Property Changes of Low-Permeability Oil Reservoirs Under Long-Term Water Flooding
Abstract
:1. Introduction
2. Experimental
2.1. Equipment and Materials
2.2. Experimental Methods
2.2.1. Measurement of Porosity and Permeability
2.2.2. Scanning Electron Microscopy Observation
2.2.3. X-Ray Diffraction of Whole Rocks and X-Ray Diffraction of Clay Analysis
2.2.4. NMR T2 Spectrum Test and Pore Size Analysis
2.2.5. Core Flooding
3. Results and Discussion
3.1. Characteristics of Permeability Changes During Long-Term Water Injection
3.2. Characteristics of Clay Mineral Content Changes During Long-Term Water Injection
3.3. Characteristics of Pore Structure Changes During Long-Term Water Injection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mokhtari, R.; Anabaraonye, B.U.; Afrough, A.; Mohammadkhani, S.; Feilberg, K.L. Experimental investigation of low salinity water-flooding in tight chalk oil reservoirs. J. Pet. Sci. Eng. 2022, 208, 109282. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, J.; Chen, H.; Jiang, R.; Sun, Z.; Rui, Z. The injectivity variation prediction model for water flooding oilfields sustainable development. Energy 2019, 189, 116317. [Google Scholar] [CrossRef]
- Jin, L.; Liu, Y.; Gao, J.; Hao, Z. Quantitative Interpretation of Water Sensitivity Based on Well Log Data: A Case of a Conglomerate Reservoir in the Karamay Oil Field. Lithosphere 2021, 2021, 5992165. [Google Scholar] [CrossRef]
- Tan, Q.; You, L.; Kang, Y.; Xu, C. Formation damage mechanisms in tight carbonate reservoirs: The typical illustrations in Qaidam Basin and Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2021, 95, 104193. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, W.; Yin, D. Experimental investigation on reservoir damage caused by clay minerals after water injection in low permeability sandstone reservoirs. J. Pet. Explor. Prod. Technol. 2022, 12, 915–924. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, D.; Zhao, J. Experimental investigation of water sensitivity effects on microscale mechanical behavior of shale. Int. J. Rock Mech. Min. Sci. 2021, 145, 104837. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Malekpour, M.; Kikhavani, T.; Bayati, B. The study of the spontaneous oil imbibition in the presence of new polymer-coated nanocomposites compatible with reservoir conditions. Pet. Sci. Technol. 2024, 42, 974–992. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, G.; Li, X.; Yang, L. Quantitative investigation of water sensitivity and water locking damages on a low-permeability reservoir using the core flooding experiment and NMR test. ACS Omega 2022, 7, 4444–4456. [Google Scholar] [CrossRef]
- Hosseinzadehsadati, S.; Eftekhari, A.A.; Nick, H.M. Role of relative permeability hysteresis in modified salinity water flooding. Fuel 2022, 321, 124085. [Google Scholar] [CrossRef]
- Ligeiro, T.S.; Vaz, A.; Chequer, L. Forecasting the impact of formation damage on relative permeability during low-salinity waterflooding. J. Pet. Sci. Eng. 2022, 208, 109500. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J. Experimental study on the variation of relative permeability due to clay minerals in low salinity water-flooding. J. Pet. Sci. Eng. 2017, 151, 292–304. [Google Scholar] [CrossRef]
- Si, L.; Wei, J.; Xi, Y.; Wang, H.; Wen, Z.; Li, B.; Zhang, H. The influence of long-time water intrusion on the mineral and pore structure of coal. Fuel 2021, 290, 119848. [Google Scholar] [CrossRef]
- Xie, W.; Yin, Q.; Zeng, J.; Wang, G.; Feng, C.; Zhang, P. Fractal-based approaches to pore structure investigation and water saturation prediction from NMR measurements: A case study of the gas-bearing tight sandstone reservoir in Nanpu Sag. Fractal Fract. 2023, 7, 273. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, D.; Zhang, X.; Zhao, X.; Zhou, R. Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology. Energy 2023, 278, 127960. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, S.; Li, J.; Wang, J.; Zhang, J.; Chen, G.; Huang, H.; Zhi, Q.; Yin, Y. Microscopic characteristics of pore-fracture system in lacustrine shale from Dongying Sag, Bohai Bay Basin, China: Evidence from scanning electron microscopy. Mar. Pet. Geol. 2023, 150, 106156. [Google Scholar] [CrossRef]
- Mu, C.; Hua, H.; Wang, X. Characterization of pore structure and reservoir properties of tight sandstone with CTS, SEM, and HPMI: A case study of the tight oil reservoir in fuyu oil layers of Sanzhao Sag, Songliao basin, NE China. Front. Energy Res. 2023, 10, 1053919. [Google Scholar] [CrossRef]
- Sato, A.; Obara, Y. Analysis of pore structure and water permeation property of a shale rock by means of X-ray CT. Procedia Eng. 2017, 191, 666–673. [Google Scholar] [CrossRef]
- Mukunoki, T.; Miyata, Y.; Mikami, K.; Shiota, E. X-ray CT analysis of pore structure in sand. Solid Earth 2016, 7, 929–942. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Liu, S.; Wang, K.; Jiang, Y. Pore structure characterization of coal by NMR cryoporometry. Fuel 2017, 190, 359–369. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Jing, X.; Xiao, W.; Cui, Q. Influence mechanism of pore-scale anisotropy and pore distribution heterogeneity on permeability of porous media. Pet. Explor. Dev. 2019, 46, 594–604. [Google Scholar] [CrossRef]
- Li, L.; Shi, G.; Zhang, Y.; Liu, X. Relationship between the heterogeneity of low-permeability reservoirs and the dynamic evolution of fractures under uniaxial compression conditions by CT scanning: A case study in the jiyang depression of Bohai Bay Basin, China. Front. Earth Sci. 2023, 10, 1018561. [Google Scholar] [CrossRef]
- Ling, C.; Zhang, X.; Fu, M.; Huang, T.; Duan, G.; Gao, S. The geological controlling factors of the heterogeneity of a bioclastic limestone reservoir—A case study of the Cretaceous Kh2 layer in A oilfield, Iraq. Front. Energy Res. 2024, 11, 1296584. [Google Scholar] [CrossRef]
- SY/T 5163-2018; Oil and Gas Industry Standard of the P.R.China: Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction. National Energy Administration: Beijing, China, 2019.
- GB/T 29172-2012; Practices for Core Analysis. SAC: Beijing, China, 2012; (In Chinese with an English Abstract).
- Li, M.; Qu, Z.; Wang, M.; Ran, W. The influence of micro-heterogeneity on water injection development in low-permeability sandstone oil reservoirs. Minerals 2023, 13, 1533. [Google Scholar] [CrossRef]
- Pu, Y.; Li, S.; Tang, D.; Chen, S. Effect of Magmatic Intrusion on In Situ Stress Distribution in Deep Coal Measure Strata: A Case Study in Linxing Block, Eastern Margin of Ordos Basin, China. Nat. Resour. Res. 2022, 31, 2919–2942. [Google Scholar] [CrossRef]
- SY/T 5162-2021; The Petroleum Industry Standard of China—Analytical Method for Rock Samples by Scanning Electron Microscope. Petroleum Industry Press: Beijing, China, 2022; pp. 1–8.
- Wang, Y.; Zhou, S.; Liang, F.; Huang, Z.; Li, W.; Yan, W.; Guo, W. Reservoir Space Characterization of Ordovician Wulalike Formation in Northwestern Ordos Basin, China. Processes 2023, 11, 2791. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, F.; Liu, D.; Zhao, L.; Zhang, X.; Lin, J.; Dong, H.; Zhao, S.; Liu, X.; Zan, M. Modes of occurrence of critical metal elements (Li, REEs and other critical elements) in low-grade bauxite from southern shanxi province, China. Minerals 2022, 12, 990. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, H. Method to Generate Random Element Equivalent Core Models Based on the NMR T2 Spectrum for Waterflooding in Tight Sandstone. ACS Omega 2021, 6, 34783–34795. [Google Scholar] [CrossRef]
- Mwakipunda, G.C.; Jia, R.; Mgimba, M.M.; Ngata, M.R.; Mmbuji, A.O.; Said, A.A.; Yu, L. A critical review on low salinity waterflooding for enhanced oil recovery: Experimental studies, simulations, and field applications. Geoenergy Sci. Eng. 2023, 227, 211936. [Google Scholar] [CrossRef]
- Mehdizad, A.; Sedaee, B.; Pourafshary, P. Visual investigation of the effect of clay-induced fluid flow diversion on oil recovery, as a low-salinity water flooding mechanism. J. Pet. Sci. Eng. 2022, 209, 109959. [Google Scholar] [CrossRef]
- Xiong, Y. Study of Reservoir Change Law After Waterflood in Glutenite Reservoir and Its Application. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2020. [Google Scholar]
Cores | Length (cm) | Diameter (cm) | Porosity (%) | Air Permeability (mD) |
---|---|---|---|---|
1# | 7.084 | 2.477 | 16.74 | 1.06 |
6.405 | 2.475 | 17.21 | 1.27 | |
2# | 7.284 | 2.457 | 15.39 | 6.33 |
7.32 | 2.465 | 15.11 | 4.15 | |
3# | 5.609 | 2.444 | 18.28 | 12.45 |
4.75 | 2.418 | 18.01 | 16.2 |
Cores | Clay Contents (%) | ||||
---|---|---|---|---|---|
Kaolinite | Chlorite | Illite | Illite/Montmorillonite Interlayers | Chlorite/Montmorillonite Interlayers | |
1# | 29.3 | 10 | 19.3 | 6.5 | 34.9 |
2# | 82.1 | 11.6 | 2.9 | 3.4 | 0 |
3# | 79.7 | 9.1 | 6.5 | 4.7 | 0 |
Cores | 1# | 2# | 3# | |||
---|---|---|---|---|---|---|
Permeability (mD) | 1.06 | 1.27 | 6.33 | 4.15 | 12.45 | 16.2 |
Surface relaxation rate ρ (μm·s−1) | 0.020 | 0.020 | 0.023 | 0.023 | 0.025 | 0.025 |
Cores/Water Flooding Status | Median Pore Size (μm) | |||
---|---|---|---|---|
Inlet | Middle | Outlet | ||
1# | before | 0.162 | 0.174 | 0.174 |
after | 0.146 | 0.141 | 0.146 | |
2# | before | 0.421 | 0.436 | 0.436 |
after | 0.330 | 0.354 | 0.379 | |
3# | before | 0.311 | 0.261 | 0.252 |
after | 0.300 | 0.227 | 0.220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Xu, C.; Lyu, H.; Chen, Y.; Cong, S.; Yang, X.; Bu, W. Property Changes of Low-Permeability Oil Reservoirs Under Long-Term Water Flooding. Processes 2024, 12, 2317. https://doi.org/10.3390/pr12112317
Lin L, Xu C, Lyu H, Chen Y, Cong S, Yang X, Bu W. Property Changes of Low-Permeability Oil Reservoirs Under Long-Term Water Flooding. Processes. 2024; 12(11):2317. https://doi.org/10.3390/pr12112317
Chicago/Turabian StyleLin, Lili, Chongjun Xu, Haifeng Lyu, Yuping Chen, Shuping Cong, Xingxing Yang, and Wengang Bu. 2024. "Property Changes of Low-Permeability Oil Reservoirs Under Long-Term Water Flooding" Processes 12, no. 11: 2317. https://doi.org/10.3390/pr12112317
APA StyleLin, L., Xu, C., Lyu, H., Chen, Y., Cong, S., Yang, X., & Bu, W. (2024). Property Changes of Low-Permeability Oil Reservoirs Under Long-Term Water Flooding. Processes, 12(11), 2317. https://doi.org/10.3390/pr12112317