Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = magnetic-plasmonic nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 3816 KiB  
Review
Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications
by Natalia Lorela Paul, Catalin Ovidiu Popa and Rodica Elena Ionescu
Biosensors 2025, 15(8), 472; https://doi.org/10.3390/bios15080472 - 22 Jul 2025
Viewed by 390
Abstract
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential [...] Read more.
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential of MTB, a precise understanding of the structural, surface, and functional properties of these biologically produced nanoparticles is required. Given these concerns, this review provides a focused synthesis of the most widely used microscopic and spectroscopic methods applied in the characterization of MTB and their associated MNPs, covering the latest research from January 2022 to May 2025. Specifically, various optical microscopy techniques (e.g., transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM)) and spectroscopic approaches (e.g., localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS)) relevant to ultrasensitive MTB biosensor development are herein discussed and compared in term of their advantages and disadvantages. Overall, the novelty of this work lies in its clarity and structure, aiming to consolidate and simplify access to the most current and effective characterization techniques. Furthermore, several gaps in the characterization methods of MTB were identified, and new directions of methods that can be integrated into the study, analysis, and characterization of these bacteria are suggested in exhaustive manner. Finally, to the authors’ knowledge, this is the first comprehensive overview of characterization techniques that could serve as a practical resource for both younger and more experienced researchers seeking to optimize the use of MTB in the development of advanced biosensing systems and other biomedical tools. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

11 pages, 1957 KiB  
Article
Highly Efficient Upconversion Emission Platform Based on the MDM Cavity Effect in Aluminum Nanopillar Metasurface
by Xiaofeng Wu, Xiangyuan Mao, Shengbin Cheng, Haiou Li and Shiping Zhan
Photonics 2025, 12(6), 582; https://doi.org/10.3390/photonics12060582 - 7 Jun 2025
Viewed by 414
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication [...] Read more.
Rare earth-doped upconversion nanoparticles (UCNPs) can convert low-energy photons (NIRs) into high-energy photons (visible light), offering advantages such as low background signal, good stability, and excellent biocompatibility. However, exploring a strategy to combine the advantages of high efficiency, low cost, and easy fabrication of a plasmonics–UCNPs system is still a challenge. Here, we reported a metal–dielectric–metal (MDM)-type plasmonic platform based on the aluminum metasurface, which can efficiently enhance the luminescence intensity of magnetic and non-magnetic rare earth-doped UCNPs. Attributed to the strong local field effect of the nanocavities formed by the aluminum anti-transmission layer at the bottom, the fluorescence of the two types of UCNPs in such a platform can be enhanced by over 1000 folds compared with that in the conventional substrate. It is found that the deposited UCNPs amount and the aluminum pillar size can both impact the enhancement. We confirmed that the constructed MDM nanocavities could enhance and regulate the local field strength, and the optimum enhancement can be achieved by choosing proper parameters. All these findings provide an efficient way of exploring the plasmon-enhanced UCNPs luminescence system with low cost, high efficiency, and easy fabrication and can be promising in the fields of biosensing and photovoltaic devices. Full article
Show Figures

Figure 1

17 pages, 3745 KiB  
Article
Core–Shell Magnetic Gold Nanoparticles with Chitosan Coating as a SERS Substrate: A Rapid Detection Strategy for Malachite Green Contamination in Aquatic Foods
by Yihui Yang, Tao Huang, Sijia Hu, Hang Ye, Jiali Xing and Shengnan Zhan
Fishes 2025, 10(5), 221; https://doi.org/10.3390/fishes10050221 - 11 May 2025
Viewed by 471
Abstract
In this study, we developed a novel SERS-active magnetic substrate (MBs@CS@AuNPs) for detecting malachite green (MG) in aquatic products, including shrimp, cod, and aquaculture water. The substrate combines chitosan-functionalized magnetic nanobeads with dense gold nanoparticles. It efficiently enriches MG through electrostatic and π–π [...] Read more.
In this study, we developed a novel SERS-active magnetic substrate (MBs@CS@AuNPs) for detecting malachite green (MG) in aquatic products, including shrimp, cod, and aquaculture water. The substrate combines chitosan-functionalized magnetic nanobeads with dense gold nanoparticles. It efficiently enriches MG through electrostatic and π–π interactions, generates high-density plasmonic hotspots for stable signals, and utilizes a superparamagnetic core to concentrate MG molecules. This design achieved an ultralow detection limit of 10−9 M for MG in aquaculture samples, with a linear range spanning from 10−3 to 10−10 M (R2 = 0.999). The substrate demonstrated superior performance in untreated, complex food matrices (e.g., shrimp, cod), outperforming conventional magnetic mass spectrometry systems that are prone to matrix interference. This work introduces an innovative approach for detecting harmful residues in food during environmental safety monitoring. Full article
Show Figures

Figure 1

47 pages, 10412 KiB  
Review
Magnetic–Plasmonic Core–Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment
by Alberto Luis Rodriguez-Nieves, Suprava Shah, Mitchell L. Taylor, Madhusudhan Alle and Xiaohua Huang
Nanomaterials 2025, 15(4), 264; https://doi.org/10.3390/nano15040264 - 10 Feb 2025
Cited by 1 | Viewed by 2295
Abstract
Nanoparticles have been widely used in cancer diagnostics and treatment research due to their unique properties. Magnetic nanoparticles are popular in imaging techniques due to their ability to alter the magnetization field around them. Plasmonic nanoparticles are mainly applied in cancer treatments like [...] Read more.
Nanoparticles have been widely used in cancer diagnostics and treatment research due to their unique properties. Magnetic nanoparticles are popular in imaging techniques due to their ability to alter the magnetization field around them. Plasmonic nanoparticles are mainly applied in cancer treatments like photothermal therapy due to their ability to convert light into heat. While these nanoparticles are popular among their respective fields, magnetic–plasmonic core–shell nanoparticles (MPNPs) have gained popularity in recent years due to the combined magnetic and optical properties from the core and shell. MPNPs have stood out in cancer theranostics as a multimodal platform capable of serving as a contrast agent for imaging, a guidable drug carrier, and causing cellular ablation through photothermal energy conversion. In this review, we summarize the different properties of MPNPs and the most common synthesis approaches. We particularly discuss applications of MPNPs in cancer diagnosis and treatment based on different mechanisms using the magnetic and optical properties of the particles. Lastly, we look into current challenges they face for clinical applications and future perspectives using MPNPs for cancer detection and therapy. Full article
Show Figures

Figure 1

12 pages, 4144 KiB  
Article
Enhancing Power Conversion Efficiency of Organic Solar Cells with Magnetoplasmonic Fe3O4@Au@m-ABS Nanoparticles
by Pradeep Kumar, Shih-Han Huang, Chia-Yi Hsu, Ssu-Yung Chung, Hou-Chin Cha, Chih-Min Chuang, Kuen-Lin Chen and Yu-Ching Huang
Nanomaterials 2024, 14(14), 1175; https://doi.org/10.3390/nano14141175 - 10 Jul 2024
Cited by 6 | Viewed by 2576
Abstract
Organic–inorganic nanocomposites have the potential to be used in photovoltaic materials due to their eco-friendliness, suitable band gaps, and high stability. In this work, we integrated gold and Fe3O4 magnetic nanoparticles with poly-m-amino benzene sulfonic (m-ABS) to synthesize Fe3 [...] Read more.
Organic–inorganic nanocomposites have the potential to be used in photovoltaic materials due to their eco-friendliness, suitable band gaps, and high stability. In this work, we integrated gold and Fe3O4 magnetic nanoparticles with poly-m-amino benzene sulfonic (m-ABS) to synthesize Fe3O4@Au@poly-(m-aminobenzenesulfonic acid) (Fe3O4@Au@m-ABS) magneto-plasmonic nanoparticles (MPNPs) to enhance the performance of the organic photovoltaic (OPV). These MPNPs exhibit broad UV-Vis absorption and a low band gap of 2.878 eV, enhancing their suitability for photovoltaic applications. The MPNPs were introduced into the ZnO electron transporting layer (ETL) and active layer to investigate the influence of MPNPs on the power conversion efficiency (PCE) of the OPVs. When 0.1 vol% MPNPs were incorporated in the ETL, the OPVs achieved a PCE of 14.24% and a fill factor (FF) of 69.10%. On the other hand, when 0.1 vol% MPNPs were incorporated in the active layer, the OPVs showed a PCE of 14.11% and an FF of 68.83%. However, the OPVs without MPNPs only possessed a PCE of 13.15% and an FF of 63.69%. The incorporation of MPNPs increased the PCE by 8.3% in the OPV device. These findings suggest that Fe3O4@Au@m-ABS MPNPs are promising nanocomposite materials for enhancing the performance of OPVs. Full article
(This article belongs to the Special Issue Nanomaterials for Photovoltaic System Applications)
Show Figures

Figure 1

15 pages, 4642 KiB  
Article
Magnetic Titanium Dioxide Nanocomposites as a Recyclable SERRS Substrate for the Ultrasensitive Detection of Histidine
by Hailin Wen, Miao Li, Chao-Yang Zhao, Tao Xu, Shuang Fu, Huimin Sui and Cuiyan Han
Molecules 2024, 29(12), 2906; https://doi.org/10.3390/molecules29122906 - 19 Jun 2024
Cited by 1 | Viewed by 1210
Abstract
A highly sensitive, selective and recyclable histidine detection method based on magnetic Fe3O4@mTiO2 (M-TiO2) nanocomposites with SERRS was developed. Mesoporous M-TiO2 nanoparticles were functionalized with 4-aminothiophenol and then coupled with histidine through an azo coupling [...] Read more.
A highly sensitive, selective and recyclable histidine detection method based on magnetic Fe3O4@mTiO2 (M-TiO2) nanocomposites with SERRS was developed. Mesoporous M-TiO2 nanoparticles were functionalized with 4-aminothiophenol and then coupled with histidine through an azo coupling reaction in 5 min, producing the corresponding azo compound. The strong and specific SERRS response of the azo product allowed for ultrasensitive and selective detection for histidine with an M-TiO2 device loaded with Ag NPs due to the molecular resonance effect and plasmonic effect of Ag NPs under a 532 nm excitation laser. The sensitivity was further enhanced with the magnetic enrichment of M-TiO2. The limit of detection (LOD) was as low as 8.00 × 10−12 mol/L. The M-TiO2 demonstrated applicability towards histidine determination in human urine without any sample pretreatment. Additionally, the M-TiO2 device can be recycled for 3 cycles with the photodegradation of the azo product under UV irradiation due to TiO2-assisted and plasmon-enhanced photocatalysis. In summary, a multifunctional and recyclable M-TiO2 device was synthesized based on azo coupling and SERRS spectroscopy for ultra-sensitive and specific histidine sensing. In addition, the proposed system demonstrated the potential for the multiplex determination of toxic compounds in the fields of food safety, industrial production and environmental protection, which benefit from the fingerprint property and universality of SERRS. Full article
(This article belongs to the Special Issue Advances in the Applications of Surface Enhanced Raman Scattering)
Show Figures

Graphical abstract

15 pages, 2945 KiB  
Article
Gold Nanoparticle-Based Plasmonic Detection of Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Listeria monocytogenes from Bovine Fecal Samples
by Ahmed Ghazy, Rejoice Nyarku, Rawah Faraj, Kingsley Bentum, Yilkal Woube, McCoy Williams, Evangelyn Alocilja and Woubit Abebe
Microorganisms 2024, 12(6), 1069; https://doi.org/10.3390/microorganisms12061069 - 25 May 2024
Cited by 8 | Viewed by 3366
Abstract
Current diagnostic methods for detecting foodborne pathogens are time-consuming, require sophisticated equipment, and have a low specificity and sensitivity. Magnetic nanoparticles (MNPs) and plasmonic/colorimetric biosensors like gold nanoparticles (GNPs) are cost-effective, high-throughput, precise, and rapid. This study aimed to validate the use of [...] Read more.
Current diagnostic methods for detecting foodborne pathogens are time-consuming, require sophisticated equipment, and have a low specificity and sensitivity. Magnetic nanoparticles (MNPs) and plasmonic/colorimetric biosensors like gold nanoparticles (GNPs) are cost-effective, high-throughput, precise, and rapid. This study aimed to validate the use of MNPs and GNPs for the early detection of Escherichia coli O157:H7, Salmonella enterica spp., Campylobacter jejuni, and Listeria monocytogenes in bovine fecal samples. The capture efficiency (CE) of the MNPs was determined by using Salmonella Typhimurium (ATCC_13311) adjusted at an original concentration of 1.5 × 108 CFU/mL. One (1) mL of this bacterial suspension was spiked into bovine fecal suspension (1 g of fecal sample in 9 mL PBS) and serially diluted ten-fold. DNA was extracted from Salmonella Typhimurium to determine the analytical specificity and sensitivity/LOD of the GNPs. The results showed that the CE of the MNPs ranged from 99% to 100% and could capture as little as 1 CFU/mL. The LOD of the GNPs biosensor was 2.9 µg/µL. The GNPs biosensor was also tested on DNA from 38 naturally obtained bovine fecal samples. Out of the 38 fecal samples tested, 81.6% (31/38) were positive for Salmonella enterica spp., 65.8% (25/38) for C. jejuni, 55.3% (21/38) for L. monocytogenes, and 50% (19/38) for E. coli O157:H7. We have demonstrated that MNP and GNP biosensors can detect pathogens or their DNA at low concentrations. Ensuring food safety throughout the supply chain is paramount, given that these pathogens may be present in cattle feces and contaminate beef during slaughter. Full article
Show Figures

Figure 1

16 pages, 2675 KiB  
Article
Towards High-Performance Photo-Fenton Degradation of Organic Pollutants with Magnetite-Silver Composites: Synthesis, Catalytic Reactions and In Situ Insights
by Katia Nchimi Nono, Alexander Vahl and Huayna Terraschke
Nanomaterials 2024, 14(10), 849; https://doi.org/10.3390/nano14100849 - 13 May 2024
Cited by 6 | Viewed by 1896
Abstract
In this study, Fe3O4/Ag magnetite-silver (MSx) nanocomposites were investigated as catalysts for advanced oxidation processes by coupling the plasmonic effect of silver nanoparticles and the ferromagnetism of iron oxide species. A surfactant-free co-precipitation synthesis method yielded pure Fe3 [...] Read more.
In this study, Fe3O4/Ag magnetite-silver (MSx) nanocomposites were investigated as catalysts for advanced oxidation processes by coupling the plasmonic effect of silver nanoparticles and the ferromagnetism of iron oxide species. A surfactant-free co-precipitation synthesis method yielded pure Fe3O4 magnetite and four types of MSx nanocomposites. Their characterisation included structural, compositional, morphological and optical analyses, revealing Fe3O4 magnetite and Ag silver phases with particle sizes ranging from 15 to 40 nm, increasing with the silver content. The heterostructures with silver reduced magnetite particle aggregation, as confirmed by dynamic light scattering. The UV–Vis spectra showed that the Fe:Ag ratio strongly influenced the absorbance, with a strong absorption band around 400 nm due to the silver phase. The oxidation kinetics of organic pollutants, monitored by in situ luminescence measurements using rhodamine B as a model system, demonstrated the higher performance of the developed catalysts with increasing Ag content. The specific surface area measurements highlighted the importance of active sites in the synergistic catalytic activity of Fe3O4/Ag nanocomposites in the photo-Fenton reaction. Finally, the straightforward fabrication of diverse Fe3O4/Ag heterostructures combining magnetism and plasmonic effects opens up promising possibilities for heterogeneous catalysis and environmental remediation. Full article
Show Figures

Figure 1

23 pages, 17926 KiB  
Article
Heterojunction-Based Photocatalytic Degradation of Rose Bengal Dye via Gold-Decorated α-Fe2O3-CeO2 Nanocomposites under Visible-Light Irradiation
by Najah Ayad Alshammari, Samia Abdulhammed Kosa, Rajan Patel and Maqsood Ahmad Malik
Water 2024, 16(10), 1334; https://doi.org/10.3390/w16101334 - 8 May 2024
Cited by 9 | Viewed by 2641
Abstract
Developing photocatalytic nanomaterials with unique physical and chemical features using low-cost and eco-friendly synthetic methods is highly desirable in wastewater treatment. In this work, the magnetically separable α-Fe2O3-CeO2 nanocomposite (NC), with its respective metal oxides of α-Fe2 [...] Read more.
Developing photocatalytic nanomaterials with unique physical and chemical features using low-cost and eco-friendly synthetic methods is highly desirable in wastewater treatment. In this work, the magnetically separable α-Fe2O3-CeO2 nanocomposite (NC), with its respective metal oxides of α-Fe2O3 and CeO2 nanoparticles, was synthesized using a combination of hexadecyltrimethylammonium bromide (CATB) and ascorbic acid via the hydrothermal method. To tune the band gap, the heterojunction nanocomposite of α-Fe2O3-CeO2 was decorated with plasmonic Au nanoparticles (Au NPs). The various characterization methods, such as FTIR, UV-vis DRS, XRD, XPS, TEM, EDX, SEM, and PL, were used to determine the properties of the materials, including their morphology, elemental composition, optical properties, band gap energy, and crystalline phase. The nanocomposite of α-Fe2O3-CeO2@Au was utilized to remove Rose Bengal (RB) dye from wastewater using a photocatalytic technique when exposed to visible light. A comprehensive investigation of the impact of the catalyst concentration and initial dye concentration was conducted to establish the optimal photodegradation conditions. The maximum photocatalytic efficiency of α-Fe2O3-CeO2@Au (50 mg L−1) for RB (20 ppm) dye removal was found to be 88.9% in 120 min under visible-light irradiation at a neutral pH of 7 and 30 °C. Various scavengers, such as benzoquinone (BQ; 0.5 mM), tert-butyl alcohol (TBA; 0.5 mM), and ethylenediaminetetraacetic acid (EDTA; 0.5 mM), were used to investigate the effects of different free radicals on the photocatalytic process. Furthermore, the reusability of the α-Fe2O3-CeO2@Au photocatalyst has also been explored. Furthermore, the investigation of the potential mechanism demonstrated that the heterojunction formed between α-Fe2O3 and CeO2, in combination with the presence of deposited Au NPs, led to an enhanced photocatalytic efficiency by effectively separating the photogenerated electron (e)–hole (h+) pairs. Full article
(This article belongs to the Special Issue Innovative Nanomaterials and Surfaces for Water Treatment)
Show Figures

Graphical abstract

19 pages, 2761 KiB  
Article
Optimization of Cyanocobalamin (Vitamin B12) Sorption onto Mesoporous Superparamagnetic Iron Oxide Nanoparticles
by Jolanta Flieger, Natalia Żuk, Sylwia Pasieczna-Patkowska, Michał Flieger, Rafał Panek, Tomasz Klepka and Wojciech Franus
Molecules 2024, 29(9), 2094; https://doi.org/10.3390/molecules29092094 - 1 May 2024
Cited by 5 | Viewed by 2703
Abstract
The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL−1, to fluorescence (FL) and surface [...] Read more.
The techniques used to detect and quantify cyanocobalamin (vitamin B12) vary considerably in terms of detection sensitivity, from the most sensitive, based on radioisotopes and mass spectrometry (MS) with limits of detection (LOD) in fg mL−1, to fluorescence (FL) and surface plasmon resonance (SPR) biosensors with LOD values in the range of a few µg mL−1. For accurate quantification of an analyte present at trace levels in complex biological matrices, a selective separation and enrichment step is required to overcome matrix interferences and ensure sufficient detection sensitivity. In this study, iron oxide magnetic nanoparticles (IONPs) were used for the extraction and initial preconcentration of cyanocobalamin (vitamin B12). In the dependence of the magnetization on the H-field (hysteresis loop), no coercivity and remanence values were found at 300 K, indicating the superparamagnetic properties of the tested IONPs. Perfluorinated acids were used as amphiphilic agents to allow the sorption of cyanocobalamin onto the IONPs. FT-IR/ATR spectroscopy was used to confirm the sorption of cyanocobalamin on the IONPs. The influence of the addition of a homologous series of perfluorinated acids such as trifluoroacetic acid (TFAA), heptafluorobutyric acid (HFBA), and trichloroacetic acid (TCAA) to the extraction mixture was tested considering their type, mass, and time required for effective sorption. The adsorption kinetics and isotherm, described by the Freundlich and Langmuir equations, were analyzed. The maximum adsorption capacity (qm) exceeded 6 mg g−1 and was 8.9 mg g−1 and 7.7 mg g−1 for HFBA and TCAA, respectively, as the most efficient additives. After the desorption process using aqueous KH2PO4 solution, the sample was finally analyzed spectrophotometrically and chromatographically. The IONP-based method was successfully applied for the isolation of cyanocobalamin from human urine samples. The results showed that the developed approach is simple, cheap, accurate, and efficient for the determination of traces of cyanocobalamin in biological matrices. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

19 pages, 10539 KiB  
Article
Elastic Liposomes Containing Calcium/Magnesium Ferrite Nanoparticles Coupled with Gold Nanorods for Application in Photothermal Therapy
by Ana Rita F. Pacheco, Ana Margarida Barros, Carlos O. Amorim, Vítor S. Amaral, Paulo J. G. Coutinho, Ana Rita O. Rodrigues and Elisabete M. S. Castanheira
Nanomaterials 2024, 14(8), 679; https://doi.org/10.3390/nano14080679 - 15 Apr 2024
Cited by 2 | Viewed by 1886
Abstract
This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing Mg0.75Ca0.25Fe2O4 nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic [...] Read more.
This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing Mg0.75Ca0.25Fe2O4 nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic components were characterized regarding their structural, morphological, magnetic and photothermal properties. The magnetic nanoparticles display a cubic shape and a size (major axis) of 37 ± 3 nm, while the longitudinal and transverse sizes of the nanorods are 46 ± 7 nm and 12 ± 1.6 nm, respectively. A new methodology was employed to couple the magnetic and plasmonic nanostructures, using cysteine as bridge. The potential for photothermia was evaluated for the magnetic nanoparticles, gold nanorods and the coupled magnetic/plasmonic nanoparticles, which demonstrated a maximum temperature variation of 28.9 °C, 33.6 °C and 37.2 °C, respectively, during a 30 min NIR-laser irradiation of 1 mg/mL dispersions. Using fluorescence anisotropy studies, a phase transition temperature (Tm) of 35 °C was estimated for MPELs, which ensures an enhanced fluidity crucial for effective crossing of the skin layers. The photothermal potential of this novel nanostructure corresponds to a specific absorption rate (SAR) of 616.9 W/g and a maximum temperature increase of 33.5 °C. These findings point to the development of thermoelastic nanocarriers with suitable features to act as photothermal hyperthermia agents. Full article
Show Figures

Figure 1

14 pages, 8409 KiB  
Article
Study on Magnetic and Plasmonic Properties of Fe3O4-PEI-Au and Fe3O4-PEI-Ag Nanoparticles
by Shuya Ning, Shuo Wang, Zhihui Liu, Naming Zhang, Bin Yang and Fanghui Zhang
Materials 2024, 17(2), 509; https://doi.org/10.3390/ma17020509 - 21 Jan 2024
Viewed by 2305
Abstract
Magnetic–plasmonic nanoparticles (NPs) have attracted great interest in many fields because they can exhibit more physical and chemical properties than individual magnetic or plasmonic NPs. In this work, we synthesized Au- or Ag-decorated Fe3O4 nanoparticles coated with PEI (Fe3 [...] Read more.
Magnetic–plasmonic nanoparticles (NPs) have attracted great interest in many fields because they can exhibit more physical and chemical properties than individual magnetic or plasmonic NPs. In this work, we synthesized Au- or Ag-decorated Fe3O4 nanoparticles coated with PEI (Fe3O4-PEI-M (M = Au or Ag) NPs) using a simple method. The influences of the plasmonic metal NPs’ (Au or Ag) coating density on the magnetic and plasmonic properties of the Fe3O4-PEI-M (M = Au or Ag) NPs were investigated, and the density of the plasmonic metal NPs coated on the Fe3O4 NPs surfaces could be adjusted by controlling the polyethyleneimine (PEI) concentration. It showed that the Fe3O4-PEI-M (M = Au or Ag) NPs exhibited both magnetic and plasmonic properties. When the PEI concentration increased from 5 to 35 mg/mL, the coating density of the Au or Ag NPs on the Fe3O4 NPs surfaces increased, the corresponding magnetic intensity became weaker, and the plasmonic intensity was stronger. At the same time, the plasmonic resonance peak of the Fe3O4-PEI-M (M = Au or Ag) NPs was red shifted. Therefore, there was an optimal coverage of the plasmonic metal NPs on the Fe3O4 NPs surfaces to balance the magnetic and plasmonic properties when the PEI concentration was between 15 and 25 mg/mL. This result can guide the application of the Fe3O4-M (M = Au or Ag) NPs in the biomedical field. Full article
(This article belongs to the Special Issue Preparation and Characterization of Functional Composite Materials)
Show Figures

Figure 1

16 pages, 2835 KiB  
Article
Novel Characterization Techniques for Multifunctional Plasmonic–Magnetic Nanoparticles in Biomedical Applications
by Rodrigo Calvo, Isabel Rodriguez Mariblanca, Valerio Pini, Monica Dias, Virginia Cebrian, Andreas Thon, Asis Saad, Antonio Salvador-Matar, Óscar Ahumada, Miguel Manso Silván, Aaron E. Saunders, Wentao Wang and Adonis Stassinopoulos
Nanomaterials 2023, 13(22), 2929; https://doi.org/10.3390/nano13222929 - 11 Nov 2023
Cited by 10 | Viewed by 2462
Abstract
In the rapidly emerging field of biomedical applications, multifunctional nanoparticles, especially those containing magnetic and plasmonic components, have gained significant attention due to their combined properties. These hybrid systems, often composed of iron oxide and gold, provide both magnetic and optical functionalities and [...] Read more.
In the rapidly emerging field of biomedical applications, multifunctional nanoparticles, especially those containing magnetic and plasmonic components, have gained significant attention due to their combined properties. These hybrid systems, often composed of iron oxide and gold, provide both magnetic and optical functionalities and offer promising avenues for applications in multimodal bioimaging, hyperthermal therapies, and magnetically driven selective delivery. This paper focuses on the implementation of advanced characterization methods, comparing statistical analyses of individual multifunctional particle properties with macroscopic properties as a way of fine-tuning synthetic methodologies for their fabrication methods. Special emphasis is placed on the size-dependent properties, biocompatibility, and challenges that can arise from this versatile nanometric system. In order to ensure the quality and applicability of these particles, various novel methods for characterizing the magnetic gold particles, including the analysis of their morphology, optical response, and magnetic response, are also discussed, with the overall goal of optimizing the fabrication of this complex system and thus enhancing its potential as a preferred diagnostic agent. Full article
Show Figures

Figure 1

28 pages, 19877 KiB  
Review
Application of Nanoparticles in Cancer Treatment: A Concise Review
by Mariana Sell, Ana Rita Lopes, Maria Escudeiro, Bruno Esteves, Ana R. Monteiro, Tito Trindade and Luísa Cruz-Lopes
Nanomaterials 2023, 13(21), 2887; https://doi.org/10.3390/nano13212887 - 31 Oct 2023
Cited by 40 | Viewed by 12996
Abstract
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer [...] Read more.
Timely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010–2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics. Full article
Show Figures

Figure 1

25 pages, 10044 KiB  
Review
Nano-Biotechnology for Bacteria Identification and Potent Anti-bacterial Properties: A Review of Current State of the Art
by Shimayali Kaushal, Nitesh Priyadarshi, Priyanka Garg, Nitin Kumar Singhal and Dong-Kwon Lim
Nanomaterials 2023, 13(18), 2529; https://doi.org/10.3390/nano13182529 - 10 Sep 2023
Cited by 11 | Viewed by 4682
Abstract
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a [...] Read more.
Sepsis is a critical disease caused by the abrupt increase of bacteria in human blood, which subsequently causes a cytokine storm. Early identification of bacteria is critical to treating a patient with proper antibiotics to avoid sepsis. However, conventional culture-based identification takes a long time. Polymerase chain reaction (PCR) is not so successful because of the complexity and similarity in the genome sequence of some bacterial species, making it difficult to design primers and thus less suitable for rapid bacterial identification. To address these issues, several new technologies have been developed. Recent advances in nanotechnology have shown great potential for fast and accurate bacterial identification. The most promising strategy in nanotechnology involves the use of nanoparticles, which has led to the advancement of highly specific and sensitive biosensors capable of detecting and identifying bacteria even at low concentrations in very little time. The primary drawback of conventional antibiotics is the potential for antimicrobial resistance, which can lead to the development of superbacteria, making them difficult to treat. The incorporation of diverse nanomaterials and designs of nanomaterials has been utilized to kill bacteria efficiently. Nanomaterials with distinct physicochemical properties, such as optical and magnetic properties, including plasmonic and magnetic nanoparticles, have been extensively studied for their potential to efficiently kill bacteria. In this review, we are emphasizing the recent advances in nano-biotechnologies for bacterial identification and anti-bacterial properties. The basic principles of new technologies, as well as their future challenges, have been discussed. Full article
Show Figures

Figure 1

Back to TopTop