Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = magnetostructural correlations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4868 KB  
Article
A Dinuclear Dysprosium(III) Single Molecule Magnet of Benzo[h]quinolin-10-ol
by Limin Zhou, Hongling Lv, Yuning Liang, Dongcheng Liu, Zaiheng Yao, Shuchang Luo and Zilu Chen
Magnetochemistry 2025, 11(9), 73; https://doi.org/10.3390/magnetochemistry11090073 - 24 Aug 2025
Viewed by 1006
Abstract
To develop single molecule magnets, a dinuclear complex [Dy2(HOBQ)4Cl6] (1) was prepared from the reaction of DyCl3 with benzo[h]quinolin-10-ol (HOBQ). Each Dy(III) ion shows a compressed octahedral geometry and the two Dy(III) [...] Read more.
To develop single molecule magnets, a dinuclear complex [Dy2(HOBQ)4Cl6] (1) was prepared from the reaction of DyCl3 with benzo[h]quinolin-10-ol (HOBQ). Each Dy(III) ion shows a compressed octahedral geometry and the two Dy(III) ions in 1 are bridged by two Cl ligands to construct a dinuclear structure with the four HOBQ ligands on the axial positions and six Cl ligands in the equatorial plane. Magnetic measurements showed that complex 1 is a field-induced single molecule magnet having an obvious magnetic hysteresis loop with an energy barrier of 71(2) K. These experimental results are corroborated by the ab initio complete active space self-consistent field (CASSCF) calculations which also interpret the magneto-structural correlation. It is a typical example to achieve Dy(III) SMM through regulating coordination geometry, i.e., lengthening equatorial coordination bonds and shortening axial ones to form a compressed octahedral geometry. Full article
Show Figures

Figure 1

15 pages, 5023 KB  
Article
Magneto-Structural Correlation in µ-Hydroxo-µ-Carboxylato Hetero-Bridged Dinuclear Oxidovanadium(IV) Complexes
by Ryo Yoshida, Masayuki Koikawa and Tadashi Tokii
Crystals 2024, 14(12), 1072; https://doi.org/10.3390/cryst14121072 (registering DOI) - 12 Dec 2024
Viewed by 940
Abstract
Hetero-bridged dinuclear oxidovanadium(IV) complexes, [(VO)2{HB(pz}3}2(μ-OH)(μ-O2CR)] [R = C2H5, 1; (CH3)3C, 2; (CH3)3CCH2, 3; Ph2CH, 4; Ph [...] Read more.
Hetero-bridged dinuclear oxidovanadium(IV) complexes, [(VO)2{HB(pz}3}2(μ-OH)(μ-O2CR)] [R = C2H5, 1; (CH3)3C, 2; (CH3)3CCH2, 3; Ph2CH, 4; Ph3C, 5; PhCH2CH2, and 6; {HB(pz)3} = hydrotris(pyrazolyl)borate], were synthesized and characterized using X-ray crystallography, infrared spectroscopy, UV-VIS spectroscopy, and elemental analysis. Structure analysis revealed that these complexes adopt a μ-hydroxo-μ-carboxylato hetero-bridged dinuclear structure. Magnetic measurements revealed ferromagnetic interactions (J ~ +20 cm−1) between two V(IV) ions. Full article
(This article belongs to the Special Issue The Synthesis and Prospects of Magnetic Materials)
Show Figures

Graphical abstract

21 pages, 4971 KB  
Article
Manganese (III) Compounds Derived from R-Salicylaldoxime and 9-Anthracenecarboxylate Ligands: A Study of Their Synthesis and Structural, Magnetic, and Luminescent Properties
by Berta Casanovas, Ramon Vicente, Mercè Font-Bardía and Mohamed Salah El Fallah
Magnetochemistry 2024, 10(8), 55; https://doi.org/10.3390/magnetochemistry10080055 - 5 Aug 2024
Cited by 2 | Viewed by 2021
Abstract
The reaction of Mn(II) salts in the air with different R-salicylaldehyde oximes and the sodium or cesium salts of 9-anthracenecarboxylato (9-AC) allows for the isolation of new six polynuclear compounds: [Mn3NaO(salox)3(9-AC)2(EtOH)3H2O]n·2EtOH [...] Read more.
The reaction of Mn(II) salts in the air with different R-salicylaldehyde oximes and the sodium or cesium salts of 9-anthracenecarboxylato (9-AC) allows for the isolation of new six polynuclear compounds: [Mn3NaO(salox)3(9-AC)2(EtOH)3H2O]n·2EtOH (1), [Mn3NaO(3-Me-salox)3(9-AC)2(EtOH)3H2O]n·EtOH (2), [Mn6O2(salox)6(9-AC)2(EtOH)2(H2O)2]·3EtOH (3), [Mn3O(3-Me-salox)3(9-AC)(EtOH)3(H2O)]·1.8EtOH·3H2O (4), [Mn6O2(Me-salox)6(9-AC)2(EtOH)4(H2O)2]·0.5H2O (5), and [Mn6O2(Et-salox)6(9-AC)2(EtOH)4(H2O)2]·3EtOH (6). H2salox is a salicylaldehyde oxime, H2(3-Me-salox) is a 3-methyl-salicylaldehyde oxime, H2Me-salox is a 1-(2-hydroxyphenyl)ethan-1-one oxime and a H2-Et-salox is 1-(2-hydroxyphenyl)propan-1-one oxime. Structurally, compounds 1 and 2 consist of chains of trinuclear {MnIII33-O)(salox)3}+ units connected by Na+ ions. Compounds 3, 5, and 6 are hexanuclear units formed by two parallel trinuclear units {MnIII33-O)(salox)3}+ or {MnIII33-O)(Me-salox)3}+ planes related through an inversion center. Compound 4 consists of two isolated [Mn3O(3-Me-salox)3(9-AC)(EtOH)3(H2O)] trinuclear molecules in the unit cell showing crystallographic differences. Magnetic studies reveal a set of antiferromagnetic interactions in compounds 1 and 2 and a combination of antiferromagnetic and ferromagnetic interactions in compounds 3, 5, and 6. In all cases, the magneto-structural correlation between the intramolecular MnIII-N-O-MnIII torsion angle and the magnetic exchange within these units have been confirmed. For compounds 5 and 6, ac magnetic measurements reveal the slow relaxation of magnetization with moderate energy barriers of 19.9 cm−1 and 31.1 cm−1, respectively. Absorbance and fluorescence measurements in solution show the transitions of the 9-anthracenecarboxylate chromophore for all the compounds. Full article
Show Figures

Figure 1

14 pages, 15928 KB  
Article
Inverse Magnetocaloric Effect in Heusler Ni44.4Mn36.2Sn14.9Cu4.5 Alloy at Low Temperatures
by Alexander P. Kamantsev, Yuriy S. Koshkid’ko, Ruslan Yu. Gaifullin, Irek I. Musabirov, Anatoliy V. Koshelev, Alexey V. Mashirov, Vladimir V. Sokolovskiy, Vasiliy D. Buchelnikov, Jacek Ćwik and Vladimir G. Shavrov
Metals 2023, 13(12), 1985; https://doi.org/10.3390/met13121985 - 7 Dec 2023
Cited by 4 | Viewed by 2139
Abstract
Direct measurements of the magnetocaloric effect were performed in a Heusler Ni44.4Mn36.2Sn14.9Cu4.5 alloy at cryogenic temperatures in magnetic fields up to 10 T. The maximum value of the inverse magnetocaloric effect in a 10 T field [...] Read more.
Direct measurements of the magnetocaloric effect were performed in a Heusler Ni44.4Mn36.2Sn14.9Cu4.5 alloy at cryogenic temperatures in magnetic fields up to 10 T. The maximum value of the inverse magnetocaloric effect in a 10 T field was ∆Tad = –2.7 K in the vicinity of the first-order magnetostructural phase transition at T0 = 117 K. Ab initio and Monte Carlo calculations were performed to discuss the effect of Cu doping into a Ni-Mn-Sn compound on the ground-state structural and magnetic properties. It is shown that with increasing Cu content the martensitic transition temperature decreases and the Curie temperature of austenite slightly increases. In general, the calculated transition temperatures and magnetization values correlated well with the experimental ones. Full article
(This article belongs to the Special Issue Metallic Functional Materials: Development and Applications)
Show Figures

Figure 1

18 pages, 3392 KB  
Article
5-Fluoro-1-Methyl-Pyrazol-4-yl-Substituted Nitronyl Nitroxide Radical and Its 3d Metal Complexes: Synthesis, Structure, and Magnetic Properties
by Ekaterina Kudryavtseva, Andrey Serykh, Bogdan Ugrak, Tatyana Dutova, Darina Nasyrova, Dmitrii Aleshin, Nikolay Efimov, Pavel Dorovatovskii, Artem Bogomyakov, Sergey Fokin, Galina Romanenko, Anna Sergeeva and Evgeny Tretyakov
Crystals 2023, 13(12), 1655; https://doi.org/10.3390/cryst13121655 - 30 Nov 2023
Cited by 6 | Viewed by 2088
Abstract
The metal–radical approach is a well-established synthetic way toward multi-spin systems that relies on the coordination of stable radical ligands with transition metal ions. The advantage offered by the use of paramagnetic ligands is that metal–radical magnetic exchange coupling is direct between the [...] Read more.
The metal–radical approach is a well-established synthetic way toward multi-spin systems that relies on the coordination of stable radical ligands with transition metal ions. The advantage offered by the use of paramagnetic ligands is that metal–radical magnetic exchange coupling is direct between the magnetic orbitals of the radical and metal ion. With the aim of further exploring this approach, crystals of four heterspin complexes, [M(hfac)2LF]2 {M = Mn, Co, or Ni and hfac = hexafluoroacetylacetonate} and [Cu(hfac)2LF]n, were obtained using a new fluorinated pyrazolyl-substituted nitronyl nitroxide radical, 4,4,5,5-tetramethyl-2-(5-fluoro-1-methyl-1H-pyrazol-4-yl)-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (LF) as a ligand. The newly synthesized complexes were fully characterized, including X-ray crystallography and magnetometry. XRD analysis revealed that complexes [M(hfac)2LF]2 have similar dimer structures in which a metal ion is in a six-coordinated environment with four O atoms from the two hfac ligands, one radical O atom, and one pyrazole N atom from ligand LF. Nonetheless, the packing patterns of the complexes were found to be considerably different. In [Mn(hfac)2LF]2, there are no magnetically important short contacts between manganese dimers. By contrast, in [Co(hfac)2LF]2 and [Ni(hfac)2LF]2, there are short contacts between non-coordinate O atoms of nitronyl nitroxide moieties. Magnetic behaviors of [M(hfac)2LF]2 showed that the M ions and the directly coordinated radicals are strongly antiferromagnetically coupled (JMn-ON = −84.1 ± 1.5 cm−1, JCo-ON = −134.3 ± 2.6 cm−1, and JNi-ON = −276.2 ± 2.1 cm−1; H^=2JS^MS^NO). Notably, the magnetization of [Mn(hfac)2LF]2 having molecular structure proved to be accompanied by hysteresis. The [Cu(hfac)2LF]n complex has a chain-polymer structure with alternating magnetic fragments: three spin exchange clusters {ONO–Cu(II)–ONO} and {Cu(II)} ions. Despite the direct coordination of radicals, its magnetic properties are weakly ferromagnetic (JCu-ON = 14.8 ± 0.3 cm−1). Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

22 pages, 9209 KB  
Review
Magnetostructural D-Correlations and Their Impact on Single-Molecule Magnetism
by Ján Titiš, Cyril Rajnák and Roman Boča
Inorganics 2023, 11(12), 452; https://doi.org/10.3390/inorganics11120452 - 23 Nov 2023
Cited by 3 | Viewed by 2566
Abstract
Functional dependence of the axial zero-field splitting parameter D with respect to a properly chosen geometrical parameter (Dstr) in metal complexes is termed the magnetostructural D-correlation. In mononuclear hexacoordinate Ni(II) complexes with the ground electronic term 3B1g ( [...] Read more.
Functional dependence of the axial zero-field splitting parameter D with respect to a properly chosen geometrical parameter (Dstr) in metal complexes is termed the magnetostructural D-correlation. In mononuclear hexacoordinate Ni(II) complexes with the ground electronic term 3B1g (3A2g in the regular octahedron), it proceeds along two intercepting straight lines, allowing for predicting the sign and magnitude of the D-parameter by knowing the X-ray structure alone; Dstr is constructed from the metal–ligand bond lengths. In hexacoordinate Co(II) complexes, it is applicable only in the segment of the compressed bipyramid where the ground electronic term 4B1g is orbitally non-degenerate so that the spin Hamiltonian formalism holds true. The D vs. Dstr correlation is strongly non-linear, and it is represented by a set of decreasing exponentials. In tetracoordinate Co(II) complexes, on the contrary, the angular distortion from the regular tetrahedron is crucial so that the appropriate structural parameter Dstr is constructed of bond angles. The most complex case is represented by pentacoordinated Co(II) systems, for which it is not yet possible to define a statistically significant correlation. All of these empirical correlations originate in the electronic structure of metal complexes that can be modelled using generalized crystal-field theory. As the barrier to spin reversal in single-molecule magnets is proportional to the D-value, for rational tuning and/or prediction of the single-molecule magnetic behaviour, knowledge/prediction of the D-parameter is beneficial. In this review, we present the statistical processing of an extensive set of structural and magnetic data on Co(II) and Ni(II) complexes, which were published over the past 15 years. Magnetostructural D-correlations defined for this data set are reviewed in detail. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

16 pages, 6449 KB  
Article
Effects of Difluorophenyl Substituents on Structural, Redox, and Magnetic Properties of Blatter Radicals
by Dmitry Gulyaev, Andrey Serykh, Evgeny Tretyakov, Anna Akyeva, Mikhail Syroeshkin, Dmitry E. Gorbunov, Svetlana V. Maltseva, Nina P. Gritsan, Galina Romanenko and Artem Bogomyakov
Catalysts 2023, 13(8), 1206; https://doi.org/10.3390/catal13081206 - 12 Aug 2023
Cited by 6 | Viewed by 2914
Abstract
Blatter radicals 1-(3,4-difluorophenyl)-(1a) and 1-(2,4-difluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1b) were prepared in good yields through oxidation of the corresponding amidrazones using MnO2 in dry CH2Cl2. Cyclic voltammetry showed that both radicals are oxidized and reduced [...] Read more.
Blatter radicals 1-(3,4-difluorophenyl)-(1a) and 1-(2,4-difluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (1b) were prepared in good yields through oxidation of the corresponding amidrazones using MnO2 in dry CH2Cl2. Cyclic voltammetry showed that both radicals are oxidized and reduced chemically and electrochemically reversibly in accordance with −1/0 and 0/+1 processes. EPR spectroscopy indicated that spin density is mainly delocalized on the triazinyl moiety of the heterocycle. The structure of all paramagnets was unambiguously confirmed by single-crystal X-ray diffraction, and two different 1D chains of alternating radicals were identified. 3,4-difluorophenyl-derivatives 1a are packed into columns composed of two kinds of alternating centrosymmetric dimers, having comparatively short intermolecular distances. In crystals of 2,4-difluorophenyl-derivative 1b, the parallel arrangement of bicyclic moieties and phenyl rings favors the formation of 1D regular chains wherein the radicals are related by translation parallel to the crystallographic stacking axis. Magnetic susceptibility measurements in the 2–300 K region showed that in crystals of the radicals, strong antiferromagnetic interactions are dominant. Subsequent fitting of the dependence of χT on T with 12-membered looped stacks gave the following best-fit parameters: for 1a, g = 2.01 ± 0.05, J1/kB = −292 ± 10 K (according to BS-DFT calculations J2 = 0.12 × J1 and J3 = 0.61 × J1); for 1b, g = 2.04 ± 0.01 J1/kB = −222 ± 17 K. For comparison, in a nonfluorinated related radical, there are only very weak intermolecular interactions along the columns (J/kB = −2.2 ± 0.2 K). These results illustrate the magnitude of the influence of the difluorophenyl substituents introduced into Blatter radicals on their structure and magnetic properties. Full article
(This article belongs to the Special Issue Free Radicals in Catalysis, Organic Synthesis, and Material Science)
Show Figures

Figure 1

22 pages, 6161 KB  
Article
Structural and Magnetic Analysis of a Family of Structurally Related Iron(III)-Oxo Clusters of Metal Nuclearity Fe8, Fe12Ca4, and Fe12La4
by Alok P. Singh, ChristiAnna L. Brantley, Kenneth Hong Kit Lee, Khalil A. Abboud, Juan E. Peralta and George Christou
Chemistry 2023, 5(3), 1599-1620; https://doi.org/10.3390/chemistry5030110 - 24 Jul 2023
Viewed by 3698
Abstract
The synthesis, crystal structure, and magnetic characterization are reported for three new structurally related iron(III) compounds (NHEt3)[Fe8O5(OH)5(O2PPh2)10] (1), [Fe12 Ca4O10(O2CPh) [...] Read more.
The synthesis, crystal structure, and magnetic characterization are reported for three new structurally related iron(III) compounds (NHEt3)[Fe8O5(OH)5(O2PPh2)10] (1), [Fe12 Ca4O10(O2CPh)10(hmp)4] (2), and [Fe12La4O10(OH)4(tbb)24] (3), where hmpH is 2-(hydroxymethyl)pyridine and tbbH is 4-tBu-benzoic acid. 1 was obtained from the reaction of Fe(NO3)3·9H2O, diphenylphosphinic acid (Ph2PO2H), and NEt3 in a 1:4:16 molar ratio in MeCN at 50 °C; 2 was obtained from the reaction of [Fe3O(O2CPh)6(H2O)3](NO3), Ca(NO3)2, and NEt3 in a 1:1:4:2 ratio at 130 °C; and 3 was obtained from the reaction of Fe(NO3)3·9H2O, La(NO3)3·6H2O, 4-tBu-benzoic acid, and NEt3 in a 1:1:4:4 ratio in PhCN at 140 °C. The core of 1 consists of two {Fe43-O)2}8+ butterfly units stacked on top of each other and bridged by O2− and HO ions. The cores of 2 and 3 also contain two stacked butterfly units, plus four additional Fe atoms, two at each end, and four M atoms (M = Ca2+ (2); La3+ (3)) on the sides. Variable-temperature (T) and solid-state dc and ac magnetization (M) data collected in the 1.8–300 K range revealed that 1 has an S = 0 ground state, 2 has a χMT value at low T consistent with the central Fe8 in a local S = 0 ground state and the two Fe3+ ions in each end-pair to be non-interacting, whereas 3 has a χMT value at low T consistent with these end-pairs each being ferromagnetically coupled with S = 5 ground states, plus intermolecular ferromagnetic interactions. These conclusions were reached from complementing the experimental studies with the calculation of the various Fe2 pairwise Jij exchange couplings by DFT computations and by using a magnetostructural correlation (MSC) for polynuclear Fe3+/O complexes, as well as a structural analysis of the intermolecular contacts in the crystal packing of 3. Full article
Show Figures

Figure 1

17 pages, 4837 KB  
Article
Magneto-Structural Analysis of Hydroxido-Bridged CuII2 Complexes: Density Functional Theory and Other Treatments
by Debpriyo Goswami, Shanti Gopal Patra and Debashis Ray
Magnetochemistry 2023, 9(6), 154; https://doi.org/10.3390/magnetochemistry9060154 - 10 Jun 2023
Cited by 3 | Viewed by 2663
Abstract
A selection of dimeric Cu(II) complexes with bidentate N,N′ ligands with the general formula [Cu(L)(X)(μ-OH)]2·nH2O and [Cu(L)(μ-OH)]2X2·nH2O were magneto-structurally analyzed using the Density Functional Theory (DFT). A Broken Symmetry-Density [...] Read more.
A selection of dimeric Cu(II) complexes with bidentate N,N′ ligands with the general formula [Cu(L)(X)(μ-OH)]2·nH2O and [Cu(L)(μ-OH)]2X2·nH2O were magneto-structurally analyzed using the Density Functional Theory (DFT). A Broken Symmetry-Density Functional Theory (BS-DFT) study was undertaken for these complexes with relevant decomposition schemes that gave insight into the effect of the nature of the ligand and coordination environment on the DFT-predicted coupling constants (J). The impact of the spin population, which correlates well with the Cu-O-Cu bridging angles and the calculated coupling constant (J) values, was studied. The models were further refined using a complete active space self-consistent field (CASSCF) while expanding the active space from 2 orbitals 2 electrons (2,2) to 10 orbitals 18 electrons (18,10). These models were approximated using multireference methods (n-electron valence state perturbation theory and difference dedicated configuration interaction), and a better approximation of J values was found as expected. Orbitals involved in the superexchange pathway were also visualized. Full article
(This article belongs to the Special Issue Advances in Magnetostructural Correlation)
Show Figures

Figure 1

19 pages, 5980 KB  
Review
Spin-Peierls, Spin-Ladder and Kondo Coupling in Weakly Localized Quasi-1D Molecular Systems: An Overview
by Jean-Paul Pouget
Magnetochemistry 2023, 9(2), 57; https://doi.org/10.3390/magnetochemistry9020057 - 13 Feb 2023
Cited by 7 | Viewed by 3020
Abstract
We review the magneto-structural properties of electron–electron correlated quasi-one- dimensional (1D) molecular organics. These weakly localized quarter-filled metallic-like systems with pronounced spin 1/2 antiferromagnetic (AF) interactions in stack direction exhibit a spin charge decoupling where magnetoelastic coupling picks up spin 1/2 to pair [...] Read more.
We review the magneto-structural properties of electron–electron correlated quasi-one- dimensional (1D) molecular organics. These weakly localized quarter-filled metallic-like systems with pronounced spin 1/2 antiferromagnetic (AF) interactions in stack direction exhibit a spin charge decoupling where magnetoelastic coupling picks up spin 1/2 to pair into S = 0 singlet dimers. This is well illustrated by the observation of a spin-Peierls (SP) instability in the (TMTTF)2X Fabre salts and related salts with the o-DMTTF donor. These instabilities are revealed by the formation of a pseudo-gap in the spin degrees of freedom triggered by the development of SP structural correlations. The divergence of these 1D fluctuations, together with the interchain coupling, drive a 3D-SP ground state. More surprisingly, we show that the Per2-M(mnt)2 system, undergoing a Kondo coupling between the metallic Per stack and the dithiolate stack of localized AF coupled spin ½ (for M = Pd, Ni, Pt), enhances the SP instability. Then, we consider the zig-zag spin ladder DTTTF2-M(mnt)2 system, where unusual singlet ground state properties are due to a combination of a 4kF charge localization effect in stack direction and a 2kF SP instability along the zig-zag ladder. Finally, we consider some specific features of correlated 1D systems concerning the coexistence of symmetrically different 4kF BOW and 4kF CDW orders in quarter-filled organics, and the nucleation of solitons in perturbed SP systems. Full article
Show Figures

Figure 1

24 pages, 12402 KB  
Article
New Dinuclear Macrocyclic Copper(II) Complexes as Potentially Fluorescent and Magnetic Materials
by Magdalena Barwiolek, Dominika Jankowska, Anna Kaczmarek-Kędziera, Iwona Lakomska, Jedrzej Kobylarczyk, Robert Podgajny, Paweł Popielarski, Joanna Masternak, Maciej Witwicki and Tadeusz M. Muzioł
Int. J. Mol. Sci. 2023, 24(3), 3017; https://doi.org/10.3390/ijms24033017 - 3 Feb 2023
Cited by 9 | Viewed by 4403
Abstract
Two dinuclear copper(II) complexes with macrocyclic Schiff bases K1 and K2 were prepared by the template reaction of (R)-(+)-1,1′-binaphthalene-2,2′-diamine and 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde K1, or 4-tert-butyl-2,6-diformylphenol K2 with copper(II) chloride dihydrate. The compounds were characterized by spectroscopic methods. X-ray crystal [...] Read more.
Two dinuclear copper(II) complexes with macrocyclic Schiff bases K1 and K2 were prepared by the template reaction of (R)-(+)-1,1′-binaphthalene-2,2′-diamine and 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde K1, or 4-tert-butyl-2,6-diformylphenol K2 with copper(II) chloride dihydrate. The compounds were characterized by spectroscopic methods. X-ray crystal structure determination and DFT calculations confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of K2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The magnetic study revealed very strong antiferromagnetic CuII-CuII exchange interactions, which were supported by magneto-structural correlation and DFT calculations conducted within a broken symmetry (BS) framework. Complexes K1 and K2 exhibited luminescent properties that may be of great importance in the search for new OLEDs. Both K1 and K2 complexes showed emissions in the range of 392–424 nm in solutions at various polarities. Thin materials of the studied compounds were deposited on Si(111) by the spin-coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), and fluorescence spectroscopy. The thermally deposited K1 and K2 materials showed high fluorescence intensity in the range of 318–531 nm for K1/Si and 326–472 nm for the K2/Si material, indicating that they could be used in optical devices. Full article
(This article belongs to the Special Issue Oligonuclear Metal Complexes with Schiff Base Ligands 2.0)
Show Figures

Figure 1

12 pages, 3586 KB  
Article
Correlation between Cutting Clearance, Deformation Texture, and Magnetic Loss Prediction in Non-Oriented Electrical Steels
by Ján Füzer, Samuel Dobák, Ivan Petryshynets, Peter Kollár, František Kováč and Ján Slota
Materials 2021, 14(22), 6893; https://doi.org/10.3390/ma14226893 - 15 Nov 2021
Cited by 13 | Viewed by 2398
Abstract
Manufacturing the magnetic cores in electrical machines impacts the magnetic performance of the electrical steel by inducing stresses near the cutting edge. In this paper, energy loss behaviour in non-oriented electrical steels punched with different cutting clearances before and after annealing is investigated. [...] Read more.
Manufacturing the magnetic cores in electrical machines impacts the magnetic performance of the electrical steel by inducing stresses near the cutting edge. In this paper, energy loss behaviour in non-oriented electrical steels punched with different cutting clearances before and after annealing is investigated. An experimental shear cutting tool was employed to punch the ring-shaped parts from electrical steels in a finished state with four different values of cutting clearance corresponding to 1%, 3%, 5%, and 7% of the sheet thickness. The effect of cutting clearance on the magnetic losses is derived and analysed by the statistical theory of losses and associated loss separation concept including the analysis of movable magnetic objects. In this framework, this paper assesses the combined effect of cutting clearance, frequency, and heat treatment on the hysteresis loops and iron losses in non-oriented FeSi electrical steels. Measurements have been performed from quasi-static to 400 Hz at peak induction Bp = 1.0 T. Both states before and after heat treatment have been considered. The excess loss is observed as the most sensitive loss component to cutting clearance and its magneto–structural correlation is quantified. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

10 pages, 3656 KB  
Article
Magnetism and Thermomechanical Properties in Si Substituted MnCoGe Compounds
by Abdul Rashid Abdul Rahman, Muhamad Faiz Md Din, Jianli Wang, Nur Sabrina Suhaimi, Nurul Hayati Idris, Shi Xue Dou, Mohammad Ismail, Muhammad Zahir Hassan and Mohd Taufik Jusoh
Crystals 2021, 11(6), 694; https://doi.org/10.3390/cryst11060694 - 17 Jun 2021
Cited by 11 | Viewed by 2988
Abstract
MnCoGe-based compounds have been increasingly studied due to their possible large magnetocaloric effect correlated to the magnetostructural coupling. In this research, a comprehensive study of structure, magnetic phase transition, magnetocaloric effect and thermomechanical properties for MnCoGe1−xSix is reported. Room temperature [...] Read more.
MnCoGe-based compounds have been increasingly studied due to their possible large magnetocaloric effect correlated to the magnetostructural coupling. In this research, a comprehensive study of structure, magnetic phase transition, magnetocaloric effect and thermomechanical properties for MnCoGe1−xSix is reported. Room temperature X-ray diffraction indicates that the MnCoGe1−xSix (x = 0, 0.05, 0.1, 0.15 and 0.2) alloys have a major phase consisting of an orthorhombic TiNiSi-type structure with increasing lattice parameter b and decreasing others (a and c) with increasing Si concentration. Along with M-T and DSC measurements, it is indicated that the Tc value increased with higher Si concentration and decreased for structural transition temperature Tstr. The temperature dependence of the magnetization curves overlaps completely, indicating that there is no thermal hysteresis, and it is shown that the transition is the second-order type. It is also shown that the decreased magnetization on the replacement of Si for Ge decreases the value of −ΔSM from −ΔSM~8.36 J kg−1 K−1 at x = 0 to −ΔSM~5.49 J kg−1 K−1 at x = 0.2 with 5 T applied field. The performed Landau theory has confirmed the second-order transition in this study, which is consistent with the Banerjee criterion. The magnetic measurement and thermomechanical properties revealed the structural transition that takes place with Si substitution of Ge. Full article
(This article belongs to the Special Issue Magnetocaloric Effect and Giant Negative Thermal Expansion)
Show Figures

Figure 1

29 pages, 10384 KB  
Review
High-Coordinate Mononuclear Ln(III) Complexes: Synthetic Strategies and Magnetic Properties
by Joydev Acharya, Pankaj Kalita and Vadapalli Chandrasekhar
Magnetochemistry 2021, 7(1), 1; https://doi.org/10.3390/magnetochemistry7010001 - 22 Dec 2020
Cited by 14 | Viewed by 4474
Abstract
Single-molecule magnets involving monometallic 4f complexes have been investigated extensively in last two decades to understand the factors that govern the slow magnetization relaxation behavior in these complexes and to establish a magneto-structural correlation. The prime goal in this direction is to suppress [...] Read more.
Single-molecule magnets involving monometallic 4f complexes have been investigated extensively in last two decades to understand the factors that govern the slow magnetization relaxation behavior in these complexes and to establish a magneto-structural correlation. The prime goal in this direction is to suppress the temperature independent quantum tunneling of magnetization (QTM) effect via fine-tuning the coordination geometry/microenvironment. Among the various coordination geometries that have been pursued, complexes containing high coordination number around Ln(III) are sparse. Herein, we present a summary of the various synthetic strategies that were used for the assembly of 10- and 12-coordinated Ln(III) complexes. The magnetic properties of such complexes are also described. Full article
(This article belongs to the Special Issue From Magnetic Anisotropy to Molecular Magnets: Theory and Experiments)
Show Figures

Figure 1

31 pages, 7002 KB  
Article
Self-Assembly of Antiferromagnetically-Coupled Copper(II) Supramolecular Architectures with Diverse Structural Complexities
by Santokh S. Tandon, Scott D. Bunge, Neil Patel, Esther C. Wang and Laurence K. Thompson
Molecules 2020, 25(23), 5549; https://doi.org/10.3390/molecules25235549 - 26 Nov 2020
Cited by 12 | Viewed by 3584
Abstract
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5 [...] Read more.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1. Full article
(This article belongs to the Special Issue Bonding in Inorganic and Coordination Compounds)
Show Figures

Figure 1

Back to TopTop