristics of the Various Water Bodies in the Hulun Lake Basin
3.2. Water Chemistry Characteristics of Each Water Body in the Hulun Lake Basin
3.3. Water-Rock Reactions in the Hulun Lake Basin
3.4. Multivariate Statistical Analysis of Different Water Bodies in the Hulun Lake Basin
3.4.1. Correlation Analysis
3.4.2. Hierarchical Cluster Analysis (HCA)
3.4.3. Principal Component Analysis (PCA)
3.5. Spatial-Temporal Differentiation of Water Chemistry in the Hulun Lake Basin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- JingBo, Z.; YanDong, M.; XiaoQing, L.; DaPeng, Y.; TianJie, S.; ZhiBao, D. The discovery of surface runoff in the megadunes of Badain Jaran Desert, China, and its significance. Sci. China (Earth Sci.) 2017, 60, 707–719. [Google Scholar]
- Vystavna, Y.; Harjung, A.; Monteiro, L.R.; Matiatos, I.; Wassenaar, L.I. Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. Nat. Commun. 2021, 12, 7224. [Google Scholar] [CrossRef] [PubMed]
- Toney, J.L.; García-Alix, A.; Jiménez-Moreno, G.; Anderson, R.S.; Moossen, H.; Seki, O. New insights into Holocene hydrology and temperature from lipid biomarkers in western Mediterranean alpine wetlands. Quat. Sci. Rev. 2020, 240, 106395. [Google Scholar] [CrossRef]
- Riebe, K.; Dressel, A. The impact on food security of a shrinking Lake Chad. J. Arid Environ. 2021, 189, 104486. [Google Scholar] [CrossRef]
- Wei, W.; Gao, Y.; Huang, J.; Gao, J. Exploring the effect of basin land degradation on lake and reservoir water quality in China. J. Clean. Prod. 2020, 268, 122249. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Sun, X.; Du, Y.; Deng, Y.; Fan, H.; Tao, Y.; Ma, T. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers ((222)Rn, (18)O, Cl(-)). Environ. Geochem. Health 2021, 43, 1239–1255. [Google Scholar] [CrossRef]
- Yu, L.; Rozemeijer, J.C.; Broers, H.P.; van Breukelen, B.M.; Middelburg, J.J.; Ouboter, M.R.L.; van der Velde, Y. Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high-frequency monitoring. Hydrol. Earth Syst. Sci. 2020, 25, 69–87. [Google Scholar] [CrossRef]
- Boreux, M.; Lamoureux, S.; Cumming, B. Use of water isotopes and chemistry to infer the type and degree of exchange between groundwater and lakes in an esker complex of northeastern Ontario, Canada. Hydrol. Earth Syst. Sci. 2021, 25, 6309–6332. [Google Scholar] [CrossRef]
- Wallace, H.; Wexler, E.J.; Malott, S.; Robinson, C.E. Evaluating lacustrine groundwater discharge to a large glacial lake using regional scale radon-222 surveys and groundwater modelling. Hydrol. Process. 2021, 35, e14165. [Google Scholar] [CrossRef]
- Shang, Y.; Wu, X.; Wang, X.; Wei, Q.; Ma, S.; Sun, G.; Zhang, H.; Wang, L.; Dou, H.; Zhang, H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci. Total Environ. 2022, 805, 150294. [Google Scholar] [CrossRef]
- Fu, C.; Wu, H.; Zhu, Z.; Song, C.; Xue, B.; Wu, H.; Ji, Z.; Dong, L. Exploring the potential factors on the striking water level variation of the two largest semi-arid-region lakes in northeastern Asia. Catena 2021, 198, 105037. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Guo, W.; Fahad Baqa, M. Dynamics and Drivers of Water Clarity Derived from Landsat and In-Situ Measurement Data in Hulun Lake from 2010 to 2020. Water 2022, 14, 1189. [Google Scholar] [CrossRef]
- Fang, C.; Song, K.; Shang, Y.; Ma, J.; Wen, Z.; Du, J. Remote Sensing of Harmful Algal Blooms Variability for Lake Hulun Using Adjusted FAI (AFAI) Algorithm. J. Environ. Inform. 2018, 34, 108–122. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, Y.; Shi, X.-h.; Sun, B.; Wu, L.; Wang, W. Driving Mechanisms of the Evolution and Ecological Water Demand of Hulun Lake in Inner Mongolia. Water 2022, 14, 3415. [Google Scholar] [CrossRef]
- Han, Z.; Shi, X.; Jia, K.; Sun, B.; Zhao, S.; Fu, C. Determining the Discharge and Recharge Relationships between Lake and Groundwater in Lake Hulun Using Hydrogen and Oxygen Isotopes and Chloride Ions. Water 2019, 11, 264. [Google Scholar] [CrossRef]
- Gao, H.; Ryan, M.C.; Li, C.; Sun, B. Understanding the Role of Groundwater in a Remote Transboundary Lake (Hulun Lake, China). Water 2017, 9, 363. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Wang, D.; Li, J.; Dong, J. Hydrochemical and Stable Isotope Characteristics of Lake Water and Groundwater in the Beiluhe Basin, Qinghai–Tibet Plateau. Water 2020, 12, 2269. [Google Scholar] [CrossRef]
- Jia, S.; Dai, Z.; Du, X.; Meng, B.; Yang, Z.; Lan, T. Quantitative evaluation of groundwater and surface water interaction characteristics during a dry season. Water Environ. J. 2021, 35, 1348–1361. [Google Scholar] [CrossRef]
- Saleem, M.; Jeelani, G. Geochemical, isotopic and hydrological mass balance approaches to constrain the lake water–groundwater interaction in Dal Lake, Kashmir Valley. Environ. Earth Sci. 2017, 76, 533. [Google Scholar] [CrossRef]
- Su, X.; Cui, G.; Du, S.; Yuan, W.; Wang, H. Using multiple environmental methods to estimate groundwater discharge into an arid lake (Dakebo Lake, Inner Mongolia, China). Hydrogeol. J. 2016, 24, 1707–1722. [Google Scholar] [CrossRef]
- Ferraz, G.d.F.; Krámer, T. Surface Water–Groundwater Interactions and Bank Storage during Flooding: A Review. Period. Polytech. Civ. Eng. 2021, 66, 149–163. [Google Scholar] [CrossRef]
- Xu, S.; Frey, S.K.; Erler, A.R.; Khader, O.B.; Berg, S.J.; Hwang, H.T.; Callaghan, M.V.; Davison, J.; Sudicky, E.A. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model. J. Hydrol. 2021, 594, 125911. [Google Scholar] [CrossRef]
- Liao, F.; Wang, G.; Shi, Z.; Cheng, G.; Kong, Q.; Mu, W.; Guo, L. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes (δD and δ18O) and radon. Hydrogeol. J. 2018, 26, 1625–1638. [Google Scholar] [CrossRef]
- Yang, X.; Hu, J.; Lu, Z. Integrated Hydrologic Modelling of Groundwater-Surface Water Interactions in Cold Regions. Front. Earth Sci. 2020, 9, 721009. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, L.; Li, W.; Chen, J.; Wang, S. Response mechanism of sediment organic matter of plateau lakes in cold and arid regions to climate change: A case study of Hulun Lake, China. Environ. Sci. Pollut. Res. Int. 2022. [Google Scholar] [CrossRef]
- Xue, B.; Qu, W.; Wang, S.-m.; Ma, Y.; Dickman, M.D. Lake level changes documented by sediment properties and diatom of Hulun Lake, China since the late Glacial. Hydrobiologia 2003, 498, 133–141. [Google Scholar] [CrossRef]
- Xia, S.; Liu, Z.; Liu, J.; Chang, Y.; Li, P.; Gao, N.; Ye, D.; Wu, G.; Yu, L.; Qu, L.; et al. The controlling factors of modern facies distributions in a half-graben lacustrine rift basin: A case study from Hulun Lake, Northeastern China. Geol. J. 2018, 53, 977–991. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Xu, W.; Zhang, B.-K.; Yi, L.; Lu, X. Geochemical Characteristics and Their Environmental Implications for the Water Regime of Hulun Lake, Inner Mongolia, China. Water 2022, 14, 3696. [Google Scholar] [CrossRef]
- Jeevanandam, M.; Kannan, R.; Srinivasalu, S.; Rammohan, V. Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore district, South India. Environ. Monit. Assess. 2007, 132, 263–274. [Google Scholar] [CrossRef]
- Narsimha, A.; Sudarshan, V. Hydrogeochemistry of groundwater in Basara area, Adilabad District, Andhra Pradesh, India. J. Appl. Geochem. 2013, 15, 224–237. [Google Scholar]
- Loáiciga, H.A.; Charbeneau, R.J.; Everett, L.G.; Fogg, G.E.; Hobbs, B.F.; Rouhani, S. Review of Ground-Water Quality Monitoring Network Design. J. Hydraul. Eng. 1993, 118, 11–37. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef]
- Murphy, R.R.; Curriero, F.C.; Ball, W.P. Comparison of spatial interpolation methods for water quality evaluation in the Chesapeake Bay. J. Environ. Eng. 2010, 136, 160–171. [Google Scholar] [CrossRef]
- Shukla, K.K.; Kumar, P.; Mann, G.S.; Khare, M. Mapping spatial distribution of particulate matter using Kriging and Inverse Distance Weighting at supersites of megacity Delhi. Sustain. Cities Soc. 2020, 54, 101997. [Google Scholar] [CrossRef]
- Bu, J.; Liu, W.; Pan, Z.; Ling, K. Comparative Study of Hydrochemical Classification Based on Different Hierarchical Cluster Analysis Methods. Int. J. Environ. Res. Public Health 2020, 17, 9515. [Google Scholar] [CrossRef]
- Yao, R.S.; Yan, Y.; Wei, C.; Luo, M.; Xiao, Y.; Zhang, Y. Hydrochemical Characteristics and Groundwater Quality Assessment Using an Integrated Approach of the PCA, SOM, and Fuzzy c-Means Clustering: A Case Study in the Northern Sichuan Basin. Front. Environ. Sci. 2022, 10, 907872. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Shi, X.; Li, C. The migration of total dissolved solids during natural freezing process in Ulansuhai Lake. J. Arid Land 2012, 4, 85–94. [Google Scholar] [CrossRef]
- Garizi, A.Z.; Sheikh, V.; Sadoddin, A. Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods. Int. J. Environ. Sci. Technol. 2011, 8, 581–592. [Google Scholar] [CrossRef]
- Luo, A.; Wang, G.; Dong, S.; Wang, H.; Shi, Z.; Ji, Z.; Xue, J. Effect of Large-Scale Mining Drainage on Groundwater Hydrogeochemical Evolution in Semi-Arid and Arid Regions. Front. Environ. Sci. 2022, 10, 926866. [Google Scholar] [CrossRef]
- Gao, Z.-j.; Liu, J.-t.; Feng, J.; Wang, M.; Wu, G. Hydrogeochemical Characteristics and the Suitability of Groundwater in the Alluvial-Diluvial Plain of Southwest Shandong Province, China. Water 2019, 11, 1577. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Xiang, J.; Pan, Y.; Huang, Z.; Wu, Y. Water level changes of Hulun Lake in Inner Mongolia derived from Jason satellite data. J. Vis. Commun. Image Represent. 2019, 58, 565–575. [Google Scholar] [CrossRef]
- Donohue, S.; McCarthy, V.; Rafferty, P.; Orr, A.; Flynn, R. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer. Sci. Total. Environ. 2015, 523, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, B.; Paramasivam, S.K.; Karuppannan, S.; Ravichandran, N.; Selvaraj, P. A GIS-based evaluation of hydrochemical characterisation of groundwater in hard rock region, South Tamil Nadu, India. Arab. J. Geosci. 2020, 13, 837. [Google Scholar] [CrossRef]
- Selvakumar, S.; Chandrasekar, N.; Kumar, G. Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resour. Ind. 2017, 17, 26–33. [Google Scholar] [CrossRef]
- Ramalingam, S.; Panneerselvam, B.; Kaliappan, S.P. Effect of high nitrate contamination of groundwater on human health and water quality index in semi-arid region, South India. Arab. J. Geosci. 2022, 15, 242. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Pan, X.; Niu, Y.; Shao, J.; Cui, Y.; Zhang, Q.; Hao, Q. Natural and anthropogenic factors affecting the shallow groundwater quality in a typical irrigation area with reclaimed water, North China Plain. Environ. Monit. Assess. 2017, 189, 514. [Google Scholar] [CrossRef]
- Cai, Z.; Jin, T.; Li, C.; Ofterdinger, U.S.; Zhang, S.; Ding, A.; Li, J. Is China’s fifth-largest inland lake to dry-up? Incorporated hydrological and satellite-based methods for forecasting Hulun lake water levels. Adv. Water Resour. 2016, 94, 185–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Yu, A.; Zhao, W.; Ren, F.; Liu, Y. The Migration Pattern of Atrazine during the Processes of Water Freezing and Thawing. Toxics 2022, 10, 603. [Google Scholar] [CrossRef]
- Blackwell, M.S.A.; Brookes, P.C.; Fuente-Martinez, N.d.l.; Gordon, H.; Murray, P.J.; Snars, K.E.; Williams, J.K.; Bol, R.; Haygarth, P.M. Phosphorus solubilization and potential transfer to surface waters from the soil microbial biomass following drying-rewetting and freezing-thawing. Adv. Agron. 2010, 106, 1–35. [Google Scholar]
Period | Type | pH | TDS (mg/L) | DO (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | CO32− (mg/L) | HCO3− (mg/L) | SO42− (mg/L) | Cl− (mg/L) | NO3− (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Non-frozen Period | Lake water | Min | 8.7 | 830 | 8.7 | 96.7 | 2.7 | 33.6 | 27.5 | 36.9 | 221 | 50.7 | 62.7 | 0.01 |
Max | 9.2 | 1.52 × 103 | 9.7 | 201 | 5.5 | 74.9 | 55.5 | 83.6 | 354 | 108 | 137 | 0.13 | ||
Mean | 9.0 | 1.36 × 103 | 9.3 | 168 | 4.8 | 49.7 | 45.7 | 70.8 | 322 | 93.2 | 120 | 0.04 | ||
SD | 0.1 | 150 | 0.2 | 23.9 | 0.6 | 9.01 | 7.30 | 10.2 | 28.1 | 11.9 | 16.0 | 0.04 | ||
River water | Min | 7.6 | 239 | 5.1 | 20.1 | 0.6 | 17.3 | 7.70 | 0.01 | 88.5 | 8.50 | 4.40 | 0.01 | |
Max | 9.0 | 1.20 × 103 | 13 | 148 | 4.2 | 59.9 | 45.1 | 63.9 | 285 | 79.4 | 104 | 0.02 | ||
Mean | 8.2 | 459 | 9.1 | 42.4 | 1.6 | 32.6 | 17.7 | 21.1 | 159 | 20.3 | 24.1 | 0.02 | ||
SD | 0.4 | 246 | 1.8 | 32.9 | 1.1 | 11.8 | 9.50 | 15.6 | 51.4 | 19.1 | 26.9 | 0.00 | ||
Groundwater | Min | 5.2 | 558 | 1.9 | 31.9 | 0.4 | 13.5 | 8.10 | 0.01 | 143 | 31.2 | 17.0 | 0.04 | |
Max | 11 | 1.08 × 104 | 11 | 2.30 × 103 | 5.0 | 208 | 431 | 145 | 1.08 × 103 | 1.33 × 103 | 4.11 × 103 | 72.0 | ||
Mean | 7.6 | 2.90 × 103 | 4.8 | 501 | 1.4 | 63.5 | 76.5 | 56.8 | 406 | 333 | 465 | 9.44 | ||
SD | 1.1 | 2.51 ×103 | 2.4 | 538 | 1.0 | 44.0 | 90.2 | 33.6 | 271 | 375 | 856 | 15.9 | ||
Frozen Period | Lake water | Min | 8.0 | 467 | 8.9 | 43.5 | 6.8 | 7.10 | 9.70 | 7.30 | 191 | 24.5 | 15.8 | 0.01 |
Max | 9.6 | 1.90 × 103 | 16 | 309 | 42 | 35.0 | 36.6 | 62.8 | 522 | 156 | 31.6 | 0.05 | ||
Mean | 9.1 | 1.44 × 103 | 14 | 233 | 32 | 15.2 | 21.9 | 45.0 | 409 | 113 | 26.4 | 0.03 | ||
SD | 0.4 | 378 | 1.6 | 68.2 | 9.4 | 5.90 | 6.70 | 16.9 | 64.2 | 33.1 | 3.60 | 0.01 | ||
River water | Min | 8.0 | 145 | 9.1 | 19.6 | 2.9 | 8.50 | 3.90 | 2.40 | 114 | 15.1 | 7.60 | 0.02 | |
Max | 9.2 | 747 | 16 | 263 | 36 | 20.0 | 22.3 | 53.1 | 425 | 129 | 153 | 0.36 | ||
Mean | 8.5 | 340 | 13 | 89.1 | 12 | 15.8 | 10.1 | 20.2 | 225 | 47.4 | 47.5 | 0.19 | ||
SD | 0.4 | 237 | 2.2 | 99.8 | 13 | 3.20 | 5.50 | 18.6 | 115 | 46.0 | 59.2 | 0.17 | ||
Groundwater | Min | 6.8 | 346 | 3.2 | 34.4 | 1.8 | 4.20 | 4.02 | 0.02 | 164 | 14.8 | 17.4 | 0.62 | |
Max | 8.5 | 1.07 × 104 | 9.4 | 2.01 × 103 | 17 | 97.8 | 307 | 87.0 | 1.05 × 103 | 3.05 × 103 | 2.73 × 103 | 87.0 | ||
Mean | 7.8 | 2.24 × 103 | 5.9 | 506 | 4.8 | 22.0 | 37.1 | 31.1 | 483 | 539 | 429 | 26.8 | ||
SD | 0.4 | 2.45 × 103 | 1.9 | 546 | 3.3 | 18.8 | 63.0 | 21.5 | 272 | 741 | 639 | 23.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, W.; Xue, M.; Gu, X.; Ye, C.; Jiao, Y.; Liu, B.; Han, Y.; Tong, Y.; Zhang, X. Spatial-Temporal Characteristics and Influencing Factors of Lake Water and Groundwater Chemistry in Hulun Lake, Northeast China. Water 2023, 15, 937. https://doi.org/10.3390/w15050937
Wang W, Li W, Xue M, Gu X, Ye C, Jiao Y, Liu B, Han Y, Tong Y, Zhang X. Spatial-Temporal Characteristics and Influencing Factors of Lake Water and Groundwater Chemistry in Hulun Lake, Northeast China. Water. 2023; 15(5):937. https://doi.org/10.3390/w15050937
Chicago/Turabian StyleWang, Wenlin, Wenjing Li, Mengyong Xue, Xiaomin Gu, Chenghui Ye, Yanwen Jiao, Bo Liu, Yujie Han, Yi Tong, and Xiaofei Zhang. 2023. "Spatial-Temporal Characteristics and Influencing Factors of Lake Water and Groundwater Chemistry in Hulun Lake, Northeast China" Water 15, no. 5: 937. https://doi.org/10.3390/w15050937