Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (457)

Search Parameters:
Keywords = magnetic nanofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1991 KiB  
Article
Chemical Manipulation of the Collective Superspin Dynamics in Heat-Generating Superparamagnetic Fluids: An AC-Susceptibility Study
by Cristian E. Botez and Alex D. Price
Crystals 2025, 15(7), 631; https://doi.org/10.3390/cryst15070631 - 9 Jul 2025
Viewed by 217
Abstract
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major [...] Read more.
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major (~100 K) increase in the superspin blocking temperature of the Co0.2Fe2.8O4-based fluid (CFO) compared to its Fe3O4 counterpart (FO). We ascribe this behavior to the strengthening of the interparticle magnetic dipole interactions upon Co doping, as demonstrated by the relative χ″-peak temperature variation per frequency decade Φ=TT·log(f), which decreases from Φ~0.15 in FO to Φ~0.025 in CFO. In addition, χ″vs. T|f datasets from the CFO fluid reveal two magnetic events at temperatures Tp1 = 240 K and Tp2 = 275 K, both above the fluid’s freezing point (TF = 197 K). We demonstrate that the physical rotation of the nanoparticles within the fluid, the Brown mechanism, is entirely responsible for the collective superspin relaxation observed at Tp1, whereas the Néel mechanism, the superspin flip across an energy barrier within the particle, is dominant at Tp2. We confirm this finding through fits of models that describe the temperature dependence of the relaxation time via the two mechanisms: τB(T)=3η0VHkBTexpEkBTT0 and τNT=τ0expEBkBTT0. The best fits yield γ0=3η0VHkB = 1.5 × 10−8 s·K, E′/kB = 7 03 K, and T0′ = 201 K for the Brown relaxation, and EB/kB = 2818 K and T0 = 143 K for the Néel relaxation. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

49 pages, 9659 KiB  
Article
Machine Learning Approach to Nonlinear Fluid-Induced Vibration of Pronged Nanotubes in a Thermal–Magnetic Environment
by Ahmed Yinusa, Ridwan Amokun, John Eke, Gbeminiyi Sobamowo, George Oguntala, Adegboyega Ehinmowo, Faruq Salami, Oluwatosin Osigwe, Adekunle Adelaja, Sunday Ojolo and Mohammed Usman
Vibration 2025, 8(3), 35; https://doi.org/10.3390/vibration8030035 - 27 Jun 2025
Viewed by 443
Abstract
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity [...] Read more.
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity to capture nanoscale effects for varying downstream angles. The intricate interactions between nanofluids and SWCNTs are analyzed using the Differential Transform Method (DTM) and validated through ANSYS simulations, where modal analysis reveals the vibrational characteristics of various geometries. To enhance predictive accuracy and system stability, machine learning algorithms, including XGBoost, CATBoost, Random Forest, and Artificial Neural Networks, are employed, offering a robust comparison for optimizing vibrational and thermo-magnetic performance. Key parameters such as nanotube geometry, magnetic flux density, and fluid flow dynamics are identified as critical to minimizing vibrational noise and improving structural stability. These insights advance applications in energy harvesting, biomedical devices like artificial muscles and nanosensors, and nanoscale fluid control systems. Overall, the study demonstrates the significant advantages of integrating machine learning with physics-based simulations for next-generation nanotechnology solutions. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

29 pages, 10025 KiB  
Article
A Comprehensive Numerical and Experimental Study on Improving the Thermal Performance of a Shell and Helically Coiled Heat Exchanger Utilizing Hybrid Magnetic Nanofluids and Porous Spiral-Type Fins
by Ahmet Yağız Bacak, Ataollah Khanlari, Azim Doğuş Tuncer, Adnan Sözen, Halil İbrahim Variyenli and Kambiz Vafai
Fluids 2025, 10(6), 141; https://doi.org/10.3390/fluids10060141 - 27 May 2025
Viewed by 1330
Abstract
In this work, a novel type of shell and helically coiled heat exchangers (SHCHEXs) that are used extensively in numerous applications has been numerically and experimentally studied. A low-cost and easily applicable design for enhancing the heat exchange rate in a shell and [...] Read more.
In this work, a novel type of shell and helically coiled heat exchangers (SHCHEXs) that are used extensively in numerous applications has been numerically and experimentally studied. A low-cost and easily applicable design for enhancing the heat exchange rate in a shell and helically coiled heat exchanger has been developed within the scope of this study. In this context, a SHCHEX has been developed with an internal guiding pipe and spirally formed fins with the purpose of leading the fluid in the cold loop over the coil where hot fluid flows inside it. Numerical simulations were carried out in this study for determining how the new changes including nonporous and porous spiral fins affected heat transfer in the system. In the experimental part of the current research, a heat exchanger with a guiding pipe and nonporous spiral fins has been fabricated and its thermal behavior tested at various conditions utilizing water and MnFe2O4-ZnFe2O4/water hybrid-type nanofluid. Both numerical and experimental findings of this research exhibited positive effects of using new modifications including spiral fin integration. Overall findings of this work clearly exhibited a significant effect of the spiral fin medication and MnFe2O4-ZnFe2O4/water-hybrid magnetic nanofluid utilization on the thermal performance improvement in the heat exchanger. Experimentally determined findings showed that using MnFe2O4-ZnFe2O4/water in the hot loop of the SHCHEX improved the heat transfer coefficient of the heat exchanger by an average ratio of 16.2%. In addition, mean variation between the experimentally obtained exit temperature and numerically achieved one was 3.9%. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

30 pages, 7540 KiB  
Article
Radiated Free Convection of Dissipative and Chemically Reacting Flow Suspension of Ternary Nanoparticles
by Rekha Satish, Raju B. T, S. Suresh Kumar Raju, Fatemah H. H. Al Mukahal, Basma Souayeh and S. Vijaya Kumar Varma
Processes 2025, 13(4), 1030; https://doi.org/10.3390/pr13041030 - 30 Mar 2025
Viewed by 390
Abstract
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant [...] Read more.
This study investigates magnetohydrodynamic (MHD) heat and mass transport in a water-based ternary hybrid nanofluid flowing past an exponentially accelerated vertical porous plate. Two critical scenarios are analyzed: (i) uniform heat flux with variable mass diffusion and (ii) varying heat source with constant species diffusion. The model integrates thermal radiation, heat sink/source, thermal diffusion, and chemical reaction effects to assess flow stability and thermal performance. Governing equations are non-dimensionalized and solved analytically using the Laplace transform method, with results validated against published data and finite difference method outcomes. Ternary hybrid nanofluids exhibit a significantly higher Nusselt number compared to hybrid and conventional nanofluids, demonstrating superior heat transfer capabilities. Magnetic field intensity reduces fluid velocity, while porosity enhances momentum transfer. Thermal radiation amplifies temperature profiles, critical for energy systems. Concentration boundary layer thickness decreases with higher chemical reaction rates, optimizing species diffusion. These findings contribute to the development of advanced thermal management systems, such as solar energy collectors and nuclear reactors, enhance energy-efficient industrial processes, and support biomedical technologies that require precise heat and mass control. This study positions ternary hybrid nanofluids as a transformative solution for optimizing high-performance thermal systems. Full article
Show Figures

Figure 1

18 pages, 5664 KiB  
Article
Magnetohydrodynamic Blood-Carbon Nanotube Flow and Heat Transfer Control via Carbon Nanotube Geometry and Nanofluid Properties for Hyperthermia Treatment
by Nickolas D. Polychronopoulos, Evangelos Karvelas, Lefteris Benos, Thanasis D. Papathanasiou and Ioannis Sarris
Computation 2025, 13(3), 62; https://doi.org/10.3390/computation13030062 - 3 Mar 2025
Viewed by 837
Abstract
Hyperthermia is a promising medical treatment that uses controlled heat to target and destroy cancer cells while minimizing damage to the surrounding healthy tissue. Unlike conventional methods, it offers reduced risks of infection and shorter recovery periods. This study focuses on the integration [...] Read more.
Hyperthermia is a promising medical treatment that uses controlled heat to target and destroy cancer cells while minimizing damage to the surrounding healthy tissue. Unlike conventional methods, it offers reduced risks of infection and shorter recovery periods. This study focuses on the integration of carbon nanotubes (CNTs) within the blood to enable precise heat transfer to tumors. The central idea is that by adjusting the concentration, shape, and size of CNTs, as well as the strength of an external magnetic field, heat transfer can be controlled for targeted treatment. A theoretical model is developed to analyze laminar natural convection within a simplified rectangular porous enclosure resembling a tumor, considering the composition of blood, and the geometric characteristics of CNTs, including the interfacial nanolayer thickness. Using an asymptotic expansion method, ordinary differential equations for mass, momentum, and energy balances are derived and solved. Results show that increasing CNT concentration decelerates fluid flow and reduces heat transfer efficiency, while elongated CNTs and thicker nanolayers enhance conduction over convection, to the detriment of heat transfer. Finally, increased tissue permeability—characteristic of cancerous tumors—significantly impacts heat transfer. In conclusion, although the model simplifies real tumor geometries and treatment conditions, it provides valuable theoretical insights into hyperthermia and nanofluid applications for cancer therapy. Full article
(This article belongs to the Special Issue Post-Modern Computational Fluid Dynamics)
Show Figures

Figure 1

3 pages, 386 KiB  
Comment
Comment on Ghali et al. Mathematical Entropy Analysis of Natural Convection of MWCNT—Fe3O4/Water Hybrid Nanofluid with Parallel Magnetic Field via Galerkin Finite Element Process. Symmetry 2022, 14, 2312
by Asterios Pantokratoras
Symmetry 2025, 17(2), 237; https://doi.org/10.3390/sym17020237 - 6 Feb 2025
Viewed by 492
Abstract
A serious error and many typographical errors exist in the above paper. Full article
Show Figures

Figure 1

27 pages, 8341 KiB  
Article
Mixed Convection Heat Transfer and Fluid Flow of Nanofluid/Porous Medium Under Magnetic Field Influence
by Rehab N. Al-Kaby, Samer M. Abdulhaleem, Rafel H. Hameed and Ahmed Yasiry
Appl. Sci. 2025, 15(3), 1087; https://doi.org/10.3390/app15031087 - 22 Jan 2025
Cited by 1 | Viewed by 1237
Abstract
This study aims to investigate the effect of a constant magnetic field on heat transfer, flow of fluid, and entropy generation of mixed convection in a lid-driven porous medium enclosure filled with nanofluids (TiO2-water). Uniform constant heat fluxes are partially applied [...] Read more.
This study aims to investigate the effect of a constant magnetic field on heat transfer, flow of fluid, and entropy generation of mixed convection in a lid-driven porous medium enclosure filled with nanofluids (TiO2-water). Uniform constant heat fluxes are partially applied to the bottom wall of the enclosure, while the remaining parts of the bottom wall are considered to be adiabatic. The vertical walls are maintained at a constant cold temperature and move with a fixed velocity. A sinusoidal wall is assumed to be fixed and kept adiabatic at the top enclosure. Three scenarios are considered corresponding to different directions of the moving isothermal vertical wall (±1). The influence of pertinent parameters on the heat transfer, flow of fluid, and entropy generation in an enclosure are deliberated. The parameters are the Richardson number (R~i = 1, 10, and 100), the Hartmann number (0 ≤ H~a ≤ 75 with a 25 step), and the solid volume fraction of nanoparticles (0 ≤ Φ~ ≤ 0.15 with a 0.05 step). The Grashof and Darcy numbers are assumed to be constant at 104 and 10−3, respectively. The finite element method, utilizing the variational formulation/weak form, is applied to discretize the main governor equations. Triangular elements have been employed within the studied envelope, with the elements adapting as needed. The results showed that the streamfunction and fluid temperature decreased as the solid volume fraction increased. The local N~u number increased by more than 50% at low values of Φ~ (up to 0.1). This percentage decreases between 25% and 40% when Φ~ is in the range of 0.1 to 0.15. As H~a increases from 0 to 75, these percentages increase at low values of the value of R~i=1 and 10. These variations are primarily dependent on the value of the Richardson number. Full article
(This article belongs to the Special Issue Research on Heat Transfer Analysis in Fluid Dynamics)
Show Figures

Figure 1

14 pages, 2658 KiB  
Article
Innovative Role of Magnesium Oxide Nanoparticles and Surfactant in Optimizing Interfacial Tension for Enhanced Oil Recovery
by Youssef E. Kandiel, Gamal Attia, Farouk Metwalli, Rafik Khalaf and Omar Mahmoud
Energies 2025, 18(2), 249; https://doi.org/10.3390/en18020249 - 8 Jan 2025
Cited by 4 | Viewed by 1222
Abstract
Enhancing oil recovery efficiency is vital in the energy industry. This study investigates magnesium oxide (MgO) nanoparticles combined with sodium dodecyl sulfate (SDS) surfactants to reduce interfacial tension (IFT) and improve oil recovery. Pendant drop method measurements revealed a 70% IFT reduction, significantly [...] Read more.
Enhancing oil recovery efficiency is vital in the energy industry. This study investigates magnesium oxide (MgO) nanoparticles combined with sodium dodecyl sulfate (SDS) surfactants to reduce interfacial tension (IFT) and improve oil recovery. Pendant drop method measurements revealed a 70% IFT reduction, significantly improving nanoparticle dispersion stability due to SDS. Alterations in Zeta Potential and viscosity, indicating enhanced colloidal stability under reservoir conditions, were key findings. These results suggest that the MgO-SDS system offers a promising and sustainable alternative to conventional methods, although challenges such as scaling up and managing nanoparticle–surfactant dynamics remain. The preparation of MgO nanofluids involved magnetic stirring and ultrasonic homogenization to ensure thorough mixing. Characterization techniques included density, viscosity, pH, Zeta Potential, electric conductivity, and electrophoretic mobility assessments for the nanofluid and surfactant–nanofluid systems. Paraffin oil was used as the oil phase, with MgO nanoparticle concentrations ranging from 0.01 to 0.5 wt% and a constant SDS concentration of 0.5 wt%. IFT reduction was significant, from 47.9 to 26.9 mN/m with 0.1 wt% MgO nanofluid. Even 0.01 wt% MgO nanoparticles reduced the IFT to 41.8 mN/m. Combining MgO nanoparticles with SDS achieved up to 70% IFT reduction, enhancing oil mobility. Changes in Zeta Potential (from −2.54 to 3.45 mV) and pH (from 8.4 to 10.8) indicated improved MgO nanoparticle dispersion and stability, further boosting oil displacement efficiency under experimental conditions. The MgO-SDS system shows promise as a cleaner, cost-effective Enhanced Oil Recovery (EOR) method. However, challenges such as nanoparticle stability under diverse conditions, surfactant adsorption management, and scaling up require further research, emphasizing interdisciplinary approaches and rigorous field studies. Full article
Show Figures

Figure 1

14 pages, 4767 KiB  
Article
Experimental Assessment of Magnetic Nanofluid Injection in High-Salinity and Heavy-Crude-Saturated Sandstone: Mitigation of Formation Damage
by Jimena Lizeth Gómez-Delgado, Nelson Gutierrez-Niño, Luis Felipe Carrillo-Moreno, Raúl Andres Martínez-López, Nicolás Santos-Santos and Enrique Mejía-Ospino
Energies 2025, 18(1), 212; https://doi.org/10.3390/en18010212 - 6 Jan 2025
Cited by 1 | Viewed by 871
Abstract
The depletion of conventional oil reserves has intensified the search for enhanced oil recovery (EOR) techniques. Recently, nanoparticle research has focused on graphene oxide-based materials, revealing a critical challenge in their practical application. Laboratory investigations have consistently demonstrated that these nanoparticles have significant [...] Read more.
The depletion of conventional oil reserves has intensified the search for enhanced oil recovery (EOR) techniques. Recently, nanoparticle research has focused on graphene oxide-based materials, revealing a critical challenge in their practical application. Laboratory investigations have consistently demonstrated that these nanoparticles have significant potential for formation damage, a critical limitation that substantially constrains their potential field implementation. This research addresses a critical challenge in EOR: developing magnetic graphene oxide nanoparticles (MGONs) that can traverse rock formations without causing formation damage. MGONs were synthesized and stabilized in formation brine with a high total dissolved solids (TDS) content with a xanthan gum polymer. Two coreflooding experiments were conducted on sandstone cores. The first experiment on high-permeability sandstone (843 mD) showed no formation damage; instead, permeability increased to 935 mD after MGON injection. Irreducible water saturation (Swirr) and residual oil saturation (Sor) were 25.1% and 31.5%, respectively. The second experiment on lower-permeability rock (231.3 mD) evaluated nanoparticle retention. The results showed that 0.09511 mg of MGONs was adsorbed per gram of rock under dynamic conditions. Iron concentration in effluents stabilized after 3 pore volumes, indicating steady-state adsorption. The successful synthesis, stability in high-TDS brine, favorable interfacial properties, and positive effects observed in coreflooding experiments collectively highlight MGONs’ potential as a viable solution for enhancing oil recovery in challenging reservoirs, without causing formation damage. Full article
(This article belongs to the Special Issue Failure and Multiphysical Fields in Geo-Energy)
Show Figures

Figure 1

16 pages, 11088 KiB  
Article
Thermal Performance Analysis of Nanofluids for Heat Dissipation Based on Fluent
by Junqiang Xu, Zemin Shang and Shan Qing
Energies 2025, 18(1), 204; https://doi.org/10.3390/en18010204 - 6 Jan 2025
Cited by 1 | Viewed by 3238
Abstract
With the increasing demand for thermal management in electronic devices and industrial systems, nanofluids have emerged as a research hotspot due to their superior thermal conductivity and heat transfer efficiency. Among them, CuO-H2O demonstrates excellent heat transfer performance due to its [...] Read more.
With the increasing demand for thermal management in electronic devices and industrial systems, nanofluids have emerged as a research hotspot due to their superior thermal conductivity and heat transfer efficiency. Among them, CuO-H2O demonstrates excellent heat transfer performance due to its high thermal conductivity, Fe3O4-H2O offers potential for further optimization by combining thermal and magnetic properties, and Al2O3-H2O exhibits strong chemical stability, making it suitable for a wide range of applications. These three nanofluids are representative in terms of particle dispersibility, thermal conductivity, and physical properties, providing a comprehensive perspective on the impact of nanofluids on microchannel heat exchangers. This study investigates the heat transfer performance and flow characteristics of various types and volume fractions of nanofluids in microchannel heat exchangers. The results reveal that with increasing flow rates, the convective heat transfer coefficient and Nusselt number of nanofluids exhibit an approximately linear growth trend, primarily attributed to the turbulence enhancement effect caused by higher flow rates. Among the tested nanofluids, CuO-H2O demonstrates the best performance, achieving a 4.89% improvement in the heat transfer coefficient and a 1.64% increase in the Nusselt number compared to pure water. Moreover, CuO-H2O nanofluid significantly reduces wall temperatures, showcasing its superior thermal management capabilities. In comparison, the performance of Al2O3-H2O and Fe3O4-H2O nanofluids is slightly inferior. In terms of flow characteristics, the pressure drop and friction factor of nanofluids exhibit nonlinear variations with increasing flow rates. High-concentration CuO-H2O nanofluid shows a substantial pressure drop, with an increase of 7.33% compared to pure water, but its friction factor remains relatively low and stabilizes at higher flow rates. Additionally, increasing the nanoparticle volume fraction enhances the convective heat transfer performance; however, excessively high concentrations may suppress heat transfer efficiency due to increased viscosity, leading to a decrease in the Nusselt number. Overall, CuO-H2O nanofluid exhibits excellent thermal conductivity and flow optimization potential, making it a promising candidate for efficient thermal management in MCHEs. However, its application at high concentrations may face challenges related to increased flow resistance. These findings provide valuable theoretical support and optimization directions for the development of advanced thermal management technologies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

22 pages, 5632 KiB  
Article
Experimental Study on the Mechanism of Enhanced Imbibition with Different Types of Surfactants in Low-Permeability Glutenite Reservoirs
by Hongyan Qu, Jilong Shi, Mengyao Wu, Fujian Zhou, Jun Zhang, Yan Peng, Tianxi Yu and Zhejun Pan
Molecules 2024, 29(24), 5953; https://doi.org/10.3390/molecules29245953 - 17 Dec 2024
Cited by 2 | Viewed by 737
Abstract
Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the [...] Read more.
Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field. Experiments of IFT, wettability, emulsification, and imbibition at high-temperature and high-pressure were conducted to reveal the underlying EOR mechanisms of different types of surfactants. The distribution and utilization of oil in different pores during the imbibition process were characterized by a combined method of mercury intrusion and nuclear magnetic resonance (NMR). The main controlling factors of surfactant-enhanced imbibition in glutenite reservoirs were clarified. The results demonstrate that the micropores and mesopores contribute most to imbibition recovery in low-permeability glutenite reservoirs. The anionic surfactant KPS exhibits a good capacity of reducing IFT, wettability alteration, and oil emulsification with the highest oil recovery of 49.02%, 8.49% higher than PW. The nonionic surfactant OP-10 performs well on oil emulsification and wetting modification with imbibition recovery of 48.11%. This study sheds light on the selection of suitable surfactants for enhanced imbibition in low-permeability glutenite reservoirs and improves the understanding of oil production through enhanced imbibition. Full article
Show Figures

Figure 1

25 pages, 8275 KiB  
Article
Numerical Analysis of Magnetohydrodynamic Convection in an Inclined Cavity with Three Fins and a Ternary Composition of Nanoparticles
by Huda Alfannakh
Processes 2024, 12(12), 2889; https://doi.org/10.3390/pr12122889 - 17 Dec 2024
Viewed by 970
Abstract
The natural convection heat transfer of a trihybrid nanofluid comprising Fe2O3, MoS2, and CuO nanoparticles dispersed in water (Fe2O3 + MoS2 + CuO/H2O) has been investigated within a cavity exposed to [...] Read more.
The natural convection heat transfer of a trihybrid nanofluid comprising Fe2O3, MoS2, and CuO nanoparticles dispersed in water (Fe2O3 + MoS2 + CuO/H2O) has been investigated within a cavity exposed to a uniform magnetic field. Three cold fins were strategically positioned on the top, right, and left walls of the enclosure. The study employs numerical simulations conducted using a custom-developed FORTRAN code. The computational approach integrates the finite volume method and full multigrid acceleration to solve the coupled governing equations for continuity, momentum, energy, and entropy generation, along with the associated boundary conditions. Prior to obtaining the results, a meticulous parameterization process was undertaken to accurately capture the fluid dynamics and thermal behavior characteristic of this geometric configuration. The findings underscored the key parameters’ significant impact on the flow structure and thermal performance. The results revealed that natural convection is more dominant at high Rayleigh and low Hartmann numbers, leading to higher Nusselt numbers and stronger dependence on the tilt angle α. Moreover, the optimal heat transfer conditions were obtained for the following parameters: Ha = 25, α = 45°, ϕ = 6%, and Ra = 106 with a rate of 4.985. This study offers valuable insights into achieving a balance between these competing factors by determining the optimal conditions for maximizing heat transfer while minimizing entropy generation. The findings contribute to enhancing the design of thermal systems that utilize magnetic nanofluids for efficient heat dissipation, making the research particularly relevant to advanced cooling technologies and compact thermal management solutions. Full article
(This article belongs to the Special Issue Flow, Heat and Mass Transfer in Energy Utilization)
Show Figures

Figure 1

30 pages, 10922 KiB  
Article
Chemically Reactive Micropolar Hybrid Nanofluid Flow over a Porous Surface in the Presence of an Inclined Magnetic Field and Radiation with Entropy Generation
by Sudha Mahanthesh Sachhin, Parashurampura Karibasavanaika Ankitha, Gadhigeppa Myacher Sachin, Ulavathi Shettar Mahabaleshwar, Igor Vladimirovich Shevchuk, Sunnapagutta Narasimhappa Ravichandra Nayakar and Rachappa Kadli
Physics 2024, 6(4), 1315-1344; https://doi.org/10.3390/physics6040082 - 13 Dec 2024
Viewed by 1504
Abstract
The present study investigates the entropy generation of chemically reactive micropolar hybrid nanoparticle motion with mass transfer. Magnetic oxide (Fe3O4) and copper oxide (CuO) nanoparticles were mixed in water to form a hybrid nanofluid. The governing equations for velocity, [...] Read more.
The present study investigates the entropy generation of chemically reactive micropolar hybrid nanoparticle motion with mass transfer. Magnetic oxide (Fe3O4) and copper oxide (CuO) nanoparticles were mixed in water to form a hybrid nanofluid. The governing equations for velocity, concentration, and temperature are transformed into ordinary differential equations along with the boundary conditions. In the fluid region, the heat balance is kept conservative with a source/sink that relies on the temperature. In the case of radiation, there is a differential equation along with several characteristic coefficients that transform hypergeometric and Kummer’s differential equations by a new variable. Furthermore, the results of the current problem can be discussed by implementing a graphical representation with different factors, namely the Brinkman number, porosity parameter, magnetic field, micropolar parameter, thermal radiation, Schmidt number, heat source/sink parameter, and mass transpiration. The results of this study are presented through graphical representations that depict various factors influencing the flow profiles and physical characteristics. The results reveal that an increase in the magnetic field leads to a reduction in velocity and entropy production. Furthermore, temperature and entropy generation rise with a stronger radiation parameter, whereas the Nusselt number experiences a decline. This study has several industrial applications in technology and manufacturing processes, including paper production, polymer extrusion, and the development of specialized materials. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

19 pages, 1440 KiB  
Article
Effects of Hall Current and Thermal Radiation on the Time-Dependent Swirling Flow of Hybrid Nanofluids over a Disk Surface: A Bayesian Regularization Artificial Neural Network Approach
by Faisal Nazir, Nirman Bhowmike, Muhammad Zahid, Sultan Shoaib, Yasar Amin and Saleem Shahid
AppliedMath 2024, 4(4), 1503-1521; https://doi.org/10.3390/appliedmath4040080 - 10 Dec 2024
Cited by 2 | Viewed by 1144
Abstract
For automobile and aerospace engineers, implementing Hall currents and thermal radiation in cooling systems helps increase the performance and durability of an engine. In the case of solar energy systems, the effectiveness of heat exchangers and solar collectors can be enhanced by the [...] Read more.
For automobile and aerospace engineers, implementing Hall currents and thermal radiation in cooling systems helps increase the performance and durability of an engine. In the case of solar energy systems, the effectiveness of heat exchangers and solar collectors can be enhanced by the best use of hybrid nanofluids and the implementation of a Hall current, thermophoresis, Brownian motion, a heat source/sink, and thermal radiation in a time-dependent hybrid nanofluid flow over a disk for a Bayesian regularization ANN backpropagation algorithm. In the current physical model of Cobalt ferrite CoFe2O4 and aluminum oxide Al2O3 mixed with water, a new category of the nanofluid is called the hybrid nanofluid. The study uses MATLAB bvp4c to unravel such intricate relations, transforming PDEs into ODEs. This analysis enables the numerical solution of several BVPs that govern the system of the given problem. Hall currents resulting from the interaction between magnetic fields and the electrically conducting nanofluid, and thermal radiation as an energy transfer mechanism operating through absorption and emission, are central factors for controlling these fluids for use in various fields. The graphical interpretation assists in demonstrating the character of new parameters. The heat source/sink parameter is advantageous to thermal layering, but using a high Schmidt number limits the mass transfer. Additionally, a backpropagation technique with Bayesian regularization is intended for solving ordinary differential equations. Training state, performance, error histograms, and regression demonstration are used to analyze the output of the neural network. In addition to this, there is a decrease in the fluid velocity as magnetic parameter values decrease and a rise in the fluid temperature while the disk is spinning. Thermal radiation adds another level to the thermal behavior by altering how the hybrid nanofluid receives, emits, and allows heat to pass through it. Full article
Show Figures

Figure 1

32 pages, 11083 KiB  
Article
Enhancing Heat Transfer Efficiency Through Controlled Magnetic Flux in a Partially Heated Circular Cavity Using Multi-Walled Carbon Nanotube Nanofluid and an Internal Square Body
by Eid S. Alatawi
Sustainability 2024, 16(23), 10632; https://doi.org/10.3390/su162310632 - 4 Dec 2024
Cited by 2 | Viewed by 1042
Abstract
Applications including aircraft systems and electronics cooling depend on effective heat transfer. This study investigates magnetohydrodynamic (MHD) free convection and thermal radiation for heat transfer in a circular cavity filled with multi-walled carbon nanotube (MWCNT) nanofluid and containing a square obstruction. This study [...] Read more.
Applications including aircraft systems and electronics cooling depend on effective heat transfer. This study investigates magnetohydrodynamic (MHD) free convection and thermal radiation for heat transfer in a circular cavity filled with multi-walled carbon nanotube (MWCNT) nanofluid and containing a square obstruction. This study examines the impact of the internal geometry on heat transfer and fluid flow dynamics under three distinct boundary conditions, and it presents a comprehensive analysis based on a wide range of Hartmann (Ha) and Rayleigh (Ra) numbers. MWCNT nanofluid with high thermal conductivity was employed to enhance heat transfer efficiency, using a solid volume fraction (SVF) of 4% for MWCNTs and assuming Newtonian behavior for computational simplification. Magnetic properties were imparted to the nanofluid by assuming the dispersion of carbon nanotubes in a base fluid containing magnetic nanoparticles. Other walls were insulated, the bottom wall was heated, and a magnetic field (MF) with Ha ranging from 0 to 100 was applied. It was observed that raising Ra from 103 to 106 improved the Nusselt number (Nu) from 0.08 to 7.1 using the Galerkin finite element method. Ha increased from 0 to 100 and reduced Nu by 35%. Three boundary conditions for the square body showed that the heated conditions provided the largest Nu. By means of an increase in SVF from 0 to 0.04, the MWCNT nanofluid improved heat conductivity by 18%. Radiation effects with the radiation parameter Rd = 0.5 increased heat transmission by 22%. These results underline the importance of considering MHD and nanofluid characteristics in maximizing heat transfer for commercial purposes, and the approaches employed in this study contribute to a deeper understanding of the behavior of thermal systems under the influence of MHD and internal geometry. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Simulation: Application in Industries)
Show Figures

Figure 1

Back to TopTop