Heterojunction-Based Photocatalytic Degradation of Rose Bengal Dye via Gold-Decorated α-Fe2O3-CeO2 Nanocomposites under Visible-Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fe2O3, CeO2, Fe2O3-CeO2 and Fe2O3-CeO2@Au NPs
2.3. Characterization
2.4. Photocatalytic Activity
3. Results and Discussion
3.1. FTIR Spectroscopy Analysis
3.2. UV–Visible DRS Analysis
3.3. XRD Analysis
3.4. XPS Analysis
3.5. TEM Analysis
3.6. SEM, Mapping, and EDX Analysis
3.7. PL Analysis
3.8. Photocatalytic Activity
3.9. Effect of Various Photocatalyst Concentrations
3.10. Effect of Various Dye Initial Concentrations
3.11. Reusability Study
3.12. Effect of Radical Scavengers
3.13. The Mechanism for Photodegrading RB Dye Using α-Fe2O3-CeO2@Au NC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shehnaz; Prasher, I.B.; Ahmad, N.; Ahmed, M.; Raghuwanshi, S.; Kumar, V.; Siddiqui, S.I.; Oh, S. Live Biomass of Rigidoporus vinctus: A Sustainable Method for Decoloration and Detoxification of Dyes in Water. Microorganisms 2023, 11, 1435. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.I.; Allehyani, E.S.; Al-Harbi, S.A.; Hasan, Z.; Abomuti, M.A.; Rajor, H.K.; Oh, S. Investigation of Congo Red Toxicity towards Different Living Organisms: A Review. Processes 2023, 11, 807. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud YA, G.; Elsamahy, T.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Rathi, G.; Siddiqui, S.I.; Pham, Q. Nigella sativa seeds based antibacterial composites: A sustainable technology for water cleansing-A review. Sustain. Chem. Pharm. 2020, 18, 100332. [Google Scholar] [CrossRef]
- Fatima, B.; Alwan, B.A.; Siddiqui, S.I.; Ahmad, R.; Almesfer, M.; Khanna, M.K.; Oh, S. Facile synthesis of cu-zn binary oxide coupled cadmium tungstate (Cu-znbo-cp-ct) with enhanced performance of dye adsorption. Water 2021, 13, 3287. [Google Scholar] [CrossRef]
- Hassan, A.A.; Sajid, M.; Tanimu, A.; Abdulazeez, I.; Alhooshani, K. Removal of methylene blue and rose bengal dyes from aqueous solutions using 1-naphthylammonium tetrachloroferrate (III). J. Mol. Liq. 2021, 322, 114966. [Google Scholar] [CrossRef]
- Hassan, S.S.; El-Shafie, A.S.; Zaher, N.; El-Azazy, M. Application of pineapple leaves as adsorbents for removal of rose bengal from wastewater: Process optimization operating face-centered central composite design (FCCCD). Molecules 2020, 25, 3752. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.I.; Chaudhry, S.A. Arsenic: Toxic effects and remediation. In Advanced Materials for Wastewater Treatment; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 1–27. [Google Scholar]
- Sztandera, K.; Gorzkiewicz, M.; Zizzi, E.A.; Dybczak, N.; Poltorak, L.; Deriu, M.A.; Klajnert-Maculewicz, B. Cellular Uptake of Rose Bengal Is Mediated by OATP1B1/1B3 Transporters. Bioelectrochemistry 2023, 152, 108449. [Google Scholar] [CrossRef] [PubMed]
- Demartis, S.; Obinu, A.; Gavini, E.; Giunchedi, P.; Rassu, G. Nanotechnology-based rose Bengal: A broad-spectrum biomedical tool. Dye. Pigment. 2021, 188, 109236. [Google Scholar] [CrossRef]
- Kaur, J.; Singhal, S. Heterogeneous photocatalytic degradation of rose bengal: Effect of operational parameters. Phys. B Condens. Matter 2014, 450, 49–53. [Google Scholar] [CrossRef]
- Rauf, M.A.; Marzouki, N.; Körbahti, B.K. Photolytic decolorization of Rose Bengal by UV/H2O2 and data optimization using response surface method. J. Hazard. Mater. 2008, 159, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.I.; Chaudhry, S.A. Green adsorbents from plant sources for the removal of arsenic: An emerging wastewater treatment technology. In Plant-Based Natural Products: Derivatives and Applications; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 193–215. [Google Scholar]
- Nguyen, H.T.; Siddiqui, S.I.; Maeng, S.K.; Oh, S. Biological detoxification of oxytetracycline using Achromobacter-immobilized bioremediation system. J. Water Process Eng. 2023, 52, 103491. [Google Scholar] [CrossRef]
- Khasim, S.; Dastager, S.G.; Alahmdi, M.I.; Hamdalla, T.A.; Ulla, M.F.; Panneerselvam, C.; Makandar, M.B. Green synthesis of multifunctional Cu/MnO@ Biochar 3D structure as a high-performance anode material in Li-ion batteries and oxidative removal of Cango-red dye. Case Stud. Chem. Environ. Eng. 2024, 9, 100561. [Google Scholar] [CrossRef]
- Ye, Q.; Wu, H.; Li, J.; Huang, Y.; Zhang, M.; Yi, Q.; Yan, B. Preparation of 1,8-dichloroanthraquinone/graphene oxide/poly (vinylidene fluoride) (1,8-AQ/GO/PVDF) mediator membrane and its application to catalyzing biodegradation of azo dyes. Ecotoxicol. Environ. Saf. 2023, 268, 115681. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, A.; Sharma, A.; Siddiqui, S.I.; Ahamad, I.; Sajid, M.; Khan, T.A.; Chaudhry, S.A. Origanum vulgare manganese ferrite nanocomposite: An advanced multifunctional hybrid material for dye remediation. Environ. Res. 2023, 220, 115193. [Google Scholar] [CrossRef]
- GC., S.S.; Alkanad, K.; Hezam, A.; Alsalme, A.; Al-Zaqri, N.; Lokanath, N.K. Enhanced photo-Fenton activity over a sunlight-driven ignition synthesized α-Fe2O3-Fe3O4/CeO2 heterojunction catalyst enriched with oxygen vacancies. J. Mol. Liquids 2021, 335, 116186. [Google Scholar]
- Fatima, B.; Siddiqui, S.I.; Rajor, H.K.; Malik, M.A.; Narasimharao, K.; Ahmad, R.; Kim, K.H. Photocatalytic removal of organic dye using green synthesized zinc oxide coupled cadmium tungstate nanocomposite under natural solar light irradiation. Environ. Res. 2023, 216, 114534. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Guidolin, T.; Possolli, N.M.; Polla, M.B.; Wermuth, T.B.; de Oliveira, T.F.; Eller, S.; Cechinel, M.A.P. Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles. J. Clean. Prod. 2021, 318, 128556. [Google Scholar] [CrossRef]
- Fatima, B.; Siddiqui, S.I.; Ahmad, R.; Linh NT, T.; Thai, V.N. CuO-ZnO-CdWO4: A sustainable and environmentally benign photocatalytic system for water cleansing. Environ. Sci. Pollut. Res. 2021, 28, 53793–53803. [Google Scholar] [CrossRef]
- Waheed, I.F.; Thayee Al-Janaby, O.Y.; Foot, P.J.S. Novel MgFe2O4-CuO/GO heterojunction magnetic nanocomposite: Synthesis, characterization, and batch photocatalytic degradation of methylene blue dye. J. Mol. Liquids 2022, 357, 119084. [Google Scholar] [CrossRef]
- Matussin, S.N.; Khan, F.; Harunsani, M.H.; Kim, Y.M.; Khan, M.M. Visible-light-induced photocatalytic and photoantibacterial activities of Co-Doped CeO2. ACS Omega 2023, 8, 11868–11879. [Google Scholar] [CrossRef]
- Alzahrani, E.A.; Nabi, A.; Kamli, M.R.; Albukhari, S.M.; Althabaiti, S.A.; Al-Harbi, S.A.; Malik, M.A. Facile Green Synthesis of ZnO NPs and Plasmonic Ag-Supported ZnO Nanocomposite for Photocatalytic Degradation of Methylene Blue. Water 2023, 15, 384. [Google Scholar] [CrossRef]
- Alghamdi, Y.G.; Krishnakumar, B.; Malik, M.A.; Alhayyani, S. Design and preparation of biomass-derived activated carbon loaded TiO2 photocatalyst for photocatalytic degradation of reactive red 120 and ofloxacin. Polymers 2022, 14, 880. [Google Scholar] [CrossRef]
- Malika, M.; Sonawane, S.S. The sono-photocatalytic performance of a Fe2O3 coated TiO2 based hybrid nanofluid under visible light via RSM. Colloids Surf. A 2022, 641, 128545. [Google Scholar] [CrossRef]
- Dewangan, K.; Singh, D.; Satpute, N.; Singh, R.; Jaiswal, A.; Shrivas, K.; Bahadur, I. Hydrothermally grown α-MoO3 microfibers for photocatalytic degradation of methylene blue dye. J. Mol. Liquids 2022, 349, 118202. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, L.; Zhao, X.; Yang, X.-J. Fabrication of Zn-Ti layered double oxide nanosheets with ZnO/ZnTiO3 heterojunction for enhanced photocatalytic degradation of MO, RhB and MB. J. Mol. Liquids 2022, 353, 118794. [Google Scholar] [CrossRef]
- Alzahrani, S.A.; Al-Thabaiti, S.A.; Al-Arjan, W.S.; Malik, M.A.; Khan, Z. Preparation of ultra long α-MnO2 and Ag@MnO2 nanoparticles by seedless approach and their photocatalytic performance. J. Mol. Struct. 2017, 1137, 495–505. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X.; Liu, Y.; Li, Y.; Zhang, Z.; Chen, K.; Han, S. Synergetic Catalysis of Ni@C@CeO2 for Driving Ab/Desorption of MgH2 at Moderate Temperature. Fuel 2024, 357, 129726. [Google Scholar] [CrossRef]
- Shabna, S.; Dhas, S.S.J.; Biju, C.S. Potential progress in SnO2 nanostructures for enhancing photocatalytic degradation of organic pollutants. Catal. Commun. 2023, 177, 106642. [Google Scholar] [CrossRef]
- Shao, P.; Ren, Z.; Tian, J.; Gao, S.; Luo, X.; Shi, W.; Cui, F. Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (110) facets: A superior photocatalyst for degradation of bisphenol S. Chem. Eng. J. 2017, 323, 64–73. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Zhang, J.; Yang, J.; Huang, Y.; Tong, Y. Engineering the band-edge of Fe2O3/ZnO nanoplates via separate dual cation incorporation for efficient photocatalytic performance. Ind. Eng. Chem. Res. 2020, 59, 18865–18872. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, A.; Kataria, N.; Kumar, S.; Kumar, P. Photocatalytic activity of α-Fe2O3@ CeO2 and CeO2@ α-Fe2O3 core-shell nanoparticles for degradation of Rose Bengal dye. J. Environ. Chem. Eng. 2021, 9, 106266. [Google Scholar]
- Rasouli, K.; Alamdari, A.; Sabbaghi, S. Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photocatalyst: Optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design. Sep. Purif. Technol. 2023, 307, 122799. [Google Scholar] [CrossRef]
- Harijan, D.K.; Gupta, S.; Ben, S.K.; Srivastava, A.; Singh, J.; Chandra, V. High photocatalytic efficiency of α-Fe2O3-ZnO composite using solar energy for methylene blue degradation. Phys. B Condens. Matter 2022, 627, 413567. [Google Scholar] [CrossRef]
- Devi, L.G.; Shyamala, R. Photocatalytic activity of SnO2–α-Fe2O3 composite mixtures: Exploration of number of active sites, turnover number and turnover frequency. Mater. Chem. Front. 2018, 2, 796–806. [Google Scholar] [CrossRef]
- Althabaiti, S.A.; Khan, Z.; Bawaked, S.M.; Al-Sheheri, S.Z.; Mokhtar, M.; Malik, M.A.; Narasimharao, K. PtOx deposited Fe3O4-ZnO/TiO2 nanocomposites for photocatalytic H2 production under visible light. J. Environ. Chem. Eng. 2023, 11, 110615. [Google Scholar] [CrossRef]
- Albeladi, A.; Khan, Z.; Al-Thabaiti, S.A.; Patel, R.; Malik, M.A.; Mehta, S. Fe3O4-CdO Nanocomposite for Organic Dye Photocatalytic Degradation: Synthesis and Characterization. Catalysts 2024, 14, 71. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, Y.C.; Hsu, P.K.; Gloter, A.; Huang, W.H.; Chen, C.L.; Chen, S.Y. Enhanced Photocatalytic Performance of TiO2@CeO2 Hollow Structure through Synergetic Surface and Interface Engineering. Adv. Sustain. Syst. 2023, 7, 2300230. [Google Scholar] [CrossRef]
- Alzahrani, K.A.; Ismail, A.A. α-Fe2O3/CeO2 S-Scheme Heterojunction Photocatalyst for Enhanced Photocatalytic H2 Evolution. Surf. Interfaces 2023, 39, 102935. [Google Scholar] [CrossRef]
- Tambat, S.; Umale, S.; Sontakke, S. Photocatalytic degradation of Milling Yellow dye using sol–gel synthesized CeO2. Mater. Res. Bull. 2016, 76, 466–472. [Google Scholar] [CrossRef]
- Malekkiani, M.; Ravari, F.; Heshmati Jannat Magham, A.; Dadmehr, M.; Groiss, H.; Hosseini, H.A.; Sharif, R. Fabrication of Graphene-Based TiO2@ CeO2 and CeO2@ TiO2 Core–Shell Heterostructures for Enhanced Photocatalytic Activity and Cytotoxicity. ACS Omega 2022, 7, 30601–30621. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Zhu, Z.; Ma, W.; Tang, X.; Liu, Y.; Huo, P. A heterojunction photocatalyst constructed by the modification of 2D-CeO2 on 2D-MoS2 nanosheets with enhanced degrading activity. Catal. Sci. Technol. 2020, 10, 788–800. [Google Scholar] [CrossRef]
- Channei, D.; Chansaenpak, K.; Jannoey, P.; Phanichphant, S. The staggered heterojunction of CeO2/CdS nanocomposite for enhanced photocatalytic activity. Solid State Sci. 2019, 96, 105951. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohapatra, M.; Pandey, B.; Verma, H.C.; Das, R.P.; Anand, S. Preparation and Characterization of α-Fe2O3–CeO2 Composite. Mater. Charact. 2009, 60, 425–431. [Google Scholar] [CrossRef]
- Aboutaleba, W.A.; Gobaraa, H.M.; Hashima, K.M.; Heneina, S.A.; Hassanb, S.A. The catalytic performance of Fe2O3-CeO2 nanocomposite in ethanol conversion. Egypt. J. Chem. 2016, 59, 445–463. [Google Scholar]
- Mazloum-Ardakani, M.; Sabaghian, F.; Yavari, M.; Ebady, A.; Sahraie, N. Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@ CeO2 core-shell. J. Alloys Compd. 2020, 819, 152949. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, M.; You, Y.; Peng, H.; Wen, J. Core-shell structured α-Fe2O3@ CeO2 heterojunction for the enhanced visible-light photocatalytic activity. Mater. Res. Bull. 2018, 101, 20–28. [Google Scholar] [CrossRef]
- Jawhari, A.H.; Hasan, N.; Radini, I.A.; Narasimharao, K.; Malik, M.A. Noble metals deposited LaMnO3 nanocomposites for photocatalytic H2 production. Nanomaterials 2022, 12, 2985. [Google Scholar] [CrossRef]
- Jawhari, A.H.; Hasan, N.; Radini, I.A.; Malik, M.A.; Narasimharao, K. Pt-Ag/Ag3PO4-WO3 nanocomposites for photocatalytic H2 production from bioethanol. Fuel 2023, 344, 127998. [Google Scholar] [CrossRef]
- Al Thabaiti, S.A.; Khan, Z.; Al-Thubaiti, K.S.; Bawaked, S.M.; Al-Sheheri, S.Z.; Mokhtar, M.; Narasimharao, K. Au-Deposited Ce0. 5Zr0. 5O2 Nanostructures for Photocatalytic H2 Production under Visible Light. Catalysts 2023, 13, 1340. [Google Scholar] [CrossRef]
- Tada, H.; Fujishima, M.; Naya, S.I. Fundamentals and Applications of Gold Nanoparticle-Based Plasmonic Photocatalysts for Water Purification. ACS ES&T Eng. 2024, 4, 506–524. [Google Scholar]
- Zhu, H.; Yuan, X.; Yao, Q.; Xie, J. Shining photocatalysis by gold-based nanomaterials. Nano Energy 2021, 88, 106306. [Google Scholar] [CrossRef]
- Dinçer, C.A.; Yıldız, N.; Aydoğan, N.; Çalımlı, A. A comparative study of Fe3O4 nanoparticles modified with different silane compounds. Appl. Surf. Sci. 2014, 318, 297–304. [Google Scholar] [CrossRef]
- Komeily-Nia, Z.; Montazer, M.; Latifi, M. Synthesis of nano copper/nylon composite using ascorbic acid and CTAB. Colloids Surf. A 2013, 439, 167–175. [Google Scholar] [CrossRef]
- Ahire, J.H.; Wang, Q.; Coxon, P.R.; Malhotra, G.; Brydson, R.; Chen, R.; Chao, Y. Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: Synthesis and their use in biomedical imaging. ACS Appl. Mater. Interfaces 2012, 4, 3285–3292. [Google Scholar] [CrossRef] [PubMed]
- Marcelo, G.A.; Lodeiro, C.; Capelo, J.L.; Lorenzo, J.; Oliveira, E. Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems. Mater. Sci. Eng. C 2020, 106, 110104. [Google Scholar] [CrossRef]
- Gopannagari, M.; Kumar, D.P.; Park, H.; Kim, E.H.; Bhavani, P.; Reddy, D.A.; Kim, T.K. Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 236, 294–303. [Google Scholar] [CrossRef]
- Guo, S.; Duan, J.A.; Qian, D.; Tang, Y.; Wu, D.; Su, S.; Zhao, Y. Content variations of triterpenic acid, nucleoside, nucleobase, and sugar in jujube (Ziziphus jujuba) fruit during ripening. Food Chem. 2015, 167, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.G.; Huo, C.; Gui, B.; Liu, J.F.; Chen, Y.S. Facile phyto-mediated synthesis of silver nanoparticles using Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) extract and their antibacterial/catalytic properties. IET Nanobiotechnol. 2017, 11, 973–980. [Google Scholar] [CrossRef]
- Tahergorabi, Z.; Abedini, M.R.; Mitra, M.; Fard, M.H.; Beydokhti, H. Ziziphus jujuba: A red fruit with promising anticancer activities. Pharmacogn. Rev. 2015, 9, 99. [Google Scholar]
- Dave, S.; Das, J.; Shah, M.P. Photocatalytic Degradation of Dyes: Current Trends and Future Perspectives; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Adhikari, S.P.; Hood, Z.D.; More, K.L.; Chen, V.W.; Lachgar, A. A Visible-Light-Active Heterojunction with Enhanced Photocatalytic Hydrogen Generation. ChemSusChem 2016, 9, 1869–1879. [Google Scholar] [CrossRef]
- Tomar, L.J.; Chakrabarty, B.S. Synthesis, structural and optical properties of TiO2-ZrO2 nanocomposite by hydrothermal method. Adv. Mater. Lett. 2013, 4, 64–67. [Google Scholar] [CrossRef]
- Sari, E.O.; Fadli, A.; Amri, A. The 3 hours-hydrothermal synthesis of high surface area superparamagnetic Fe3O4 core-shell nanoparticles. J. Sains Materi Indones. 2018, 19, 9–13. [Google Scholar] [CrossRef]
- Sobhani, A. Hydrothermal synthesis of CuMn2O4/CuO nanocomposite without capping agent and study its photocatalytic activity for elimination of dye pollution. Int. J. Hydrogen Energy 2022, 47, 20138–20152. [Google Scholar] [CrossRef]
- Ramesh, A.M.; Gangadhar, A.; Chikkamadaiah, M.; Shivanna, S. Hydrothermal synthesis of Ga2O3/TiO2 nanocomposites with highly enhanced solar photocatalysis and their biological interest. J. Photochem. Photobiol. 2021, 6, 100020. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Honarmand, M.; Ghanbari, S. A Green Approach to Synthesis of ZnO Nanoparticles Using Jujube Fruit Extract and Their Application in Photocatalytic Degradation of Organic Dyes. Spectrochim. Acta Part A 2020, 229, 117961. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Mustaqeem, M.; Hassan, I.U.; Awan, T.; Arshad, F.; Salim, H.; Qurashi, A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J. Saudi Chem. Soc. 2021, 25, 101304. [Google Scholar] [CrossRef]
- Murugadoss, G.; Kumar, D.D.; Kumar, M.R.; Venkatesh, N.; Sakthivel, P. Silver Decorated CeO2 Nanoparticles for Rapid Photocatalytic Degradation of Textile Rose Bengal Dye. Sci. Rep. 2021, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Malini, B.; Raj, G.A.G. C, N and S-Doped TiO2-Characterization and Photocatalytic Performance for Rose Bengal Dye Degradation under Daylight. J. Environ. Chem. Eng. 2018, 6, 5763–5770. [Google Scholar] [CrossRef]
- Isai, K.A.; Shrivastava, V.S. Photocatalytic Degradation of Methylene Blue Using ZnO and 2% Fe–ZnO Semiconductor Nanomaterials Synthesized by Sol–Gel Method: A Comparative Study. SN Appl. Sci. 2019, 1, 1247. [Google Scholar] [CrossRef]
- Adel, G.; Javad, M.; Amiri, M.S.; Mohammad, M.; Alireza, H.; Aliakbar, H.; Iriti, M. Resveratrol-mediated gold-nanoceria synthesis as green nanomedicine for phytotherapy of hepatocellular carcinoma. Front. Biosci. 2022, 27, 227. [Google Scholar]
- Peng, Y.; Chen, Q.G.; Wang, D.; Zhou, H.Y.; Xu, A.W. Synthesis of one-dimensional WO3–Bi2WO6 heterojunctions with enhanced photocatalytic activity. CrystEngComm 2015, 17, 569–576. [Google Scholar] [CrossRef]
- Li, Q.; Antony, R.P.; Wong, L.H.; Ng, D.H. Promotional effects of cetyltrimethylammonium bromide surface modification on a hematite photoanode for photoelectrochemical water splitting. RSC Adv. 2015, 5, 100142–100146. [Google Scholar] [CrossRef]
- Gnanam, S.; Rajendran, V. Influence of various surfactants on size, morphology, and optical properties of CeO2 nanostructures via facile hydrothermal route. J. Nanopart. 2013, 2013, 839391. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.; Zhong, D.; Zhong, N. CTAB-surface-functionalized magnetic MOF@ MOF composite adsorbent for Cr (VI) efficient removal from aqueous solution. Colloids Surf. A 2020, 586, 124255. [Google Scholar] [CrossRef]
- Hssaini, L.; Razouk, R.; Bouslihim, Y. Rapid prediction of fig phenolic acids and flavonoids using mid-infrared spectroscopy combined with partial least square regression. Front. Plant Sci. 2022, 13, 429. [Google Scholar] [CrossRef]
- Aldughaylibi, F.S.; Raza, M.A.; Naeem, S.; Rafi, H.; Alam, M.W.; Souayeh, B.; Mir, T.A. Extraction of bioactive compounds for antioxidant, antimicrobial, and antidiabetic applications. Molecules 2022, 27, 5935. [Google Scholar] [CrossRef]
- Zhu, Z.; Huo, P.; Lu, Z.; Yan, Y.; Liu, Z.; Shi, W.; Dong, H. Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator. Chem. Eng. J. 2018, 331, 615–625. [Google Scholar] [CrossRef]
- Warsi, M.F.; Shaheen, N.; Sarwar, M.I.; Agboola, P.O.; Shakir, I.; Zulfiqar, S. A comparative study on photocatalytic activities of various transition metal oxides nanoparticles synthesized by wet chemical route. Desalin. Water Treat. 2021, 211, 181–195. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y.; Li, Y.; Wu, J.; Wu, S.; Tan, X.; Hu, Q. Highly efficient UV-visible-infrared photothermocatalytic removal of ethyl acetate over a nanocomposite of CeO2 and Ce-doped manganese oxide. Chin. J. Catal. 2022, 43, 379–390. [Google Scholar] [CrossRef]
- Sabouri, Z.; Sabouri, M.; Amiri, M.S.; Khatami, M.; Darroudi, M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater. Technol. 2022, 37, 555–568. [Google Scholar] [CrossRef]
- Rajendran, A.; Alsawalha, M.; Alomayri, T. Biogenic synthesis of husked rice-shaped iron oxide nanoparticles using coconut pulp (Cocos nucifera L.) extract for photocatalytic degradation of Rhodamine B dye and their in vitro antibacterial and anticancer activity. J. Saudi Chem. Soc. 2021, 25, 101307. [Google Scholar] [CrossRef]
- Parthasarathy, V.; Selvi, J.; Senthil Kumar, P.; Anbarasan, R.; Mahalakshmi, S. Evaluation of mechanical, optical and thermal properties of PVA nanocomposites embedded with Fe2O3 nanofillers and the investigation of their thermal decomposition characteristics under non-isothermal heating condition. Polym. Bull. 2021, 78, 2191–2210. [Google Scholar] [CrossRef]
- He, Y.P.; Miao, Y.M.; Li, C.R.; Wang, S.Q.; Cao, L.; Xie, S.S.; Burda, C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 2005, 71, 125411. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, D.; Guo, J.; Zhu, B.; Huang, W.; Zhang, S. Improved catalytic performance of Au/α-Fe2O3-like-worm catalyst for low temperature CO oxidation. Nanomaterials 2019, 9, 1118. [Google Scholar] [CrossRef] [PubMed]
- Subashini, A.; Prasath, P.V.; Sagadevan, S.; Lett, J.A.; Fatimah, I.; Mohammad, F.; Oh, W.C. Enhanced photocatalytic degradation efficiency of graphitic carbon nitride-loaded CeO2 nanoparticles. Chem. Phys. Lett. 2021, 769, 138441. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Shen, X.; Duoerkun, G.; Zhu, B.; Zhang, L.; Chen, Z. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chem. Eng. J. 2020, 386, 124010. [Google Scholar] [CrossRef]
- Carrot, G.; Valmalette, J.C.; Plummer CJ, G.; Scholz, S.M.; Dutta, J.; Hofmann, H.; Hilborn, J.G. Gold nanoparticle synthesis in graft copolymer micelles. Colloid Polym. Sci. 1998, 276, 853–859. [Google Scholar] [CrossRef]
- Narasimharao, K.; Al-Shehri, A.; Al-Thabaiti, S. Porous Ag–Fe2O3 Nanocomposite Catalysts for the Oxidation of Carbon Monoxide. Appl. Catal. A 2015, 505, 431–440. [Google Scholar] [CrossRef]
- Ahmad, A.; Javed, M.S.; Khan, S.; Almutairi, T.M.; Mohammed, A.A.; Luque, R. Green synthesized Ag decorated CeO2 nanoparticles: Efficient photocatalysts and potential antibacterial agents. Chemosphere 2023, 310, 136841. [Google Scholar] [CrossRef]
- Cordero-García, M.X.; Rojas-García, E.; Salinas-Rodríguez, E.; Gómez, S.A. Influence on pretreatment in CeO2 and Au/CeO2 nanocomposite to improve the creation of surface defects enabling modification in optical interband. Rev. Mex. De Ing. Química 2023, 22, Mat2991. [Google Scholar] [CrossRef]
- Gobara, H.M.; Abouta leb, W.A.; Hashem, K.M.; Hassan, S.A.; Henein, S.A. A novel route for synthesis of α-Fe2O3–CeO2 nanocomposites for ethanol conversion. J. Mater. Sci. 2017, 52, 550–568. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Li, D.; Ma, L.; Qi, F.; Yu, L. Semiconductor heterostructure composite materials of Fe2O3 and CeO2 for low-temperature solid oxide fuel cells. J. Mater. Sci. Mater. Electron. 2020, 31, 11825–11832. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy MV, R. Ultrasensitive resistivity-based ethanol sensor based on the use of CeO2-Fe2 O3 core-shell microclusters. Microchim. Acta. 2019, 186, 712. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Li, W.; Pan, W.; Zhu, M.; Zhou, D.; Li, F.S. 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 2014, 4, 7493. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Chen, P.; Guan, B.; Liu, Y.; Yang, C.; Wang, N.; Liu, M. Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors. RSC Adv. 2017, 7, 51838–51846. [Google Scholar] [CrossRef]
- Ren, X.; Song, Y.; Liu, A.; Zhang, J.; Yang, P.; Zhang, J.; Yuan, G.; An, M.; Osgood, H.; Wu, G. Role of polyethyleneimine as an additive in cyanide-free electrolytes for gold electrodeposition. RSC Adv. 2015, 5, 64806–64813. [Google Scholar] [CrossRef]
- Tabakova, T.; Avgouropoulos, G.; Papavasiliou, J.; Manzoli, M.; Boccuzzi, F.; Tenchev, K.; Ioannides, T. CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction. Appl. Catal. B Environ. 2011, 101, 256–265. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Y.; Wang, Y.; Zhang, Y.; Wen, J.; Zhao, Z.; Zhu, L. Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides. Carbon 2019, 144, 193–201. [Google Scholar] [CrossRef]
- Arul, N.S.; Mangalaraj, D.; Ramachandran, R.; Grace, A.N.; Han, J.I. Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 15248–15258. [Google Scholar] [CrossRef]
- Lykaki, M.; Stefa, S.; Carabineiro, S.A.; Pandis, P.K.; Stathopoulos, V.N.; Konsolakis, M. Facet-dependent reactivity of Fe2O3/CeO2 nanocomposites: Effect of ceria morphology on CO oxidation. Catalysts 2019, 9, 371. [Google Scholar] [CrossRef]
- Xing, Y.; Wu, Y.; Li, L.; Shi, Q.; Shi, J.; Yun, S.; Akbar, M.; Wang, B.; Kim, J.-S.; Zhu, B. Proton shuttles in CeO2/CeO2−δ core–shell structure. ACS Energy Lett. 2019, 4, 2601–2607. [Google Scholar] [CrossRef]
- Jayachandiran, J.; Arivanandhan, M.; Padmaraj, O.; Jayavel, R.; Nedumaran, D. Investigation on Ozone-Sensing Characteristics of Surface Sensitive Hybrid rGO/WO3 Nanocomposite Films at Ambient Temperature. Adv. Compos. Hybrid Mater. 2020, 3, 16–30. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, P.; Lu, D.; Fang, P.; Liu, M.; Qian, Z. Synergistic effect of Fe2O3 and CeO2 co-modified titanate nanosheet heterojunction on enhanced photocatalytic degradation. J. Nanopart. Res. 2017, 19, 325. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kang, D.; Jeong, S.; Do, H.T.; Kim, J.H. Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS Omega 2020, 5, 4233–4241. [Google Scholar] [CrossRef] [PubMed]
- Zaman, F.u.; Xie, B.; Zhang, J.; Gong, T.; Cui, K.; Hou, L.; Xu, J.; Zhai, Z.; Yuan, C. MOFs Derived Hetero-ZnO/Fe2O3 Nanoflowers with Enhanced Photocatalytic Performance towards Efficient Degradation of Organic Dyes. Nanomaterials 2021, 11, 3239. [Google Scholar] [CrossRef] [PubMed]
- Rouibah, K.; Akika, F.Z.; Rouibah, C.; Boudermine, H.R.; Douafer, S.; Boukerche, S.; Boukerche, G.; Benamira, M. Solar Photocatalytic Degradation of Methyl Green on CuFe2O4/α Fe2O3 Heterojunction. Inorg. Chem. Commun. 2023, 148, 110361. [Google Scholar] [CrossRef]
- Sharma, K.; Sudhaik, A.; Raizada, P.; Thakur, P.; Pham, X.M.; Van Le, Q.; Nguyen, V.-H.; Ahamad, T.; Thakur, S.; Singh, P. Constructing α-Fe2O3/g-C3N4/SiO2 S-Scheme-Based Heterostructure for Photo-Fenton-like Degradation of Rhodamine B Dye in Aqueous Solution. Environ. Sci. Pollut. Res. 2023, 30, 124902–124920. [Google Scholar] [CrossRef]
- Bagheri, F.; Chaibakhsh, N. Efficient Visible-Light Photocatalytic Ozonation for Dye Degradation Using Fe2O3/MoS2 Nanocomposite. Sep. Sci. Technol. 2021, 56, 3022–3032. [Google Scholar] [CrossRef]
- Khurram, R.; Nisa, Z.U.; Javed, A.; Wang, Z.; Hussien, M.A. Synthesis and Characterization of an α-Fe2O3-Decorated g-C3N4 Heterostructure for the Photocatalytic Removal of MO. Molecules 2022, 27, 1442. [Google Scholar] [CrossRef]
- Vignesh, S.; Suganthi, S.; Srinivasan, M.; Tamilmani, A.; Sundar, J.K.; Gedi, S.; Palanivel, B.; Shaikh, S.F.; Ubaidullah, M.; Raza, M.K. Investigation of Heterojunction between α-Fe2O3/V2O5 and g-C3N4 Ternary Nanocomposites for Upgraded Photo-degradation Performance of Mixed Pollutants: Efficient Dual Z-scheme Mechanism. J. Alloys Compd. 2022, 902, 163705. [Google Scholar] [CrossRef]
- Helmiyati, H.; Fitriana, N.; Chaerani, M.L.; Dini, F.W. Green Hybrid Photocatalyst Containing Cellulose and γ–Fe2O3–ZrO2 Heterojunction for Improved Visible-Light Driven Degradation of Congo Red. Opt. Mater. 2022, 124, 111982. [Google Scholar] [CrossRef]
- Mukhtar, F.; Munawar, T.; Nadeem, M.S.; ur Rehman, M.N.; Khan, S.A.; Koc, M.; Batool, S.; Hasan, M.; Iqbal, F. Dual Z-Scheme Core-Shell PANI-CeO2-Fe2O3-NiO Heterostructured Nanocomposite for Dyes Remediation under Sunlight and Bacterial Disinfection. Environ. Res. 2022, 215, 114140. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, U.; Huang, Y.-C.; Tsai, P.-Y.; Liu, C.-H.; Wu, C.-H.; Huang, W.-M.; Chen, K.-L. Photocatalytic Activity of a Hydrothermally Synthesized γ-Fe2O3@Au/MoS2 Heterostructure for Organic Dye Degradation under Green Light. J. Photochem. Photobiol. A Chem. 2022, 433, 114186. [Google Scholar] [CrossRef]
- Yahia, B.; Faouzi, S.; Mohamed, T. Methylene Blue Photo-degradation on the Hetero-junction System α-Fe2O3/BaTiO3 under Sunlight. J. Photochem. Photobiol. A Chem. 2023, 439, 114634. [Google Scholar] [CrossRef]
- Razavi, F.S.; Ghanbari, D.; Salavati-Niasari, M. Comparative study on the role of noble metal nanoparticles (Pt and Pd) on the photocatalytic performance of the BaFe12O19/TiO2 magnetic nanocomposite: Green synthesis, characterization, and removal of organic dyes under visible light. Ind. Eng. Chem. Res. 2022, 61, 13314–13327. [Google Scholar] [CrossRef]
- Mohamad Idris, N.H.; Rajakumar, J.; Cheong, K.Y.; Kennedy, B.J.; Ohno, T.; Yamakata, A.; Lee, H.L. Titanium dioxide/polyvinyl alcohol/cork nanocomposite: A floating photocatalyst for the degradation of methylene blue under irradiation of a visible light source. ACS Omega 2021, 6, 14493–14503. [Google Scholar] [CrossRef] [PubMed]
- Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016, 116, 3029–3085. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Usman, M.; Haq, A.U. Catalytic Degradation of Organic Dyes in Aqueous Medium; IntechOpen: London, UK, 2018; Volume 13, p. 197. [Google Scholar]
- Othman, Z.; Sinopoli, A.; Mackey, H.R.; Mahmoud, K.A. Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO2/Ti3C2Tx MXene Composites under UV and Solar Light. ACS Omega 2021, 6, 33325–33338. [Google Scholar] [CrossRef]
- Wu, J.; Luo, C.; Li, D.; Fu, Q.; Pan, C. Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis. J. Mater. Sci. 2017, 52, 1285–1295. [Google Scholar] [CrossRef]
- Parvari, R.; Ghorbani-Shahna, F.; Bahrami, A.; Azizian, S.; Assari, M.J.; Farhadian, M. α-Fe2O3/Ag/gC3N4 Core-Discontinuous Shell Nanocomposite as an Indirect Z-Scheme Photocatalyst for Degradation of Ethylbenzene in the Air Under White LEDs Irradiation. Catal. Lett. 2020, 150, 3455–3469. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Li, Y.; Yang, L.; Wang, C.; Liu, J.; Huang, L. Enhancement of photocatalytic activity of Z-scheme BiO2-x/BiOI heterojunction through vacancy engineering. Appl. Surf. Sci. 2021, 555, 149665. [Google Scholar] [CrossRef]
- Pang, Y.L.; Lim, S.; Ong, H.C.; Chong, W.T. Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications. Ceram. Int. 2016, 42, 9–34. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Channei, D.; Chansaenpak, K.; Phanichphant, S.; Jannoey, P.; Khanitchaidecha, W.; Nakaruk, A. Synthesis and characterization of WO3/CeO2 heterostructured nanoparticles for photodegradation of indigo carmine dye. ACS Omega 2021, 6, 19771–19777. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, H.; Han, C.; Gui, C.; Deng, C. Preparation of Ag3PO4/α-Fe2O3 hybrid powders and their visible light catalytic performances. RSC Adv. 2022, 12, 6328–6335. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, N.A.; Kosa, S.A.; Patel, R.; Malik, M.A. Heterojunction-Based Photocatalytic Degradation of Rose Bengal Dye via Gold-Decorated α-Fe2O3-CeO2 Nanocomposites under Visible-Light Irradiation. Water 2024, 16, 1334. https://doi.org/10.3390/w16101334
Alshammari NA, Kosa SA, Patel R, Malik MA. Heterojunction-Based Photocatalytic Degradation of Rose Bengal Dye via Gold-Decorated α-Fe2O3-CeO2 Nanocomposites under Visible-Light Irradiation. Water. 2024; 16(10):1334. https://doi.org/10.3390/w16101334
Chicago/Turabian StyleAlshammari, Najah Ayad, Samia Abdulhammed Kosa, Rajan Patel, and Maqsood Ahmad Malik. 2024. "Heterojunction-Based Photocatalytic Degradation of Rose Bengal Dye via Gold-Decorated α-Fe2O3-CeO2 Nanocomposites under Visible-Light Irradiation" Water 16, no. 10: 1334. https://doi.org/10.3390/w16101334
APA StyleAlshammari, N. A., Kosa, S. A., Patel, R., & Malik, M. A. (2024). Heterojunction-Based Photocatalytic Degradation of Rose Bengal Dye via Gold-Decorated α-Fe2O3-CeO2 Nanocomposites under Visible-Light Irradiation. Water, 16(10), 1334. https://doi.org/10.3390/w16101334