Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = magnetic mineral dissolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6480 KiB  
Article
Mechanism Analysis and Evaluation of Formation Physical Property Damage in CO2 Flooding in Tight Sandstone Reservoirs of Ordos Basin, China
by Qinghua Shang, Yuxia Wang, Dengfeng Wei and Longlong Chen
Processes 2025, 13(7), 2320; https://doi.org/10.3390/pr13072320 - 21 Jul 2025
Viewed by 429
Abstract
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of [...] Read more.
Capturing CO2 emitted by coal chemical enterprises and injecting it into oil reservoirs not only effectively improves the recovery rate and development efficiency of tight oil reservoirs in the Ordos Basin but also addresses the carbon emission problem constraining the development of the region. Since initiating field experiments in 2012, the Ordos Basin has become a significant base for CCUS (Carbon capture, Utilization, and Storage) technology application and demonstration in China. However, over the years, projects have primarily focused on enhancing the recovery rate of CO2 flooding, while issues such as potential reservoir damage and its extent have received insufficient attention. This oversight hinder the long-term development and promotion of CO2 flooding technology in the region. Experimental results were comprehensively analyzed using techniques including nuclear magnetic resonance (NMR), X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), and ion chromography (IG). The findings indicate that under current reservoir temperature and pressure conditions, significant asphaltene deposition and calcium carbonate precipitation do not occur during CO2 flooding. The reservoir’s characteristics-high feldspar content, low carbon mineral content, and low clay mineral content determine that the primary mechanism affecting physical properties under CO2 flooding in the Chang 4 + 5 tight sandstone reservoir is not, as traditional understand, carbon mineral dissolution or primary clay mineral expansion and migration. Instead, feldspar corrosion and secondary particles migration are the fundamental reasons for the changes in reservoir properties. As permeability increases, micro pore blockage decreases, and the damaging effect of CO2 flooding on reservoir permeability diminishes. Permeability and micro pore structure are therefore significant factors determining the damage degree of CO2 flooding inflicts on tight reservoirs. In addition, temperature and pressure have a significant impact on the extent of reservoir damage caused by CO2 flooding in the study region. At a given reservoir temperature, increasing CO2 injection pressure can mitigate reservoir damage. It is recommended to avoid conducting CO2 flooding projects in reservoirs with severe pressure attenuation, low permeability, and narrow pore throats as much as possible to prevent serious damage to the reservoir. At the same time, the production pressure difference should be reasonably controlled during the production process to reduce the risk and degree of calcium carbonate precipitation near oil production wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 13202 KiB  
Article
Microstructural Mechanical Characteristics of Soft Rock and the Water–Rock Coupling Mechanism
by Yuankai Zhang, Xiaoshan Li, Wenhai Yu, Yunhui Lu, Jiancheng Chen, Xinhong Song, Yonghong Wu and Liu Yang
Processes 2025, 13(5), 1410; https://doi.org/10.3390/pr13051410 - 6 May 2025
Viewed by 446
Abstract
The strength of soft rock masses progressively deteriorates under dissolution effects, leading to extensive pore development and structural loosening within the rock matrix. This process induces water and sand inrush phenomena at excavation faces, posing substantial challenges to construction safety. This study systematically [...] Read more.
The strength of soft rock masses progressively deteriorates under dissolution effects, leading to extensive pore development and structural loosening within the rock matrix. This process induces water and sand inrush phenomena at excavation faces, posing substantial challenges to construction safety. This study systematically investigates the strength degradation mechanisms and engineering disaster evolution of soft rock subjected to water–rock interactions. Utilizing representative water-rich soft rock specimens from a tunnel in central Yunnan, a multi-scale analytical framework incorporating X-ray diffraction mineral analysis systems, triaxial mechanical testing systems for rocks, scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) was implemented. This integrated methodology comprehensively elucidates the macro–meso damage evolution mechanisms of soft rock under water–rock coupling interactions. The results indicate that as the dolomite content decreases and the impurity content increases, the softening grade of the rock rises, leading to more extensive pore development. Uniaxial compression tests revealed that the Poisson’s ratio of soft rock is significantly higher than that of typical rock. Triaxial compression tests demonstrated that confining pressure has a substantial impact on soft rock, particularly affecting Poisson’s ratio. Increased water content was found to significantly reduce the strength of the soft rock. Compared to loose soft rock, the radial strain of denser soft rock was markedly greater than the axial strain, and the soaking damage effect was more pronounced. This study provides a valuable insight into the mechanical and permeability behavior of soft rock under different conditions, and provides valuable insights into the solutions for soft rock in geological engineering such as tunnel excavations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

11 pages, 5065 KiB  
Article
The Effect of Water–Rock Interaction on Shale Reservoir Damage and Pore Expansion
by Jin Pang, Tongtong Wu, Xinan Yu, Chunxi Zhou, Haotian Chen and Jiaao Gao
Processes 2025, 13(5), 1265; https://doi.org/10.3390/pr13051265 - 22 Apr 2025
Viewed by 426
Abstract
This study investigates the microscopic structural changes and the evolution of physical properties in typical shale samples from three wells in southwestern China during water–rock interactions. Using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and other techniques, we analyzed the changes in [...] Read more.
This study investigates the microscopic structural changes and the evolution of physical properties in typical shale samples from three wells in southwestern China during water–rock interactions. Using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and other techniques, we analyzed the changes in pore structure, mineral dissolution behavior, and fracture propagation in shale samples of different types (organic-rich, mixed, and inorganic) during water immersion. The results show that water–rock interaction significantly affects the porosity, fracture width, and physical properties of shale. As the reaction time increases, the pore volume and number of pores generally increase in all shale types, with significant fracture propagation. Furthermore, fracture width changes exhibit varying trends depending on the reaction depth. NMR T2 spectrum analysis indicates that water–rock interaction not only influences the expansion of microfractures but also shows different responses in organic and inorganic pores. SEM images further reveal the impact of water–rock interaction on mineral dissolution, particularly during the early stages, where the dissolution of minerals significantly alters the pore structure. Overall, water–rock interaction plays a crucial role in the development of shale gas reservoirs, providing valuable data and theoretical support for future shale gas extraction. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

29 pages, 23554 KiB  
Article
Comparative Study on the Deterioration of Surface Physical and Mechanical Properties of Sandstone Cultural Heritage Under Different Dissolution Conditions
by Quansheng Lyu, Chengyu Liu, Dong Hu and Changyu Wu
Appl. Sci. 2025, 15(8), 4310; https://doi.org/10.3390/app15084310 - 14 Apr 2025
Viewed by 408
Abstract
In Southwest China’s high-temperature, humid, and rainy climate, ancient sandstone structures face significant deterioration due to acid rain and water accumulation, which cause dynamic and static dissolution. This degradation weakens the sandstone’s physical and mechanical properties, threatening the preservation of cultural heritage sites. [...] Read more.
In Southwest China’s high-temperature, humid, and rainy climate, ancient sandstone structures face significant deterioration due to acid rain and water accumulation, which cause dynamic and static dissolution. This degradation weakens the sandstone’s physical and mechanical properties, threatening the preservation of cultural heritage sites. Dynamic dissolution is the process of matter and energy exchange during fluid–rock or fluid–mineral interactions under dynamic conditions. Under dynamic conditions, continuously renewed fluids supply chemicals for dissolution and remove dissolved products, sustaining reactions similar to acid rain dissolution. Static dissolution is the dissolution–erosion process between fluids and rocks or minerals in a relatively stationary fluid environment. Unlike dynamic dissolution, which involves moving fluids, static dissolution occurs in nearly stagnant fluids, where rising product concentrations from acid–rock reactions may hinder further dissolution, akin to static immersion dissolution. This study systematically examined how different dissolution conditions affect sandstone’s pore structure, mechanical properties, and hygroscopic behavior. Nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM) were used to analyze pore structure changes, while ultrasonic testing and Leeb hardness measurements assessed mechanical strength. Hygroscopicity was evaluated through non-destructive moisture testing in controlled environments. The results show that dynamic dissolution has a greater impact on sandstone than static dissolution. Both conditions increased porosity in two stages, but dynamic dissolution enhanced pore connectivity while static dissolution caused gradual porosity growth and localized cracks. Dynamic dissolution significantly reduced surface hardness and P-wave velocity, increasing hardness heterogeneity, whereas static dissolution had a milder effect. Additionally, dynamic dissolution notably increased sandstone’s hygroscopicity, with moisture absorption rising over time. This study highlights the distinct effects of dynamic and static dissolution on sandstone deterioration, offering insights for the preventive conservation of ancient stone structures. Tailored preservation strategies are essential for addressing these varying degradation mechanisms. Full article
Show Figures

Figure 1

19 pages, 5030 KiB  
Article
Microstructural Evolution and Damage Mechanism of Water-Immersed Coal Based on Physicochemical Effects of Inorganic Minerals
by Xuexi Chen, Zijian Liu, Tao Li, Jingyi Ma and Jiaying Hu
Materials 2024, 17(22), 5579; https://doi.org/10.3390/ma17225579 - 15 Nov 2024
Cited by 2 | Viewed by 1082
Abstract
Coal seam water injection technology enables seam permeability enhancement and facilitates outburst risk reduction. This study investigated the microscale effects of water infiltration on coal and the evolution mechanisms of its mechanical properties. To this end, we systematically analyzed dynamic changes (such as [...] Read more.
Coal seam water injection technology enables seam permeability enhancement and facilitates outburst risk reduction. This study investigated the microscale effects of water infiltration on coal and the evolution mechanisms of its mechanical properties. To this end, we systematically analyzed dynamic changes (such as mineral composition, pore structure, and mechanical performance) in coal soaked for various durations using X-ray diffraction, low-field nuclear magnetic resonance (NMR), and uniaxial compression testing. The results indicate: (1) the coal NMR T2 spectrum displays three characteristic peaks, corresponding to rapid water absorption, uniform transition, and stabilization stages of soaking traditionally divided according to peak area variation trends. (2) The coal strength decreases with progressive soaking, influenced by water content, pore volume, mineral composition, etc. Its compressive strength and elastic modulus drop by 22.4% and 19.5%, respectively, compared to the initial values. (3) The expansion of clay minerals during immersion reduces average pore size. In contrast, quartz particle displacement, pore water movement, and soluble mineral dissolution increase pore volume, reducing the overall structure strength. (4) The dominant factors driving the degradation of mechanical properties vary across immersion stages, including water content and specific mineral concentration. This work offers new insights into how hydraulic technology alters coal seams, providing theoretical support for optimizing water injection strategies in the seam. Full article
Show Figures

Figure 1

17 pages, 8821 KiB  
Article
The Mesoscopic Damage Mechanism of Jointed Sandstone Subjected to the Action of Dry–Wet Alternating Cycles
by Liang Zhang, Guilin Wang, Runqiu Wang, Bolong Liu and Ke Wang
Appl. Sci. 2024, 14(22), 10346; https://doi.org/10.3390/app142210346 - 11 Nov 2024
Viewed by 960
Abstract
The effect of the dry–wet cycle, characterized by periodic water level changes in the Three Gorges Reservoir, will severely degrade the bearing performance of rock formations. In order to explore the effect of the dry–wet cycle on the mesoscopic damage mechanism of jointed [...] Read more.
The effect of the dry–wet cycle, characterized by periodic water level changes in the Three Gorges Reservoir, will severely degrade the bearing performance of rock formations. In order to explore the effect of the dry–wet cycle on the mesoscopic damage mechanism of jointed sandstone, a list of meso-experiments was carried out on sandstone subjected to dry–wet cycles. The pore structure, throat features and mesoscopic damage evolution of jointed sandstone with the action of the dry–wet cycle were analyzed using a-low-field nuclear magnetic resonance (NMR) technique. Subsequently, the impact on the mineral content of dry–wet cycles was studied by small angle X-ray scattering (SAXS). Based on this, the mesoscopic damage mechanism of sandstone subjected to dry–wet cycles was revealed. The results show that the effects of the drying–wetting cycle can promote the development of porous channels within sandstone, resulting in cumulative damage. Besides, with an increase in dry–wet cycles, the proportion of small pores and pore throats decreased, while the proportion of medium and large pores and pore throats increased. The combined effects of extrusion crush, tensile fracture, chemical reaction and dissolution of minerals inside the jointed sandstone contributed to the development of mesoscopic pores, resulting in the increase of porosity and permeability of rock samples under the dry–wet cycles. The results provide an important reference value for the stability evaluation of rock mass engineering under long-term dry–wet alternation. Full article
Show Figures

Figure 1

9 pages, 2337 KiB  
Article
Magnetic Mineral Dissolution in Heqing Core Lacustrine Sediments and Its Paleoenvironment Significance
by Peng Lei, Xinwen Xu, Ziyi Yang, Qiongqiong Wang, Lirong Hou, Yi Jin and Qiubin Wu
Minerals 2024, 14(11), 1096; https://doi.org/10.3390/min14111096 - 29 Oct 2024
Viewed by 1012
Abstract
The magnetic parameters within lacustrine sediments serve as invaluable proxies for deciphering the paleoenvironmental and paleoclimatic conditions. However, the dissolution of magnetic minerals can significantly alter detrital magnetic mineral assemblages, thereby complicating their interpretation in paleoenvironmental reconstructions. In an effort to clarify the [...] Read more.
The magnetic parameters within lacustrine sediments serve as invaluable proxies for deciphering the paleoenvironmental and paleoclimatic conditions. However, the dissolution of magnetic minerals can significantly alter detrital magnetic mineral assemblages, thereby complicating their interpretation in paleoenvironmental reconstructions. In an effort to clarify the impact of this dissolution on the grain size of magnetic minerals in lacustrine sediments, we undertook a thorough analysis of the rock magnetic properties on samples from the interval characterized by low ARM (anhysteretic remanent magnetization)/SIRM (saturation isothermal remanent magnetization) values between 140 and 320 ka in the Heqing (HQ) lacustrine drill core, located in Southwest China. Temperature-dependent magnetic susceptibility and FORC diagrams revealed a predominance of single-vortex and pseudo-single domain (PSD) magnetite and maghemite within the sample. When compared to samples from both the glacial and interglacial periods, the high SIRM, elevated magnetic susceptibility, and low ARM/SIRM ratio intervals from 140 to 320 ka suggested a high concentration of magnetic minerals coupled with a relatively low concentration of fine-grained particles in the sediments. The reductive dissolution of the fine-grained magnetic oxides is responsible for the reduction in the fine-grained magnetic particles in this interval. Our findings indicate that pedogenic fine-grained magnetite and maghemite are the first to dissolve, followed by the dissolution of coarser-grained iron oxides into finer particles. This process underscores the complex interplay between magnetic mineral dissolution and grain size distribution in lacustrine sediments, with significant implications for the reliability of paleoenvironmental interpretations derived from magnetic parameters. Full article
(This article belongs to the Special Issue Environment and Geochemistry of Sediments, 2nd Edition)
Show Figures

Figure 1

13 pages, 6493 KiB  
Article
Property Changes of Low-Permeability Oil Reservoirs Under Long-Term Water Flooding
by Lili Lin, Chongjun Xu, Haifeng Lyu, Yuping Chen, Shuping Cong, Xingxing Yang and Wengang Bu
Processes 2024, 12(11), 2317; https://doi.org/10.3390/pr12112317 - 23 Oct 2024
Cited by 2 | Viewed by 1114
Abstract
The property changes of low-permeability oil reservoirs after long-term water flooding remain insufficiently understood. This study conducted water flooding experiments on three real core samples and employed scanning electron microscopy (SEM), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) to analyze how the [...] Read more.
The property changes of low-permeability oil reservoirs after long-term water flooding remain insufficiently understood. This study conducted water flooding experiments on three real core samples and employed scanning electron microscopy (SEM), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) to analyze how the changes in mineral and pore structure relate to permeability changes before and after water flooding. The results showed that the core permeability decreased significantly after water flooding, with a decrease rate of 69.7%, 19.6%, and 34.4% for the three cores. The well test results of the block also indicate that the reservoir permeability decreases after long-term water injection, with an average decrease of over 60%. The clay mineral content decreased notably, with the largest decrease of 8.6 percentage points in kaolinite and minor decreases in chlorite and illite. SEM results also indicated erosion and damage to the clay mineral structure by the water flow, and kaolinite has a high degree of dissolution. The NMR results showed that after water flooding, the pore size curve shifted to the left, the relaxation time decreased, the number of small pores in the cores increased, and the number of large pores decreased. The median pore radius decreased by 3.4% to 21.53%. Full article
(This article belongs to the Special Issue Flow in Porous Media and CO2 Storage in Enhanced Oil Recovery)
Show Figures

Figure 1

27 pages, 11159 KiB  
Review
Rock Wettability Alteration Induced by the Injection of Various Fluids: A Review
by Darezhat Bolysbek, Kenbai Uzbekaliyev and Bakytzhan Assilbekov
Appl. Sci. 2024, 14(19), 8663; https://doi.org/10.3390/app14198663 - 26 Sep 2024
Cited by 2 | Viewed by 2459
Abstract
Wettability is a key parameter that determines the distribution and behavior of fluids in the porous media of oil reservoirs. Understanding and controlling wettability significantly impacts the effectiveness of various enhanced oil recovery (EOR) methods and CO2 sequestration. This review article provides a [...] Read more.
Wettability is a key parameter that determines the distribution and behavior of fluids in the porous media of oil reservoirs. Understanding and controlling wettability significantly impacts the effectiveness of various enhanced oil recovery (EOR) methods and CO2 sequestration. This review article provides a comprehensive analysis of various methods for measuring and altering wettability, classifying them by mechanisms and discussing their applications and limitations. The main methods for measuring wettability include spontaneous imbibition methods such as Amott–Harvey tests and USBM, contact angle measurement methods, and methods based on the characteristics of imbibed fluids such as infrared spectroscopy (IR) and nuclear magnetic resonance (NMR). These methods offer varying degrees of accuracy and applicability depending on the properties of rocks and fluids. Altering the wettability of rocks is crucial for enhancing oil recovery efficiency. The article discusses methods such as low-salinity water flooding (LSWF), the use of surfactants (SAAs), and carbonated water injection (CWI). LSWF has shown effectiveness in increasing water wettability and improving oil displacement. Surfactants alter interfacial tension and wettability, aiding in better oil displacement. CWI also contributes to altering the wettability of the rock surface to a more water-wet state. An important aspect is also the alteration of wettability through the dissolution and precipitation of minerals in rocks. The process of dissolution and precipitation affects pore structure, capillary pressure, and relative permeabilities, which in turn alters wettability and oil displacement efficiency. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 6037 KiB  
Article
Characteristics and Genesis of Pore–Fracture System in Alkaline Lake Shale, Junggar Basin, China
by Yifan Jiao, Xianglu Tang, Wenjun He, Liliang Huang, Zhenxue Jiang, Leilei Yang and Caihua Lin
Appl. Sci. 2024, 14(12), 5239; https://doi.org/10.3390/app14125239 - 17 Jun 2024
Cited by 1 | Viewed by 1208
Abstract
Unconventional oil and gas resources are indispensable, and shale oil is one of them. The Junggar Basin is a typical superposition oil and gas basin in China, with reserves of 100 million tons in many areas and various types of oil and gas [...] Read more.
Unconventional oil and gas resources are indispensable, and shale oil is one of them. The Junggar Basin is a typical superposition oil and gas basin in China, with reserves of 100 million tons in many areas and various types of oil and gas reservoirs. The Permian Fengcheng Formation in Mahu Sag has great potential for oil generation, making the study of the Fengcheng Formation reservoir in Mahu Sag particularly important. Based on previous studies, the core sample from well Maye-1 is divided into four lithologies according to mineral composition: felsic shale, dolomitic felsic shale, clay-bearing felsic shale, and siltstone interlayers. Through core observation and description, it is found that the macroscopic porosity of each lithology is well-developed, with felsic shale exhibiting the highest macroscopic fracture density, followed by siltstone interlayers, and clay-bearing felsic shale showing the least development. Argon ion polishing scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) techniques show that the siltstone interlayer pore development is the best, with pore sizes ranging from 100 to 4000 nm. The fracture development of dolomitic felsic shale is the most significant, with fractures contributing up to 80.14%. The porosity of clay-bearing felsic shale is only 1.12%. The development of pores and fractures in the study area is related to sedimentary tectonic factors and diagenesis. It mainly exhibits three types of subfacies deposits, namely semi-deep lake subfacies, shallow lake subfacies, and lakeshore lake subfacies, predominantly composed of felsic shale. Strong tectonic movements contribute to the formation of macroscopic fractures. Diagenesis plays a crucial role in the formation of microscopic pores. The Fengcheng Formation is primarily influenced by compaction, pressure dissolution, dissolution, and metasomatism. These various diagenetic processes collectively promote the formation of pores, ultimately leading to the development of a multi-scale porosity system in the Fengcheng Formation. Full article
Show Figures

Figure 1

22 pages, 12603 KiB  
Article
Characteristics of Weathering Reservoirs and Differences in Fracture Formation in the Weathering Crust of the Pre-Cenozoic Basement of Lishui Sag, East China Sea Basin, China
by Jinshui Liu and Huafeng Tang
Minerals 2024, 14(3), 270; https://doi.org/10.3390/min14030270 - 4 Mar 2024
Cited by 1 | Viewed by 1797
Abstract
Fractures are the main reservoir space in basement weathering crusts and control the development of dissolution/alteration pores. A clear understanding of the main factors controlling fracture formation is needed to accurately predict reservoir characteristics. In this study, the reservoir characteristics along with the [...] Read more.
Fractures are the main reservoir space in basement weathering crusts and control the development of dissolution/alteration pores. A clear understanding of the main factors controlling fracture formation is needed to accurately predict reservoir characteristics. In this study, the reservoir characteristics along with the vertical zonation and thermal history of basement weathering crust were studied through lithology, mineral identification, porosity and permeability tests, nuclear magnetic resonance (T2), whole-rock analysis, and fission-track dating based on core samples, cuttings, and imaging logging data. Under the constraints of the Anderson model, the formation stages and timing of fractures were analyzed according to the regional stress field, fracture strike, fracture filling characteristics, and rock mechanical properties. The results revealed tensile structural fractures, shear structural fractures, weathering micro-fractures, alteration fractures, and intracrystalline alteration pores in the weathering crust of the Pre-Cenozoic basement in Lishui Sag. The reservoirs were characterized by low porosity, low permeability, and small pore diameter. The reservoir quality of granite was better than that of gneiss. The weathering crust could be divided into four zones: the soil layer, weathering dissolution zone, weathering fracture zone, and bedrock zone. The thickness of the soil layer and weathering dissolution zone were small. Four stages of fractures were identified: Yandang movement shear fractures, Paleocene tension structural fractures, Huagang movement shear fractures, and Longjing movement shear fractures. The main stage of basement fracture formation differed between the Lingfeng buried hill zone and Xianqiao structural zone. Considering the influence of the temperature and pressure environment on the rock’s mechanical properties, the differential fracture formation is related to the lithology, the coupling between the uplifted and exposed basement histories, and the tectonic stress field. Combined with the thermal histories of the Lingfeng buried hill zone and Xianqiao structural zone, the results suggest that the Lingfeng buried hill granite is favorable for basement fractures in Lishui Sag. Overall, this paper provides a novel method for analyzing the stages of fracture formation. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

12 pages, 15641 KiB  
Article
Prevention of Silica Gel Formation for Eudialyte Study Using New Digestion Reactor
by Ivan Silin, Christian Dertmann, Vesna S. Cvetković, Srecko Stopic and Bernd Friedrich
Minerals 2024, 14(2), 124; https://doi.org/10.3390/min14020124 - 24 Jan 2024
Cited by 3 | Viewed by 1770
Abstract
This work includes a combined hydrometallurgical treatment of a eudialyte ore sample with a subsequent preparation of leaching residue using mechanical separation methods. Hydrometallurgical treatment contains dry digestion with sulphuric acid at room temperature and filtration of the obtained product. The objectives of [...] Read more.
This work includes a combined hydrometallurgical treatment of a eudialyte ore sample with a subsequent preparation of leaching residue using mechanical separation methods. Hydrometallurgical treatment contains dry digestion with sulphuric acid at room temperature and filtration of the obtained product. The objectives of adopting these procedures are to test a new digestion reactor in order to prevent silica gel formation from the eudialyte ore. The obtained results revealed that silica gel formation is prevented during dissolution with sulphuric acid. A high leaching efficiency of light rare earth elements (La, Ce, Nd, Y) was reached using the dry digestion process with sulphuric acid, where the starting molarity was 12 mol/L. After the filtration process, magnetic separation is studied as the main method to recover weakly magnetic minerals like amphiboles and pyroxenes from the leaching residue in the magnetic fraction and feldspars in the nonmagnetic fraction. A new combined research strategy was developed for the production of different concentrates such as the one bearing Zr, Hf, and Nb. Full article
(This article belongs to the Special Issue Geochemical Characteristics and Contamination Risk Assessment of Soil)
Show Figures

Figure 1

19 pages, 4256 KiB  
Article
A Study on the Pore Structure and NMR Fractal Characteristics of Continental Shale in the Funing Formation of the Gaoyou Sag, Subei Basin
by Zipeng Wang, Yue Zhu, Zhenxue Jiang, Houjian Gong, Yu Yang, Bo Wang and Xin Wang
Appl. Sci. 2023, 13(22), 12484; https://doi.org/10.3390/app132212484 - 18 Nov 2023
Cited by 1 | Viewed by 1449
Abstract
The continental shale oil resource in China exhibits significant potential and serves as a crucial strategic alternative to the country’s conventional oil and gas reserves. The efficacy of shale oil exploration and production is heavily contingent upon the heterogeneity of the pore structure [...] Read more.
The continental shale oil resource in China exhibits significant potential and serves as a crucial strategic alternative to the country’s conventional oil and gas reserves. The efficacy of shale oil exploration and production is heavily contingent upon the heterogeneity of the pore structure within the reservoir. However, there remains a scarcity of research pertaining to the pore structure of continental shale and the factors that influence it. The objective of this study is to provide a quantitative characterization of the heterogeneity exhibited by the continental shale of the Funing Formation in the Gaoyou Sag. In this study, the research focus is directed toward the continental shale of the Funing Formation located in the Gaoyou Sag of the Subei Basin. This paper examines the correlation between the fractal dimension of nuclear magnetic resonance (NMR) and various factors including the total organic carbon (TOC), mineral composition, geochemical parameters, and physical properties, utilizing the principles of fractal dimension theory. The findings indicate that the primary pore types observed in the Funing Formation continental shale are inorganic matrix pores, which encompass dissolution pores, clay mineral intergranular pores, and a limited number of pyrite intergranular pores. By employing a relaxation time cutoff, the NMR fractal dimension can be categorized into two distinct dimensions: the bound-fluid-pore fractal dimension (0.5795~1.3813) and the movable-fluid-pore fractal dimension (2.9592~2.9793). The correlation between mineral composition and the fractal dimension indicates a negative relationship between the fractal dimensions of bound-fluid pores and movable-fluid pores and the content of quartz. The correlation between clay minerals and the fractal dimension indicates a significant negative relationship between the fractal dimensions of bound-fluid pores and movable-fluid pores with illite. There exists a negative correlation between the pore fractal dimension of bound fluid and the content of organic matter, whereas a positive correlation is observed between the pore fractal dimension of mobile fluid and the content of organic matter. The range of maturity of organic matter within the Funing Formation exhibits a relatively limited span, as indicated by the vitrinite reflectance (Ro) values falling between 0.8% and 0.9%. This narrow range of maturity does not exert a substantial influence on the two fractal dimensions. The NMR fractal dimension exhibits a negative correlation with permeability in relation to reservoir physical properties, while the bound-fluid-pore fractal dimension demonstrates a negative correlation with the total porosity. The findings suggest that the NMR fractal dimension can serve as a valuable indicator for evaluating the physical characteristics of reservoirs. The present study successfully examined the pore structure of continental shale through the utilization of nuclear magnetic resonance technology. This innovative technique provides a novel avenue for the assessment of continental shale reservoirs and the investigation of pore heterogeneity on a global scale. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

22 pages, 6705 KiB  
Article
Diagenetic Evolution Sequence and Pore Evolution Characteristics: Study on Marine-Continental Transitional Facies Shale in Southeastern Sichuan Basin
by Bing Zhang, Siyu Wen, Kai Yang, Kai Ma, Pengwan Wang, Chuan Xu and Gaoquan Cao
Minerals 2023, 13(11), 1451; https://doi.org/10.3390/min13111451 - 18 Nov 2023
Cited by 5 | Viewed by 1877
Abstract
Diagenesis and pore structure are essential factors for reservoir evaluation. marine-continental transitional facies shale is a new shale gas reservoir of concern in the Sichuan Basin. The research on its diagenesis pore evolution model has important guiding significance in its later exploration and [...] Read more.
Diagenesis and pore structure are essential factors for reservoir evaluation. marine-continental transitional facies shale is a new shale gas reservoir of concern in the Sichuan Basin. The research on its diagenesis pore evolution model has important guiding significance in its later exploration and development. However, the current research on pore structure changes, diagenesis, and the evolution of marine-continental transitional facies shale is not sufficient and systematic. In order to reveal the internal relationship between pore structure changes and diagenesis, the evolution of marine-continental transitional facies shale was tested by X-ray diffraction, field emission scanning electron microscopy, low-pressure gas adsorption, nuclear magnetic resonance, and the diagenetic evolution sequence and nanopore system evolution of Longtan Formation shale was systematically studied. The results show that the Longtan Formation shale underwent short-term shallow after sedimentation, followed by long-term deep burial. The main diagenetic mechanisms of the Longtan Formation shale include compaction, dissolution, cementation, thermal maturation of organic matter, and transformation of clay minerals, which are generally in the middle-late diagenetic stage. The pore structure undergoes significant changes with increasing maturity, with the pore volumes of both micropores and mesopores reaching their minimum values at Ro = 1.43% and subsequently increasing. The change process of a specific surface area is similar to that of pore volumes. Finally, the diagenetic pore evolution model of Longtan Formation MCFS in Southeastern Sichuan was established. Full article
Show Figures

Figure 1

15 pages, 3454 KiB  
Article
Investigation of the Effect of Fracturing Fluids on Shale Pore Structure by Nuclear Magnetic Resonance
by Xiulan Zhu, Zhiguo Wang, Yang You, Chuang Zhang, Hui Gao, Nan Zhang, Teng Li, Chen Wang and Zhilin Cheng
Minerals 2023, 13(11), 1405; https://doi.org/10.3390/min13111405 - 1 Nov 2023
Cited by 2 | Viewed by 1838
Abstract
Hydraulic fracturing technology significantly enhances the productivity of shale oil and gas reservoirs. Nonetheless, the infiltration of fracturing fluid into shale formations can detrimentally affect the microscopic pore structure, thereby impairing the efficacy of hydraulic stimulation. In this study, nuclear magnetic resonance (NMR) [...] Read more.
Hydraulic fracturing technology significantly enhances the productivity of shale oil and gas reservoirs. Nonetheless, the infiltration of fracturing fluid into shale formations can detrimentally affect the microscopic pore structure, thereby impairing the efficacy of hydraulic stimulation. In this study, nuclear magnetic resonance (NMR) technology was utilized to conduct high-pressure soaking tests on shale specimens treated with EM30+ + guar gum mixed water and CNI nano variable-viscosity slickwater, where various concentrations of a drag reducer were utilized. Additionally, the differences in porosity, permeability, mineral composition, and iron ion concentration before and after the measurements were compared, which were used to analyze the influence on the shale’s microscopic pore structure. It features a reduction in the total pore volume after the interaction with the fracturing fluid, with the pore-throat damage degree, porosity damage degree, and permeability damage degree ranging from 0.63% to 5.62%, 1.51% to 6.84%, and 4.17% to 19.61%, respectively. Notably, EM30+ + guar gum mixed water exhibits heightened adsorption retention, alkaline dissolution, and precipitation compared to CNI nano variable-viscosity slickwater, rendering it more deleterious to shale. Moreover, higher concentrations of drag reducers, such as EM30+ or CNI-B, predominantly result in damage to the shale’s micropores. Shale compositions characterized by lower content of quartz and elevated proportions of clay minerals and iron-bearing minerals showcase augmented mineral dissolution and precipitation, consequently intensifying the shale damage. The hydration expansion of mixed-layer illite/smectite profoundly diminishes the core permeability. Consequently, the mechanisms underpinning the damage inflicted on shale’s microscopic pore structure primarily involve fracturing fluid adsorption and retention, mineral dissolution, and precipitation, such as clay minerals and iron-containing minerals. Full article
Show Figures

Figure 1

Back to TopTop