Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (130)

Search Parameters:
Keywords = magnesium potassium phosphate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 894 KiB  
Review
Review: Piglets’ (Re)Feeding Patterns, Mineral Metabolism, and Their Twisty Tail
by Theo van Kempen and Eugeni Roura
Metabolites 2025, 15(7), 480; https://doi.org/10.3390/metabo15070480 - 16 Jul 2025
Viewed by 469
Abstract
The appearance rate of nutrients into systemic circulation affects hormones like insulin and through that efficiency of growth. This also affects mineral requirements critical for metabolism, notably phosphate (P), magnesium (Mg), and potassium (K). Fasting animals have a downregulated metabolism, upon which P, [...] Read more.
The appearance rate of nutrients into systemic circulation affects hormones like insulin and through that efficiency of growth. This also affects mineral requirements critical for metabolism, notably phosphate (P), magnesium (Mg), and potassium (K). Fasting animals have a downregulated metabolism, upon which P, Mg, and K are exported from their cells into the blood and are subsequently excreted in their urine. Abrupt resumption of feed intake, especially of highly glycemic feeds, creates an acute need for these minerals, which can result in deficiency symptoms, particularly with P deficiency. In human medicine, this is called refeeding syndrome: a large meal after a period of fasting can prove fatal. Young animals seem to be especially sensitive, likely driven by their ability to grow rapidly and thus to drastically upregulate their metabolism in response to insulin. Symptoms of P deficiency are fairly a-specific and, consequently, not often recognized. They include edema, which makes it appear as if piglets are growing well, explaining the high gain/feed rate typically seen immediately after weaning, even when piglets are eating at or below the maintenance requirements. Phosphate deficiency can also result in hypoxia and hypercarbia, which may trigger ear necrosis, Streptococcus suis infections, or even death. Hypophosphatemia can also trigger rhabdomyolysis, which may contribute to tail-biting, but this requires further study. Arguably, when fasting cannot be avoided, diets for newly weaned piglets should be formulated to avoid these problems by lowering their glycemic load and by formulating diets according to the piglets’ actual requirements inspired by their genuine intake and health and not simply by extrapolating from older animals. Full article
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment
by Mario Alamilla-Sanchez, Miguel Angel Alcalá Salgado, Victor Manuel Ulloa Galván, Valeria Yanez Salguero, Martín Benjamin Yamá Estrella, Enrique Fleuvier Morales López, Nicte Alaide Ramos García, Martín Omar Carbajal Zárate, Jorge David Salazar Hurtado, Daniel Alberto Delgado Pineda, Leticia López González and Julio Manuel Flores Garnica
Pathophysiology 2025, 32(3), 33; https://doi.org/10.3390/pathophysiology32030033 - 3 Jul 2025
Viewed by 1903
Abstract
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms [...] Read more.
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms of secretion and reabsorption of solutes and proteins using specific transporters in the epithelial cells. The assessment of renal function usually focuses on glomerular function, so the tubular function is often underestimated as a fundamental part of daily clinical practice. Therefore, it is essential to properly understand the tubular physiological mechanisms and their clinical association with prevalent human pathologies. This review discusses the primary solutes handled by the kidneys, including glucose, amino acids, sodium, potassium, calcium, phosphate, citrate, magnesium and uric acid. Additionally, it emphasizes the significance of physicochemical characteristics of urine, such as pH and osmolarity. The use of a concise methodology for the comprehensive assessment of urine should be strengthened in the basic training of nephrologists when dealing with problems such as water and electrolyte balance disorders, acid-base disorders, and harmful effects of commonly used drugs such as chemotherapy, antibiotics, or diuretics to avoid isolated replacement of the solute without carrying out comprehensive approaches, which can lead to potentially severe complications. Full article
Show Figures

Figure 1

23 pages, 2883 KiB  
Article
Effectiveness of Rain Gardens for Managing Non-Point Source Pollution from Urban Surface Storm Water Runoff in Eastern Texas, USA
by Shradhda Suman Jnawali, Matthew McBroom, Yanli Zhang, Kevin Stafford, Zhengyi Wang, David Creech and Zhongqian Cheng
Sustainability 2025, 17(10), 4631; https://doi.org/10.3390/su17104631 - 18 May 2025
Viewed by 1438
Abstract
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by [...] Read more.
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by increasing impervious surfaces that prevent natural infiltration. This study evaluated the efficacy of rain gardens, a nature-based best management practice (BMP), in mitigating NPS pollution from urban stormwater runoff. Stormwater samples were collected at inflow and outflow points of three rain gardens and analyzed for various water quality parameters, including pH, electrical conductivity, fluoride, chloride, nitrate, nitrite, phosphate, sulfate, salts, carbonates, bicarbonates, sodium, potassium, aluminum, boron, calcium, mercury, arsenic, copper iron lead magnesium, manganese and zinc. Removal efficiencies for nitrate, phosphate, and zinc exceeded 70%, while heavy metals such as lead achieved reductions up to 80%. However, certain parameters, such as calcium, magnesium and conductivity, showed increased outflow concentrations, attributed to substrate leaching. These increases resulted in a higher outflow pH. Overall, the pollutants were removed with an efficiency exceeding 50%. These findings demonstrate that rain gardens are an effective and sustainable solution for managing urban stormwater runoff and mitigating NPS pollution in eastern Texas, particularly in regions vulnerable to extreme precipitation events. Full article
Show Figures

Figure 1

16 pages, 2969 KiB  
Article
Optimizing Potassium Fertilization Combined with Calcium–Magnesium Phosphate Fertilizer Mitigates Rice Cadmium Accumulation: A Multi-Site Field Trial
by Qiying Zhang, Weijian Wu, Yingyue Zhao, Xiaoyu Tan, Yang Yang, Qingru Zeng and Xiao Deng
Agriculture 2025, 15(10), 1052; https://doi.org/10.3390/agriculture15101052 - 13 May 2025
Viewed by 504
Abstract
Alkaline fertilizers demonstrate significant potential in mitigating rice cadmium (Cd) accumulation, yet the combined effects of calcium–magnesium phosphate (CMP) with potassium (K) fertilizer types and split application strategies remain unclear. Through multi-site field trials in Cd-contaminated paddy soils, we evaluated split applications of [...] Read more.
Alkaline fertilizers demonstrate significant potential in mitigating rice cadmium (Cd) accumulation, yet the combined effects of calcium–magnesium phosphate (CMP) with potassium (K) fertilizer types and split application strategies remain unclear. Through multi-site field trials in Cd-contaminated paddy soils, we evaluated split applications of K2CO3, K2SO4, and K2SiO3 at tillering and booting stages following basal CMP amendment. Optimized K regimes reduced brown rice Cd concentrations (up to 89% reduction) compared to conventional fertilization. Notably, at the CF site, split K2SiO3 application (TB-K2SiO3) and single tillering-stage K2SO4 (T-K2SO4) achieved brown rice Cd levels of 0.13 mg/kg, complying with China’s food safety standard (≤0.20 mg/kg), thereby eliminating non-carcinogenic risks. Mechanistically, TB-K2SiO3 enhanced soil pH by 0.21 units and increased available K (AK) by 50.26% and available Si (ASi) by 21.35% while reducing Cd bioavailability by 43.55% compared to non-split K2SiO3. In contrast, T-K2SO4 elevated sulfate-driven Cd immobilization. Structural equation modeling prioritized soil available Cd, root Cd, and antagonistic effects of AK and ASi as dominant factors governing Cd accumulation. The integration of CMP with split K2SiO3 application at the tillering and booting stages or single K2SO4 application at the tillering stage ensures safe rice production in Cd-contaminated soils, offering scalable remediation strategies for paddy ecosystems. Full article
(This article belongs to the Special Issue Risk Assessment and Remediation of Agricultural Soil Pollution)
Show Figures

Graphical abstract

11 pages, 959 KiB  
Article
Metabolic Differences in 24-Hour Urine Parameters Between Calcium Oxalate Monohydrate and Dihydrate Kidney Stones: A Clinical Study
by Nariman Gadzhiev, Vitaliy Gelig, Gennadii Rodionov, Vineet Gauhar and Guohua Zeng
Diagnostics 2025, 15(8), 994; https://doi.org/10.3390/diagnostics15080994 - 14 Apr 2025
Cited by 2 | Viewed by 1082
Abstract
Background: Different types of kidney stones are associated with distinct changes in urine chemistry. Methods: We assessed urinary parameters of 98 patients with calcium oxalate (CaOx) stones one month following endoscopic stone removal. The 24 h urine analysis encompassed the assessment of various [...] Read more.
Background: Different types of kidney stones are associated with distinct changes in urine chemistry. Methods: We assessed urinary parameters of 98 patients with calcium oxalate (CaOx) stones one month following endoscopic stone removal. The 24 h urine analysis encompassed the assessment of various parameters, including volume, sodium, chloride, sulfate, nitrate, fluoride, phosphate, calcium, potassium, magnesium, oxalate, uric acid, citrate, creatinine, and pH levels. Results: Hypocitraturia was the most prevalent urinary abnormality (61.2%, n = 63), followed by low urine volume (53%, n = 52) and hypercalciuria (50%, n = 49). We did not find any statistically significant differences between patients with whewellite (COM) (n = 69) and weddellite (COD) stones (n = 29) (p > 0.05). However, oxalate concentration was the only parameter with a statistically significant intergroup difference (p = 0.0297). Additionally, in univariate linear regression analysis, urinary phosphate levels ≥ 48.0 mmol/d showed a trend towards significance (OR 0.17, 95% CI 0.02–1.15, p = 0.0692), indicating that phosphaturia is associated with a significant increase in the odds ratio of COD stones. To further explore metabolic heterogeneity among stone formers, we conducted cluster analysis, which revealed three distinct metabolic subgroups. Cluster 1 was predominantly associated with COM stones (80.5%) and exhibited significantly higher urinary excretion of sodium, calcium, oxalate, phosphate, and uric acid compared to Cluster 2, which had a more balanced distribution of monohydrate and dihydrate stones. Conclusions: These findings suggest that a specific metabolic phenotype may be linked to COM stone formation, providing a framework for risk stratification and personalized prevention strategies in calcium oxalate stone formers. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Urologic Diseases)
Show Figures

Figure 1

17 pages, 2484 KiB  
Article
Diagnosis of Macronutrients in Patchouli Leaves and Response to Fertilizers in Inceptisols of Aceh: A Case Study in Aceh Besar Regency, Indonesia
by Zuraida Zuraida, Sufardi Sufardi, Helmi Helmi and Yadi Jufri
Agriculture 2025, 15(6), 651; https://doi.org/10.3390/agriculture15060651 - 19 Mar 2025
Viewed by 687
Abstract
This study aims to evaluate the nutrient status in the leaves of patchouli grown in Inceptisols soil in Aceh, Indonesia. The experiment utilized a randomized block design (RBD) with three replications. The study’s factor was applying fertilizer nutrients across eight treatments designed according [...] Read more.
This study aims to evaluate the nutrient status in the leaves of patchouli grown in Inceptisols soil in Aceh, Indonesia. The experiment utilized a randomized block design (RBD) with three replications. The study’s factor was applying fertilizer nutrients across eight treatments designed according to omission trials. The response to fertilizer nutrients was analyzed for N, P, K, Ca, and Mg concentrations in patchouli leaves 120 days after planting seedlings in pots. The patchouli seeds used were local varieties from Aceh (“Tapak Tuan”). Urea (45% N), triple phosphate/SP-36 (15.65% P), potassium chloride (49.8% K), calcium carbonate (40% Ca), magnesium oxide (60% Mg), and S elementary (88.9% S) are used as fertilizer sources of N, P, K, Ca, Mg, and S, respectively. The Inceptisols soil used was topsoil (0–20 cm). The experimental results showed that fertilizer nutrient stress treatment influenced the nutrient content of patchouli leaves in Inceptisols. The concentrations of N, P, K, and Ca in the patchouli leaves were below the adequacy threshold, showing deficiency symptoms. The critical nutrient levels in patchouli plants for macroelements N, P, K, Ca, Mg, and S were 4.5%, 0.35%, 1.2%, 2.5%, and 0.25%, respectively. Only Mg reached the nutrient adequacy standard in patchouli. The limiting nutrients for patchouli plants in Aceh Besar Inceptisols are N, P, K, and Ca. It is necessary to add nutrients of N, P, K, and C macro fertilizers to increase the growth and yield of patchouli in Aceh Besar, Indonesia. Full article
Show Figures

Figure 1

22 pages, 7590 KiB  
Article
Development of Magnesium Phosphate Cement Based on Low-Grade MgO
by Ines Garcia-Lodeiro, Salma Chhaiba, Nuria Husillos-Rodriguez, Ángel Palomo and Hajime Kinoshita
Materials 2025, 18(6), 1198; https://doi.org/10.3390/ma18061198 - 7 Mar 2025
Cited by 2 | Viewed by 974
Abstract
Magnesium phosphate cements (MPCs) are a class of inorganic cements that have gained significant attention in recent years due to their exceptional properties and diverse applications in the construction and engineering sectors, particularly in the confinement of radioactive waste. These cements set and [...] Read more.
Magnesium phosphate cements (MPCs) are a class of inorganic cements that have gained significant attention in recent years due to their exceptional properties and diverse applications in the construction and engineering sectors, particularly in the confinement of radioactive waste. These cements set and harden through an acid–base reaction between a magnesium source (usually dead-burnt magnesia) and a phosphate source (e.g., KH2PO4). The dead-burnt MgO (DBM) used is typically obtained by calcining pure MgCO3 at temperatures between 1600 and 2000 °C. The present work explores the possibility of using low-grade magnesia (≈58% MgO), a secondary waste product generated during the calcination of magnesite for sintered MgO production. Low-grade magnesia is a by-product from the calcination process of natural magnesite. In this manner, the cost of the products could be substantially diminished, and the cementitious system obtained would be a competitive alternative while enhancing sustainability criteria and recyclability. This paper also evaluates the effect of the M/P ratio and curing conditions (especially relative humidity) on the mechanical, microstructural, and mineralogical development of these cements over a period of up to one year. Results indicate that low-grade MgO is suitable for the preparation of magnesium potassium phosphate cements (MKPCs). The presence of minor phases in the low-grade MgO does not affect the precipitation of K-struvite (KMgPO4·6H2O). Moreover, the development of these cements is highly dependent on both the M/P molar ratio and the RH. Systems prepared with an M/P ratio of 3 demonstrated good compressive strengths, low total porosity, and stable mineralogy, which are essential parameters for any cementitious matrix that aims to be considered as a potential confiner of radioactive waste. Full article
Show Figures

Figure 1

18 pages, 5019 KiB  
Article
First Report on the Artificial Cultivation Techniques of Buchwaldoboletus xylophilus (Boletales, Boletaceae, Buchwaldoboletus) in Southwest China
by Tianwei Yang, Hongjun Mu, Liming Dai, Jing Liu, Xinjing Xu, Feng Gao, Yiwei Fang, Sipeng Jian, Mingxia He and Chunxia Zhang
J. Fungi 2025, 11(3), 172; https://doi.org/10.3390/jof11030172 - 21 Feb 2025
Viewed by 956
Abstract
Buchwaldoboletus xylophilus is an edible bolete species belonging to the family Boletaceae and the genus Buchwaldoboletus. It is found in tropical and subtropical regions, which are known for their rare wild resources. In this study, wild B. xylophilus was isolated and cultured, [...] Read more.
Buchwaldoboletus xylophilus is an edible bolete species belonging to the family Boletaceae and the genus Buchwaldoboletus. It is found in tropical and subtropical regions, which are known for their rare wild resources. In this study, wild B. xylophilus was isolated and cultured, and its biological characteristics and artificial cultivation techniques were studied. The results show that the optimal carbon source, nitrogen source, and inorganic salt for the mycelium growth of B. xylophilus were maltose, ammonium tartrate, and magnesium sulfate, respectively. The most appropriate temperature was 28 °C, and the pH value was between 5 and 6. The most effective combination was determined via orthogonal experimentation, as follows: dextrose, ammonium nitrate, potassium dihydrogen phosphate, and 28 °C. The results of artificial cultivation in mushroom houses show that the mycelium of B. xylophilus was strong and grew well on the culture medium. The mycelial growth rate was 4.54 mm/d, and the fungus bags were filled about 50 days after inoculation. The primordia formed 9 to 14 days after covering with soil and the fruiting body matured in 6~8 days. The average yield of fresh mushrooms reached 131.07 ± 29.38 g/bag, and the average biological efficiency reached 28.48 ± 6.39%. In this study, artificial cultivation technology in respect of B. xylophilus in mushroom houses is reported for the first time. The fruiting bodies obtained through cultivation were identified using morphological and molecular biological methods. This technology offers benefits such as affordability, a brief cultivation cycle, substantial yields, and superior quality, making it ideal for industrial-scale and extensive cultivation. Full article
(This article belongs to the Special Issue Breeding and Metabolism of Edible Fungi)
Show Figures

Figure 1

16 pages, 1108 KiB  
Article
Effects of Modified Biochar on Growth, Yield, and Quality of Brassica chinensis L. in Cadmium Contaminated Soils
by Guojun Pan, Shufang Geng, Liangliang Wang, Jincheng Xing, Guangping Fan, Yan Gao, Xin Lu and Zhenhua Zhang
Plants 2025, 14(4), 524; https://doi.org/10.3390/plants14040524 - 8 Feb 2025
Cited by 1 | Viewed by 1108
Abstract
Cadmium (Cd) pollution in farmland soil leads to excessive Cd in vegetables, which can be transferred to humans through the food chain, posing a significant threat to human health, and requires urgent measures to combat it. Modified biochar may have the potential to [...] Read more.
Cadmium (Cd) pollution in farmland soil leads to excessive Cd in vegetables, which can be transferred to humans through the food chain, posing a significant threat to human health, and requires urgent measures to combat it. Modified biochar may have the potential to remediate Cd pollution in farmland soils. In this experiment, bulk biochar (YC) derived from reed straw or modified biochar by ball milling (Q) either alone or combined with a combination of several passivation agents {potassium hydroxide (K), attapulgite (A), calcium magnesium phosphate fertilizer (M), and polyacrylamide (P)} was applied to soils polluted with Cd, to investigate the growth, yield, and quality of pakchoi (Brassica chinensis L.). The results showed that bulk biochar (YC) provided pakchoi with plenty of nitrogen, phosphorus, and potassium, while passivation agents enhance macronutrient accumulation. Compared to YC, modified biochar improved pakchoi yields and nutritional quality. Among them, concentrations of nitrates in pakchoi significantly decreased by 51.8% and 51.0%, while vitamin C levels increased by 29.6% and 19.0%, respectively, in QKAMP and QKAM treatments. The contents of Cd in pakchoi significantly decreased by 21.6% and 18.6%, respectively, in QKAMP and QKAM treatments. The implementation of QKAMP led to the cadmium contents in edible vegetables being lower than the maximum stipulated content as defined by the national standard, but QKAM failed to accomplish it. In conclusion, QKAMP effectively reduced the bioavailability of Cd in the middle to slightly Cd-polluted alkaline soils, making it a suitable soil amendment to improve the yield and quality and mitigate Cd accumulation in vegetables. Full article
Show Figures

Figure 1

34 pages, 1195 KiB  
Article
The Interplay Between Carotid Intima-Media Thickness and Selected Serum Biomarkers in Various Stages of Chronic Kidney Disease
by Mateusz Twardawa, Piotr Formanowicz and Dorota Formanowicz
Biomedicines 2025, 13(2), 335; https://doi.org/10.3390/biomedicines13020335 - 1 Feb 2025
Viewed by 1048
Abstract
Background/Objectives: Chronic kidney disease (CKD), the most common cause of which is hypertension and diabetes, is a recognized risk factor for cardiovascular disease (CVD). This study investigated the association between selected serum biomarkers in the context of intima-media thickness (IMT) changes, a [...] Read more.
Background/Objectives: Chronic kidney disease (CKD), the most common cause of which is hypertension and diabetes, is a recognized risk factor for cardiovascular disease (CVD). This study investigated the association between selected serum biomarkers in the context of intima-media thickness (IMT) changes, a common predictor of subsequent cardiovascular (CV) events. Methods: A total of 251 individuals were enrolled in the study, divided into groups based on the severity of CKD, the presence of CVD, and healthy controls. For this purpose, the data from the following groups of participants were analyzed: (1) end-stage renal disease (ESRD) (n = 106), (2) pre-dialyzed (PRE) (n = 48), (3) patients at stages 1 and 2 of CKD (CKD1-2) (n = 37), (4) patients with CVD and no kidney disease (CARD) (n = 28), and (5) healthy controls (HV) (n = 31). To find markers associated with elevated IMT, the each group with CVD (ESRD, PRE and CARD) was separated into two subgroups with normal and elevated IMT and compared in the relation of the studied serum biomarkers. Results: The findings identified glucose as the only marker exclusively associated with CVD. Markers uniquely linked to CKD included urea, creatinine, eGFR, total protein, CEL, neopterin, total calcium, phosphates, iPTH, sodium, iron, ferritin, and AST. All other markers reflected a combined influence of both CKD and CVD. By comparing patients with normal and elevated IMT, distinct types of CKD–CVD interactions were observed, i.e., independent (additive effects of CKD and CVD) for MPO, ALP, MMP-9, and MMP-9/TIMP-1; combined (enhanced effect due to interactions) for AOPPs and TIMP-1; and conditional (CVD impact specific to CKD patients) for AGEs, 3-NT, magnesium, UIBC, TIBC, ALT, and TIMP-1/MMP-9. However, certain markers, i.e., CML, sRAGEs, carbamylated protein groups, protein carbamylation, hsCRP, TC, HDL-C, LDL-C, TG, IL-18, klotho, FGF-23, klotho/FGF-23 ratio, potassium, NT-proBNP, and AIP were associated with both CKD and CVD, though the exact nature of their interaction could not be determined using IMT as a distinguishing factor. Conclusions: The results showed that relations between IMT and the remaining studied factors were not trivial, and most of the analyzed parameters were altered in CKD patients, especially if compared to patients with CVD but without CKD. IMT cannot be used as a universal CVD marker. Full article
Show Figures

Figure 1

19 pages, 2198 KiB  
Article
Açaí Waste Biochar Combined with Phosphorus Fertiliser and Phosphorus Use Efficiency in Cowpea (Vigna unguiculata (L.) Walp)
by Ana Rita de Oliveira Braga, Vinicius John, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Cláudia Saramago de Carvalho Marques-dos-Santos, Danielle Monteiro de Oliveira and Newton Paulo de Souza Falcão
Agronomy 2025, 15(2), 393; https://doi.org/10.3390/agronomy15020393 - 31 Jan 2025
Viewed by 1187
Abstract
Biochar is a multifunctional tool that enhances soil quality, with particularly positive effects on acidic soils with low nutrient content, common in tropical regions worldwide, such as in the Amazon region in Brazil. This study investigates the effects of açaí fruit waste biochar [...] Read more.
Biochar is a multifunctional tool that enhances soil quality, with particularly positive effects on acidic soils with low nutrient content, common in tropical regions worldwide, such as in the Amazon region in Brazil. This study investigates the effects of açaí fruit waste biochar (Euterpe oleracea Mart.) amendment and phosphate fertilisation on the chemical characteristics of a Ferralsol and on the biological components of cowpea (Vigna unguiculata (L.) Walp). In a greenhouse setting, a randomised block design was employed, testing five doses of biochar (0, 7.5, 15, 30, and 60 t ha−1) combined with four doses of phosphorus (P) (0, 40, 80, and 120 kg ha−1), resulting in 20 treatments with three replicates and 60 experimental units. Cowpea responded to inorganic fertilisation, with lower doses of P limiting the biological components (height, leaves, leaf area, dry biomass, and dry root mass). Higher doses of biochar and P increased the soil’s available P content by up to 2.3 times, reflected in the P content of cowpea dry biomass. However, this increase in biochar and P levels led to a maximum increase of 7.7% in agronomic phosphorus efficiency (APE) in cowpea in the short term. The higher doses of biochar promoted increases in pH value, cation exchange capacity (CEC), and the contents of potassium (K), calcium (Ca), and total nitrogen (N). In contrast, a decrease in magnesium (Mg) and aluminium (Al) levels was observed, while the concentration of easily extractable glomalin (EE-GRSP) was not significantly affected during the evaluated period. We conclude that biochar altered the soil environment, promoting the increased solubility and availability of phosphorus. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

20 pages, 13742 KiB  
Article
Functionalized GelMA/CMCS Composite Hydrogel Incorporating Magnesium Phosphate Cement for Bone Regeneration
by Xingyu Wang, Xiping Zhang, Changtian Gong, Jian Yang, Jingteng Chen and Weichun Guo
Biomedicines 2025, 13(2), 257; https://doi.org/10.3390/biomedicines13020257 - 21 Jan 2025
Viewed by 1103
Abstract
Background: Bone regeneration remains a challenging issue in tissue engineering. The use of hydrogels as scaffolds for bone tissue repair has gained attention due to their biocompatibility and ability to mimic the extracellular matrix. This study aims to develop a functionalized GelMA/CMCS composite [...] Read more.
Background: Bone regeneration remains a challenging issue in tissue engineering. The use of hydrogels as scaffolds for bone tissue repair has gained attention due to their biocompatibility and ability to mimic the extracellular matrix. This study aims to develop a functionalized GelMA/CMCS composite hydrogel incorporating magnesium phosphate cement (MPC) for enhanced bone regeneration. Methods: These composites were developed by incorporating potassium magnesium phosphate hexahydrate (KMgPO4·6H2O, MPC) powders into methacrylated gelatin/carboxymethyl chitosan (GelMA-C) hydrogels. The material’s mechanical properties, antibacterial performance, and cytocompatibility were evaluated. In vitro experiments involved cell viability and osteogenic differentiation assays using rBMSCs as well as angiogenic potential assays using HUVECs. The hydrogel was also assessed for its potential in promoting bone repair in a rat (Sprague-Dawley) model of bone defect. Results: The developed GelMA-CM composite demonstrated improved mechanical properties, biocompatibility, and osteogenic potential compared to individual GelMA or CMCS hydrogels. Incorporation of MPC facilitated the sustained release of ions which promoted osteogenic differentiation of pre-osteoblasts. In vivo results indicated accelerated bone healing in the rat bone defect model. Conclusions: The functionalized GelMA-CM composite could be a viable candidate for clinical applications in bone regeneration therapies. Full article
(This article belongs to the Special Issue New Insights into Bone and Cartilage Biology)
Show Figures

Figure 1

25 pages, 8136 KiB  
Article
An Assessment of Seasonal Water Quality in Phewa Lake, Nepal, by Integrating Geochemical Indices and Statistical Techniques: A Sustainable Approach
by Rojesh Timalsina, Surendra Acharya, Bojan Đurin, Mahesh Prasad Awasthi, Ramesh Raj Pant, Ganesh Raj Joshi, Rejina Maskey Byanju, Khim Prasad Panthi, Susan Joshi, Amit Kumar, Tarun Kumar Thakur and Ahmed M. Saqr
Water 2025, 17(2), 238; https://doi.org/10.3390/w17020238 - 16 Jan 2025
Cited by 15 | Viewed by 2422
Abstract
Lakes are vital freshwater ecosystems that sustain biodiversity, support livelihoods, and drive socio-economic growth globally. However, they face escalating threats from anthropogenic activities, including urbanization, agricultural runoff, and pollution, which are exacerbated by climate change. Phewa Lake in Nepal was selected for this [...] Read more.
Lakes are vital freshwater ecosystems that sustain biodiversity, support livelihoods, and drive socio-economic growth globally. However, they face escalating threats from anthropogenic activities, including urbanization, agricultural runoff, and pollution, which are exacerbated by climate change. Phewa Lake in Nepal was selected for this study due to its increasing rates of nutrient enrichment, sedimentation, and pollution. This study evaluated seasonal and spatial water quality variations within the lake by analyzing water samples from 30 sites during the pre-monsoon and post-monsoon seasons. Twenty physicochemical parameters, including the potential of hydrogen (pH), dissolved oxygen (DO), electrical conductivity (EC), and major ions, e.g., calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3), chloride (Cl), sulfate (SO42−), nitrate (NO3), phosphate (PO43−), and ammonium (NH4+), were measured. The average pH ranged from 8.06 (pre-monsoon) to 8.24 (post-monsoon), reflecting dilution from monsoon rains and increased carbonate runoff. Furthermore, the DO levels in Phewa Lake averaged 7.46 mg/L (pre-monsoon) and 8.62 mg/L (post-monsoon), with higher values observed post-monsoon due to rainfall-driven oxygenation. Nutrient concentrations were shown to be elevated, with the nitrate concentration reaching 2.31 mg/L during the pre-monsoon period, and the phosphate concentration peaking at 0.15 mg/L in the post-monsoon period, particularly near agricultural runoff zones. The dominant cations in the lake’s hydrochemistry were Ca2+ and Mg2+, while HCO3 was the primary anion, reflecting the influence of carbonate weathering. Cluster analysis identified the lake outlet as a high-pollution zone, with the total dissolved solids (TDS) reaching 108–135 mg/L. Additionally, Principal component analysis revealed agricultural runoff and sewage effluents as the main pollution sources. Seasonal dynamics highlighted monsoon-induced dilution and pre-monsoon pollution peaks. These findings underscore the need for targeted pollution control and eutrophication management. By aligning with the sustainable development goals (SDGs) relevant to clean water and climate action, this research provides a replicable framework for sustainable lake management that is applicable to freshwater ecosystems worldwide. Full article
(This article belongs to the Special Issue Aquatic Ecosystem: Problems and Benefits—2nd Edition)
Show Figures

Figure 1

37 pages, 5267 KiB  
Review
Research Status and Development Trends of Inorganic Salt Lake Resource Extraction Based on Bibliometric Analysis
by Leiming Li, Fei Ge, Yingying Jiang, Zhao An, Na Li, Zherui Zhang, Haining Liu, Jiansen Li and Dan Liang
Sustainability 2025, 17(1), 121; https://doi.org/10.3390/su17010121 - 27 Dec 2024
Viewed by 1850
Abstract
Salt lake resources are unique and valuable minerals on Earth associated with specific elements. The advancement of technology and the rise of new industries are progressively showcasing their strategic significance for economic development. This study used bibliometrics and visualization techniques to analyze the [...] Read more.
Salt lake resources are unique and valuable minerals on Earth associated with specific elements. The advancement of technology and the rise of new industries are progressively showcasing their strategic significance for economic development. This study used bibliometrics and visualization techniques to analyze the current state and developmental trends of research on salt lake resource exploitation, both domestically and globally. A total of 760 articles from Science Citation Index Expanded (SCIE) were analyzed. The research findings reveal that the processes of salt lake separation and extraction have progressed through three distinct stages: the germination stage, the stable development stage, and the rapid development stage. China has offered robust policy support for research in this domain at the national level. China possesses a centrality score of 1.08 in the separation and extraction of salt lakes, with 50% of the 10 most active nations in this domain situated in Asia and South America. The prominent institutions comprise the Chinese Academy of Sciences (centrality score of 0.32), the Qinghai Salt Lake Study Institute (centrality score of 0.22), and the University of the Chinese Academy of Sciences (centrality score of 0.14), encompassing a diverse array of study subjects. Keywords from 2003 signify the initial advancement of lithium extraction from saline lakes, whereas those from 2011 underscore the heightened focus on integrated resource utilization and multidisciplinary study. Keywords from 2015 indicate an intensified emphasis on the extraction of lithium and other elements. The terms “tributyl phosphate” (citation strength of 6.05) and “nanofiltration” (citation strength of 4.29) exhibit significant interest in magnesium–lithium separation research and water treatment technologies employed in salt lake separation and extraction, receiving the highest number of citations. The persistent emphasis on “lithium ions” signifies the increasing demand for raw materials propelled by advancements in the new energy sector. Research trend analysis indicates that sodium resource utilization has stabilized, whereas magnesium, a byproduct of lithium extraction, is presently a key focus for downstream product applications. Rare elements remain at the experimental research stage. The industrialization of salt lake resources, including potassium, lithium, and boron, is notably advanced. Future research should focus on the mineralization and enrichment patterns of potassium resources, developing improved extraction methods for lithium, and advancing technologies for the cost-effective and environmentally friendly separation of boron resources. The future objective for resource extraction in salt lakes is to transition from a crude methodology to a refined, sustainable, and intelligent development framework. Full article
Show Figures

Figure 1

19 pages, 10302 KiB  
Article
Investigation of Magnesium-Potassium Phosphates as Potential Nuclear Waste Form for the Immobilization of Minor Actinides
by Hans-Conrad zur Loye, Petr Vecernik, Monika Kiselova, Vlastislav Kašpar, Hana Korenkova, Vlastimil Miller, Petr Bezdicka, Jan Šubrt, Natalija Murafa, Volodymyr Shkuropatenko and Sergey Sayenko
Inorganics 2024, 12(12), 311; https://doi.org/10.3390/inorganics12120311 - 28 Nov 2024
Viewed by 1280
Abstract
Several recent studies have evaluated technologies of spent nuclear fuel processing specifically for solidifying transuranic (TRU) waste as a by-product of fission. Of the TRU group, plutonium and the minor actinides will be responsible for the bulk of the radiotoxicity and heat generation [...] Read more.
Several recent studies have evaluated technologies of spent nuclear fuel processing specifically for solidifying transuranic (TRU) waste as a by-product of fission. Of the TRU group, plutonium and the minor actinides will be responsible for the bulk of the radiotoxicity and heat generation of spent nuclear fuel in the long term (300 to 20,000 years). In this study, we investigated magnesium potassium phosphate (MKP)-based compounds as host waste forms for the encapsulation of inactive trivalent Nd and Sm as analogues of the minor trivalent actinides, Am and Cm. Waste forms were fabricated under ambient atmospheric conditions by adding 5 wt.% of substances containing Nd or Sm via the following two routes: powder oxides and aqueous solutions of nitrate salts. Waste form performance was established using strength and aqueous medium leaching tests of MKP-based specimens. The MKP materials were analyzed by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. The waste forms exhibited a compressive strength of ≥30 MPa and were durable in an aqueous environment. The leachability indices for Nd and Sm, as per the ANS 16.1 procedure, were 19.55–19.78 and 19.74–19.89, respectively, which satisfy the acceptable criteria (>6). The results of the present room temperature leaching study suggest that MKPs can be effectively used as a host material to immobilize actinides (Am and Cm) contained in TRU waste. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

Back to TopTop