Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = magnetized black holes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 317 KiB  
Article
Phenomenological Charged Extensions of the Quantum Oppenheimer–Snyder Collapse Model
by S. Habib Mazharimousavi
Universe 2025, 11(8), 257; https://doi.org/10.3390/universe11080257 - 4 Aug 2025
Viewed by 115
Abstract
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within [...] Read more.
This work presents a semi-classical, quantum-corrected model of gravitational collapse for a charged, spherically symmetric dust cloud, extending the classical Oppenheimer–Snyder (OS) framework through loop quantum gravity effects. Our goal is to study phenomenological quantum modifications to geometry, without necessarily embedding them within full loop quantum gravity (LQG). Building upon the quantum Oppenheimer–Snyder (qOS) model, which replaces the classical singularity with a nonsingular bounce via a modified Friedmann equation, we introduce electric and magnetic charges concentrated on a massive thin shell at the boundary of the dust ball. The resulting exterior spacetime generalizes the Schwarzschild solution to a charged, regular black hole geometry akin to a quantum-corrected Reissner–Nordström metric. The Israel junction conditions are applied to match the interior APS (Ashtekar–Pawlowski–Singh) cosmological solution to the charged exterior, yielding constraints on the shell’s mass, pressure, and energy. Stability conditions are derived, including a minimum radius preventing full collapse and ensuring positivity of energy density. This study also examines the geodesic structure around the black hole, focusing on null circular orbits and effective potentials, with implications for the observational signatures of such quantum-corrected compact objects. Full article
Show Figures

Figure 1

12 pages, 5751 KiB  
Article
Chaos of Charged Particles in Quadrupole Magnetic Fields Under Schwarzschild Backgrounds
by Qihan Zhang and Xin Wu
Universe 2025, 11(7), 234; https://doi.org/10.3390/universe11070234 - 16 Jul 2025
Viewed by 172
Abstract
A four-vector potential of an external test electromagnetic field in a Schwarzschild background is described in terms of a combination of dipole and quadrupole magnetic fields. This combination is an interior solution of the source-free Maxwell equations. Such external test magnetic fields cause [...] Read more.
A four-vector potential of an external test electromagnetic field in a Schwarzschild background is described in terms of a combination of dipole and quadrupole magnetic fields. This combination is an interior solution of the source-free Maxwell equations. Such external test magnetic fields cause the dynamics of charged particles around the black hole to be nonintegrable, and are mainly responsible for chaotic dynamics of charged particles. In addition to the external magnetic fields, some circumstances should be required for the onset of chaos. The effect of the magnetic fields on chaos is shown clearly through an explicit symplectic integrator and a fast Lyapunov indicator. The inclusion of the quadrupole magnetic fields easily induces chaos, compared with that of the dipole magnetic fields. This result is because the Lorentz forces from the quadrupole magnetic fields are larger than those from the dipole magnetic fields. In addition, the Lorentz forces act as attractive forces, which are helpful for bringing the occurrence of chaos in the nonintegrable case. Full article
Show Figures

Figure 1

20 pages, 8277 KiB  
Article
Investigating the Role of Intravoxel Incoherent Motion Diffusion-Weighted Imaging in Evaluating Multiple Sclerosis Lesions
by Othman I. Alomair, Sami A. Alghamdi, Abdullah H. Abujamea, Ahmed Y. AlfIfi, Yazeed I. Alashban and Nyoman D. Kurniawan
Diagnostics 2025, 15(10), 1260; https://doi.org/10.3390/diagnostics15101260 - 15 May 2025
Viewed by 724
Abstract
Background: Multiple sclerosis (MS) is a chronic and heterogeneous disease characterized by demyelination and axonal loss and damage. Magnetic resonance imaging (MRI) has been employed to distinguish these changes in various types of MS lesions. Objectives: We aimed to evaluate intravoxel incoherent [...] Read more.
Background: Multiple sclerosis (MS) is a chronic and heterogeneous disease characterized by demyelination and axonal loss and damage. Magnetic resonance imaging (MRI) has been employed to distinguish these changes in various types of MS lesions. Objectives: We aimed to evaluate intravoxel incoherent motion (IVIM) diffusion and perfusion MRI metrics across different brain regions in healthy individuals and various types of MS lesions, including enhanced, non-enhanced, and black hole lesions. Methods: A prospective study included 237 patients with MS (65 males and 172 females) and 29 healthy control participants (25 males and 4 females). The field strength was 1.5 Tesla. The imaging sequences included three-dimensional (3D) T1, 3D fluid-attenuated inversion recovery, two-dimensional (2D) T1, T2-weighted imaging, and 2D diffusion-weighted imaging (DWI) sequences. IVIM-derived parameters—apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f)—were quantified for commonly observed lesion types (2506 lesions from 224 patients with MS, excluding 13 patients due to MRI artifacts or not meeting the diagnostic criteria for RR-MS) and for corresponding brain regions in 29 healthy control participants. A one-way analysis of variance, followed by post-hoc analysis (Tukey’s test), was performed to compare mean values between the healthy and MS groups. Receiver operating characteristic curve analyses, including area under the curve, sensitivity, and specificity, were conducted to determine the cutoff values of IVIM parameters for distinguishing between the groups. A p-value of ≤0.05 and 95% confidence intervals were used to report statistical significance and precision, respectively. Results: All IVIM parametric maps in this study discriminated among most MS lesion types. ADC, D, and D* values for MS black hole lesions were significantly higher (p < 0.0001) than those for other MS lesions and healthy controls. ADC, D, and D* maps demonstrated high sensitivity and specificity, whereas f maps exhibited low sensitivity but high specificity. Conclusions: IVIM parameters provide valuable diagnostic and clinical insights by demonstrating high sensitivity and specificity in evaluating different categories of MS lesions. Full article
(This article belongs to the Special Issue Neurological Diseases: Biomarkers, Diagnosis and Prognosis)
Show Figures

Figure 1

15 pages, 368 KiB  
Article
Modified F(R,T)-Gravity Model Coupled with Magnetized Strange Quark Matter Fluid
by Mohd Danish Siddiqi, Meraj Ali Khan and Ibrahim Al-Dayel
Mathematics 2025, 13(4), 586; https://doi.org/10.3390/math13040586 - 10 Feb 2025
Viewed by 751
Abstract
This research note presents the properties of the F(R,T)-gravity model in combination with magnetized strange quark matter. We obtain the equation of state for the magnetized strange quark matter in the F(R,T) [...] Read more.
This research note presents the properties of the F(R,T)-gravity model in combination with magnetized strange quark matter. We obtain the equation of state for the magnetized strange quark matter in the F(R,T)-gravity model endowed with the Lagrangian through of Ricci curvature. We also examine the Ricci solitons supported by a time-like conformal vector field in F(R,T)-gravity, attached with magnetized strange quark matter fluid. Within this ongoing research, we give an estimate of the total quark pressure and total density in the phantom barrier and the radiation epochs of the Universe. Finally, using Ricci solitons, we study the various energy conditions, some black holes criteria, and Penrose’s singularity theorem for magnetized strange quark matter fluid spacetime coupled with the F(R,T)-gravity model. Full article
Show Figures

Figure 1

18 pages, 852 KiB  
Article
Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar
by Audrey Trova and Eva Hackmann
Universe 2025, 11(2), 45; https://doi.org/10.3390/universe11020045 - 1 Feb 2025
Viewed by 688
Abstract
Recent studies have focused on how spinning black holes (BHs) within a binary system containing a strongly magnetized neutron star, then immersed in external magnetic fields, can acquire charge through mechanisms like the Wald process and how this charge could power pulsar-like electromagnetic [...] Read more.
Recent studies have focused on how spinning black holes (BHs) within a binary system containing a strongly magnetized neutron star, then immersed in external magnetic fields, can acquire charge through mechanisms like the Wald process and how this charge could power pulsar-like electromagnetic radiation. Those objects called “Black hole pulsar” mimic the behaviour of a traditional pulsar, and they can generate electromagnetic fields, such as magnetic dipoles. Charged particles within an accretion disk around the black hole would then be influenced not only by the gravitational forces but also by electromagnetic forces, leading to different geometries and dynamics. In this context, we focus here on the interplay of the magnetic dipole and the accretion disk. We construct the equilibrium structures of non-conducting charged perfect fluids orbiting Kerr black holes under the influence of a dipole magnetic field aligned with the rotation axis of the BH. The dynamics of the accretion disk in such a system are shaped by a complex interplay between the non-uniform, non-Keplerian angular momentum distribution, the black hole’s induced magnetic dipole, and the fluid’s charge. We show how these factors jointly influence key properties of the disk, such as its geometry, aspect ratio, size, and rest mass density. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

17 pages, 1218 KiB  
Article
Exploring the Enigma of Particle Dynamics and Plasma Lensing Using Einstein–Euler–Heisenberg Black Hole Geometry
by Allah Ditta, Raja Sikander Mehmood, Muhammad Fiaz, Bismillah Bibi, Sana Deen, Rimsha Jaffar and Asif Mahmood
Universe 2025, 11(1), 19; https://doi.org/10.3390/universe11010019 - 13 Jan 2025
Cited by 1 | Viewed by 757
Abstract
The unified Einstein–Euler–Heisenberg theory is utilized to investigate the particle motion and weak gravitational lensing characteristics of black holes. This black hole solution is developed using spherically symmetric possessing electric and magnetic charges. Quantum electrodynamics corrections reveal a screening effect for BH electric [...] Read more.
The unified Einstein–Euler–Heisenberg theory is utilized to investigate the particle motion and weak gravitational lensing characteristics of black holes. This black hole solution is developed using spherically symmetric possessing electric and magnetic charges. Quantum electrodynamics corrections reveal a screening effect for BH electric charges and paramagnetic impacts on magnetic charges. We analyzed the motion of massive as well as massless particles by studying their effective potential, event horizon, photon orbit and inner circular orbit. It was demonstrated that magnetic and electric fields of spherically symmetric black holes have significant impact. Then, we also delve to study the weak gravitational lensing phenomenon. A comprehensive approach was employed to investigate this phenomenon and explore the angle of deflection of light rays near magnetically and electrically charged black holes. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

14 pages, 3234 KiB  
Article
Scalar Greybody Radiation of “NRIGP” Black Hole
by Sara Kanzi
Symmetry 2025, 17(1), 42; https://doi.org/10.3390/sym17010042 - 29 Dec 2024
Cited by 1 | Viewed by 641
Abstract
The present paper investigates the greybody radiation of a general metric including the significant black hole parameters. The fraction of Hawking radiation (HR) that succeeds in achieving infinity is known as “greybody radiation” or transmission probability. In this study, the focus is on [...] Read more.
The present paper investigates the greybody radiation of a general metric including the significant black hole parameters. The fraction of Hawking radiation (HR) that succeeds in achieving infinity is known as “greybody radiation” or transmission probability. In this study, the focus is on the black hole parameters by which greybody radiation could be affected, such as electric and magnetic charges “e” and “g”, respectively, cosmological constant “Λ”, and Taub-Nut “l”. In this regard, we use the nonrotating form of the improved Griffiths–Podolsk (NRIGP) metric which contains the factors “Λ,l,e,g”, all in a single metric. This study allows us to observe the behavior of the scalar perturbation and greybody radiation of each indicated parameter in the presence of the other variables. The spacetime around the black hole behaves as a barrier for particles, and the greybody factor strongly depends on the black hole potential barrier. Therefore, we first studied the scalar perturbation and evaluated the actions of the effective potential by the regarded parameters. The depicted figures for variables such as magnetic charge “g” confirm the consistency between the effective potential and the greybody factor. In this area of study, symmetry plays an essential but hidden role. In the current study, we also consider that all the particles around a black hole have the same symmetry. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 1057 KiB  
Article
Black Holes with a Cloud of Strings and Quintessence in a Non-Linear Electrodynamics Scenario
by Francinaldo Florencio do Nascimento, Valdir Barbosa Bezerra and Jefferson de Morais Toledo
Universe 2024, 10(11), 430; https://doi.org/10.3390/universe10110430 - 19 Nov 2024
Cited by 4 | Viewed by 1279
Abstract
We obtain exact black hole solutions to Einstein gravity coupled with a nonlinear electrodynamics field, in the presence of a cloud of strings and quintessence, as sources. The solutions have four parameters, namely m, k, a, and α, corresponding [...] Read more.
We obtain exact black hole solutions to Einstein gravity coupled with a nonlinear electrodynamics field, in the presence of a cloud of strings and quintessence, as sources. The solutions have four parameters, namely m, k, a, and α, corresponding to the physical mass of the black hole, the nonlinear charge of a self-gravitating magnetic field, the cloud of strings, and the intensity of the quintessential fluid. The consequences of these sources on the regularity or singularity of the solutions, on their horizons, as well as on the energy conditions, are discussed. We study some aspects concerning the thermodynamics of the black hole, by taking into account the mass, Hawking temperature, and heat capacity and show how these quantities depend on the presence of the cloud of strings and quintessence, in the scenario considered. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

14 pages, 1789 KiB  
Article
4D Embedded Rotating Black Hole as a Particle Accelerator in the Presence of Magnetic Fields
by Abraão J. S. Capistrano, Carlos Henrique Coimbra-Araújo and Rita de Cássia dos Anjos
Universe 2024, 10(9), 355; https://doi.org/10.3390/universe10090355 - 4 Sep 2024
Viewed by 1311
Abstract
We analyze a rotating black hole (BH) in a four-dimensional space-time embedded in five-dimensional flat bulk. In Boyer–Lindquist coordinates, we use a generic extension of the Kerr metric by the line element of Gürses–Gürsey metric. We discuss their horizon properties and shadow cast [...] Read more.
We analyze a rotating black hole (BH) in a four-dimensional space-time embedded in five-dimensional flat bulk. In Boyer–Lindquist coordinates, we use a generic extension of the Kerr metric by the line element of Gürses–Gürsey metric. We discuss their horizon properties and shadow cast which is tailored by the influence of the extrinsic curvature. By means of the model based on the Nash–Greene theorem, we analyze the Gürses–Gürsey metric embedded in five dimensions acting as a rotating “charged” BH which may be regarded as a source of ultrahigh-energy cosmic rays (UHECRs). We also show that this type of BH presents a different structure of the accretion disk which is modified by the extrinsic curvature leading to an enlargement of the photons ring and an increase in the BH’s inner shadow. In the presence of a magnetic field, our initial results suggest that such BHs may be efficient free-test particle accelerators orbiting the inner stable circular orbit (ISCO). Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

10 pages, 1034 KiB  
Review
X-ray Polarization of Blazars and Radio Galaxies Measured by the Imaging X-ray Polarimetry Explorer
by Alan P. Marscher, Laura Di Gesu, Svetlana G. Jorstad, Dawoon E. Kim, Ioannis Liodakis, Riccardo Middei and Fabrizio Tavecchio
Galaxies 2024, 12(4), 50; https://doi.org/10.3390/galaxies12040050 - 22 Aug 2024
Cited by 6 | Viewed by 1828
Abstract
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published [...] Read more.
X-ray polarization, which now can be measured by the Imaging X-ray Polarimetry Explorer (IXPE), is a new probe of jets in the supermassive black hole systems of active galactic nuclei (AGNs). Here, we summarize IXPE observations of radio-loud AGNs that have been published thus far. Blazars with synchrotron spectral energy distributions (SEDs) that peak at X-ray energies are routinely detected. The degree of X-ray polarization is considerably higher than at longer wavelengths. This is readily explained by energy stratification of the emission regions when electrons lose energy via radiation as they propagate away from the sites of particle acceleration as predicted in shock models. However, the 2–8 keV polarization electric vector is not always aligned with the jet direction as one would expect unless the shock is oblique. Magnetic reconnection may provide an alternative explanation. The rotation of the polarization vector in Mrk421 suggests the presence of a helical magnetic field in the jet. In blazars with lower-frequency peaks and the radio galaxy Centaurus A, the non-detection of X-ray polarization by IXPE constrains the X-ray emission mechanism. Full article
Show Figures

Figure 1

11 pages, 318 KiB  
Article
Thermodynamics of Magnetic Black Holes with Nonlinear Electrodynamics in Extended Phase Space
by Sergey Il’ich Kruglov
Universe 2024, 10(7), 295; https://doi.org/10.3390/universe10070295 - 13 Jul 2024
Cited by 1 | Viewed by 990
Abstract
We study Einstein’s gravity in AdS space coupled to nonlinear electrodynamics. Thermodynamics in extended phase space of magnetically charged black holes is investigated. We compute the metric and mass functions and their asymptotics, showing that black holes may have one or two horizons. [...] Read more.
We study Einstein’s gravity in AdS space coupled to nonlinear electrodynamics. Thermodynamics in extended phase space of magnetically charged black holes is investigated. We compute the metric and mass functions and their asymptotics, showing that black holes may have one or two horizons. The metric function is regular, f(0)=1, and corrections to the Reissner–Nordström solution are in the order of O(r3) when the Schwarzschild mass is zero. We prove that the first law of black hole thermodynamics and the generalized Smarr relation hold. The magnetic potential and vacuum polarization conjugated to coupling are computed and depicted. We calculate the Gibbs free energy and the heat capacity showing that first-order and second-order phase transitions take place. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

26 pages, 2267 KiB  
Article
Reconstruction of Fermi and eROSITA Bubbles from Magnetized Jet Eruption with Simulations
by Che-Jui Chang and Jean-Fu Kiang
Universe 2024, 10(7), 279; https://doi.org/10.3390/universe10070279 - 27 Jun 2024
Cited by 1 | Viewed by 1702
Abstract
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied [...] Read more.
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied to simulate a jet eruption from our galactic center and to reconstruct the observed Fermi bubbles and eROSITA bubbles. High-energy non-thermal electrons are excited around forward shock and discontinuity transition regions in the simulated plasma distributions. The γ-ray and X-ray emissions from these electrons manifest patterns on the skymap that match the observed Fermi bubbles and eROSITA bubbles, respectively, in shape, size and radiation intensity. The influence of the background magnetic field, initial mass distribution in the Galaxy, and the jet parameters on the plasma distributions and hence these bubbles is analyzed. Subtle effects on the evolution of plasma distributions attributed to the adoption of a galactic disk model versus a spiral-arm model are also studied. Full article
(This article belongs to the Special Issue Black Holes and Relativistic Jets)
Show Figures

Figure 1

18 pages, 8503 KiB  
Article
Effects of Two Quantum Correction Parameters on Chaotic Dynamics of Particles near Renormalized Group Improved Schwarzschild Black Holes
by Junjie Lu and Xin Wu
Universe 2024, 10(7), 277; https://doi.org/10.3390/universe10070277 - 26 Jun 2024
Cited by 2 | Viewed by 1725
Abstract
A renormalized group improved Schwarzschild black hole spacetime contains two quantum correction parameters. One parameter γ represents the identification of cutoff of the distance scale, and another parameter Ω stems from nonperturbative renormalization group theory. The two parameters are constrained by the data [...] Read more.
A renormalized group improved Schwarzschild black hole spacetime contains two quantum correction parameters. One parameter γ represents the identification of cutoff of the distance scale, and another parameter Ω stems from nonperturbative renormalization group theory. The two parameters are constrained by the data from the shadow of M87* central black hole. The dynamics of electrically charged test particles around the black hole are integrable. However, when the black hole is immersed in an external asymptotically uniform magnetic field, the dynamics are not integrable and may allow for the occurrence of chaos. Employing an explicit symplectic integrator, we survey the contributions of the two parameters to the chaotic dynamical behavior. It is found that a small change of the parameter γ constrained by the shadow of M87* black hole has an almost negligible effect on the dynamical transition of particles from order to chaos. However, a small decrease in the parameter Ω leads to an enhancement in the strength of chaos from the global phase space structure. A theoretical interpretation is given to the different contributions. The term with the parameter Ω dominates the term with the parameter γ, even if the two parameters have same values. In particular, the parameter Ω acts as a repulsive force, and its decrease means a weakening of the repulsive force or equivalently enhancing the attractive force from the black hole. On the other hand, there is a positive Lyapunov exponent that is universally given by the surface gravity of the black hole when Ω0 is small and the external magnetic field vanishes. In this case, the horizon would influence chaotic behavior in the motion of charged particles around the black hole surrounded by the external magnetic field. This point can explain why a smaller value of the renormalization group parameter would much easily induce chaos than a larger value. Full article
Show Figures

Figure 1

11 pages, 3803 KiB  
Article
Wave-Particle Interactions in Astrophysical Plasmas
by Héctor Pérez-De-Tejada
Galaxies 2024, 12(3), 28; https://doi.org/10.3390/galaxies12030028 - 6 Jun 2024
Viewed by 1065
Abstract
Dissipation processes derived from the kinetic theory of gases (shear viscosity and heat conduction) are employed to examine the solar wind that interacts with planetary ionospheres. The purpose of this study is to estimate the mean free path of wave-particle interactions that produce [...] Read more.
Dissipation processes derived from the kinetic theory of gases (shear viscosity and heat conduction) are employed to examine the solar wind that interacts with planetary ionospheres. The purpose of this study is to estimate the mean free path of wave-particle interactions that produce a continuum response in the plasma behavior. Wave-particle interactions are necessary to support the fluid dynamic interpretation that accounts for the interpretation of various features measured in a solar wind–planet ionosphere region; namely, (i) the transport of solar wind momentum to an upper ionosphere in the presence of a velocity shear, and (ii) plasma heating produced by momentum transport. From measurements conducted in the solar wind interaction with the Venus ionosphere, it is possible to estimate that in general terms, the mean free path of wave-particle interactions reaches λH ≥ 1000 km values that are comparable to the gyration radius of the solar wind particles in their Larmor motion within the local solar wind magnetic field. Similar values are also applicable to conditions measured by the Mars ionosphere and in cometary plasma wakes. Considerations are made in regard to the stochastic trajectories of the plasma particles that have been implied from the measurements made in planetary environments. At the same time, it is as possible that the same phenomenon is applicable to the interaction of stellar winds with the ionosphere of exoplanets, and also in regions where streaming ionized gases reach objects that are subject to rotational motion in other astrophysical problems (galactic flow–plasma interactions, black holes, etc.). Full article
Show Figures

Figure 1

8 pages, 502 KiB  
Article
On the Role of the Tail Term in Electromagnetic Radiation Reaction
by Zdeněk Stuchlík, Martin Kološ, Arman Tursunov and Dmitri Gal’tsov
Universe 2024, 10(6), 249; https://doi.org/10.3390/universe10060249 - 3 Jun 2024
Cited by 3 | Viewed by 994
Abstract
In a recent study devoted to the influence of electromagnetic radiation reaction on the motion of radiating charged particles in magnetized black hole spacetimes the authors claim that the tail term cannot be neglected in the complete DeWitt–Brehme equation, putting into doubt the [...] Read more.
In a recent study devoted to the influence of electromagnetic radiation reaction on the motion of radiating charged particles in magnetized black hole spacetimes the authors claim that the tail term cannot be neglected in the complete DeWitt–Brehme equation, putting into doubt the previous papers where such an approximation was used. Here, we demonstrate by using simple dimensional arguments that such a statement is misleading in many astrophysically relevant situations. In the case of relativistic electrons moving around a stellar-mass black hole, the tail term is ignorable if a magnetic field of at least a few Gauss is present.On the other hand, in different situations, the tail term can be relevant, as demonstrated in the case of orbital widening, where it can even amplify the effect. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

Back to TopTop