Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = macro-XRF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5555 KB  
Article
Non-Invasive Investigation of a 16th-Century Illuminated Scroll: Pigments, Fillers, and Metal-Based Decorations
by Lucilla Pronti, Martina Romani, Luca Lanteri, Francesco Bizzarri, Claudia Colantonio, Claudia Pelosi, Chiara Ruberto, Lisa Castelli, Anna Mazzinghi, Valeria Spizzichino and Mariangela Cestelli Guidi
Minerals 2025, 15(12), 1252; https://doi.org/10.3390/min15121252 - 26 Nov 2025
Viewed by 896
Abstract
The study and preservation of illuminated manuscripts, particularly miniatures on parchment, are crucial for understanding the artistic, cultural, and technological history of the past. This research investigates the materials used in a 16th-century illuminated scroll, analyzing both the miniatures and the written text [...] Read more.
The study and preservation of illuminated manuscripts, particularly miniatures on parchment, are crucial for understanding the artistic, cultural, and technological history of the past. This research investigates the materials used in a 16th-century illuminated scroll, analyzing both the miniatures and the written text through non-invasive techniques. A multi-analytical approach was applied, including optical microscopy, Hypercolorimetric Multispectral Imaging (HMI), infrared reflectography in the 950–1700 nm range, Fiber Optics Reflectance Spectroscopy (FORS), macro X-ray fluorescence (MA-XRF) spectroscopy, Raman spectroscopy, and External Reflection Fourier Transform Infrared (ER-FTIR) spectroscopy. These methods provided a comprehensive characterization of the painting materials’ chemical composition and the artistic techniques utilized, revealing new information on Renaissance materials and practices. The detected mineral pigments primarily include smalt, vermilion, lead white, and minium, which are consistent with materials commonly found in illuminated manuscripts. Aluminosilicate and calcite were identified as fillers or substrates utilized for organic dyes, particularly those generating pink hues. An uncommon finding was the green pigment, which was identified as copper hydroxynitrate. Furthermore, gold and silver were extensively employed in the decorative elements, both as metal foils and in shell pigment form. Finally, the capital letters were executed using smalt and vermilion, while the black text ink was characterized as iron gall ink, a composition typically employed on parchment supports. Full article
(This article belongs to the Special Issue Mineral Pigments: Properties Analysis and Applications)
Show Figures

Graphical abstract

24 pages, 11795 KB  
Article
Effects of Sodium Chloride in Soil Stabilization: Improving the Behavior of Clay Deposits in Northern Cartagena, Colombia
by Jair Arrieta Baldovino, Jesús David Torres Parra and Yamid E. Nuñez de la Rosa
Sustainability 2025, 17(19), 8715; https://doi.org/10.3390/su17198715 - 28 Sep 2025
Cited by 1 | Viewed by 951
Abstract
This research evaluates the stabilization of a clay collected from the northern expansion zone of Cartagena de Indias, Colombia. Laboratory analyses, including particle size distribution, Atterberg limits, compaction, specific gravity, and XRF/XRD, classified the soil as a highly plastic clay (CH) with moderate [...] Read more.
This research evaluates the stabilization of a clay collected from the northern expansion zone of Cartagena de Indias, Colombia. Laboratory analyses, including particle size distribution, Atterberg limits, compaction, specific gravity, and XRF/XRD, classified the soil as a highly plastic clay (CH) with moderate dispersivity, as confirmed by pinhole and crumb tests. The soil was treated with 3–9% lime, with and without the addition of NaCl (0% and 2%), and tested for unconfined compressive strength (qu), small-strain stiffness (Go), and microstructural properties under curing periods of 14 and 28 days at two compaction densities. Results showed that lime significantly improved mechanical behavior, while the inclusion of NaCl further enhanced qu (up to 185%) and Go (up to 3-fold), particularly at higher lime contents and curing times. Regression models demonstrated that both qu and Go follow power-type relationships with the porosity-to-lime index, with consistent exponents (−4.75 and −5.23, respectively) and high coefficients of determination (R2 > 0.79). Normalization of the data yielded master curves with R2 values above 0.90, confirming the robustness of the porosity-to-lime framework as a predictive tool. The Go/qu ratio obtained (3737.4) falls within the range reported for cemented geomaterials, reinforcing its relevance for comparative analysis. SEM observations revealed the transition from a porous, weakly aggregated structure to a dense matrix filled with C–S–H and C–A–H gels, corroborating the macro–micro correlation. Overall, the combined use of lime and NaCl effectively converts dispersive clays into non-dispersive, mechanically improved geomaterials, providing a practical and sustainable approach for stabilizing problematic coastal soils in tropical environments. Full article
Show Figures

Figure 1

21 pages, 13539 KB  
Article
Impact of Fiber Type on Chloride Ingress in Concrete: A MacroXRF Imaging Analysis
by Suânia Fabiele Moitinho da Silva, Wanderson Santos de Jesus, Thalles Murilo Santos de Almeida, Renato Quinto de Oliveira Novais, Laio Andrade Sacramento, Joaquim Teixeira de Assis, Marcelino José dos Anjos and José Renato de Castro Pessôa
Appl. Sci. 2025, 15(15), 8495; https://doi.org/10.3390/app15158495 - 31 Jul 2025
Viewed by 897
Abstract
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural [...] Read more.
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural longevity. Fiber-reinforced concrete (FRC) is widely used to improve durability; however, the effects of different fiber types on chloride resistance remain unclear. This study examines the influence of glass and polypropylene fibers on concrete’s microstructure and chloride penetration resistance. Cylindrical specimens were prepared, including a reference mix without fibers and mixes with 0.25% and 0.50% fiber content by volume. Both fiber types were tested for chloride resistance. The accelerated non-steady-state migration method was employed to determine the resistance coefficients to chloride ion penetration, while X-ray macrofluorescence (MacroXRF) mapped the chlorine infiltration depth in the samples. Compressive strength decreased in all fiber-reinforced samples, with 0.50% glass fiber leading to a 56% reduction in strength. Nevertheless, the XRF results showed that a 0.25% fiber content significantly reduced chloride penetration, with polypropylene fibers outperforming glass fibers. These findings highlight the critical role of fiber type and volume in improving concrete durability, offering insights for designing long-lasting FRC structures in chloride-rich environments. Full article
Show Figures

Figure 1

16 pages, 1101 KB  
Article
Nutritional Characterization of Fruits from Three African Plant Species: Dialium guineense Willd, Parkia biglobosa Jacq. and Andansonia digitata L.
by Manuela Lageiro, Jaime Fernandes, Ana C. Marques, Manuela Simões and Ana Rita F. Coelho
Plants 2025, 14(15), 2344; https://doi.org/10.3390/plants14152344 - 29 Jul 2025
Cited by 3 | Viewed by 1899
Abstract
Dialium guineense (velvet tamarind), Parkia biglobosa Jacq. (African locust bean) and Adanosonia digitata L. (baobab) are fruits from African plants whose nutritional potential remains poorly characterised. As such, their pulps and seeds were analysed for colour (CIELab system), moisture, ash, protein, fat, soluble [...] Read more.
Dialium guineense (velvet tamarind), Parkia biglobosa Jacq. (African locust bean) and Adanosonia digitata L. (baobab) are fruits from African plants whose nutritional potential remains poorly characterised. As such, their pulps and seeds were analysed for colour (CIELab system), moisture, ash, protein, fat, soluble and insoluble dietary fibre, free sugars (HPLC-RI), organic acids (HPLC-PDA), macro and microelements (XRF analyser) and amygdalin (HPLC-PDA). The colours of their pulps differed considerable (ΔE > 38 between the velvet tamarind and African locust bean) and the moisture content was lower in seeds (about 7%) compared to pulps (9–13%). Seeds were more concentrated in protein (20–28%) and fat (5–22%), whereas pulps were richer in sugar (1–12%). African locust bean pulp was the sweetest (39% total sugar), while baobab pulp contained the highest soluble fibre (>30%) and citric acid (3.2%), and velvet tamarind pulp was distinguished by its tartaric acid content (3.4%). Seeds of the African fruits presented higher Ca, P, S and Fe contents, whereas pulps had higher K content. No amygdalin (<6.34 mg per 100 g of dry weight) or toxic heavy metal contents were detected. The PCA segregated samples by pulp and seed and the PC1 explains the sugar and moisture of the pulps, while protein, fat and minerals are associated with the seeds. These data confirm that African fruit pulps and seeds have distinct functional profiles, are safe for food use and can be consumed, which is important for efforts to promote the conservation of these tropical plant species. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

20 pages, 2411 KB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Cited by 1 | Viewed by 1711
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

22 pages, 10281 KB  
Article
From Flanders to Portugal: A Portuguese Painter in Pursuit of Prestigious Flemish Painting—Materials and Techniques Compared Through an Analytical Approach
by Vanessa Antunes, António Candeias, José Mirão, Sara Valadas, Ana Cardoso, Maria José Francisco, Alexandra Lauw, Marta Manso and Maria Luísa Carvalho
Heritage 2025, 8(6), 205; https://doi.org/10.3390/heritage8060205 - 3 Jun 2025
Viewed by 1519
Abstract
This study offers fresh insights into the technical and stylistic exchanges between Flemish and Portuguese panel painting during the late 15th and early 16th centuries. By comparing two contemporaneous works, we trace Flemish influence in Portugal through a detailed materials and techniques analysis. [...] Read more.
This study offers fresh insights into the technical and stylistic exchanges between Flemish and Portuguese panel painting during the late 15th and early 16th centuries. By comparing two contemporaneous works, we trace Flemish influence in Portugal through a detailed materials and techniques analysis. Non-invasive, in situ methods—including energy dispersive X-ray fluorescence (XRF), macro-photography (MP), infrared reflectography (IRR), and dendrochronology—were used to examine each painting’s wooden support, ground layer, underdrawing, and pigment stratigraphy. Select micro-sampling analyses—micro-Fourier-transform infrared spectroscopy (μ-FTIR), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and micro-Raman spectroscopy (µ-Raman)—provided complementary data on binder and pigment composition. While both paintings share nearly identical pigments and layering sequences and employ comparable coating techniques, their ground compositions differ subtly. Notably, the Flemish work features extensive gold-leaf application, whereas underdrawing execution takes on principal importance in the Portuguese example. Together, these findings reveal that Jorge Afonso’s workshop developed a distinct Portuguese method—rooted in Flemish practices disseminated by Quentin Metsys—yet adapted to local materials and aesthetic priorities. Full article
Show Figures

Graphical abstract

15 pages, 15470 KB  
Article
Mycenaean Vitreous Artifacts: Overcoming Taxonomy Hurdles via Macro-XRF Analysis
by Artemios Oikonomou, Maria Kaparou, Anastasios Asvestas, Kalliopi Tsampa, Ourania Kordali, Konstantinos Nikolentzos, Katia Manteli, Aikaterini Voutsa, Georgianna Moraitou, Dimitrios F. Anagnostopoulos and Andreas G. Karydas
Heritage 2025, 8(4), 122; https://doi.org/10.3390/heritage8040122 - 31 Mar 2025
Viewed by 1486
Abstract
Mycenaean glass artifacts, such as beads and relief plaques, are highly susceptible to degradation, which can significantly modify their visual attributes and pose classification challenges. Corrosion on glass and faience artifacts has often led to misinterpretation, since the visual manifestations of degradation can [...] Read more.
Mycenaean glass artifacts, such as beads and relief plaques, are highly susceptible to degradation, which can significantly modify their visual attributes and pose classification challenges. Corrosion on glass and faience artifacts has often led to misinterpretation, since the visual manifestations of degradation can be similar for both materials, impacting research conclusions. This paper presents a segment of a broader study conducted within the Myc-MVP project, utilizing advanced scientific methods to analyze the compositional changes in corroded vitreous artifacts. Through Macro-X-ray Fluorescence (MA-XRF) and LED microscopy, we aim to understand the correlation between compositional alterations and visual degradation manifestations. The use of MA- XRF was particularly crucial for non-destructively mapping the elemental distribution over large surfaces, allowing for a more comprehensive analysis of corrosion patterns. The results presented in this study are from a subset of artifacts examined using MA- XRF, highlighting critical insights into the spatial compositional shifts that contribute to visible deterioration. This paper discusses the first real-life contribution of Macro X-ray Fluorescence (MA-XRF) imaging to mapping the spatial compositional changes that occur when Mycenaean vitreous materials undergo degradation, yielding visible deterioration. MA-XRF scanning offers a fully non-invasive and non-destructive method for recording compositional data across the entire surface of an object. The results can be visualized as distribution images, which are more accessible and interpretable for a broader audience compared to the spectra generated by traditional spectrometric techniques. These findings aspire to inform strategies for the accurate classification, effective management, appropriate conservation treatment, and long-term preservation of vitreous artifacts. Full article
(This article belongs to the Section Archaeological Heritage)
Show Figures

Figure 1

17 pages, 10201 KB  
Article
The Separation and Recovery of Barium from Barium Slag by Using Shaking Table Gravity Concentration Method
by Yang Wan, Bo Zhang, Xing Yang, Xin Song, Guocui Li, Siqi Zhang and Wen Ni
Processes 2025, 13(4), 1012; https://doi.org/10.3390/pr13041012 - 28 Mar 2025
Viewed by 1335
Abstract
Barium slag, classified as HW47 hazardous waste, is produced in large quantities and has a high accumulation with heavy metal Ba ions that are significantly above the standard levels, posing a serious threat to the ecological environment and the growth of flora and [...] Read more.
Barium slag, classified as HW47 hazardous waste, is produced in large quantities and has a high accumulation with heavy metal Ba ions that are significantly above the standard levels, posing a serious threat to the ecological environment and the growth of flora and fauna. Before barium slag can be stored, it must undergo harmless treatment, which is costly, and with the current large volume of accumulated barium slag, storage facilities are strained. There is an urgent need for new technologies to extract barium elements from barium slag while achieving reduction in volume. This study first treats the barium slag to reduce its oxidation state and then utilizes the density differences to separate barium-rich compounds through shaking table concentration. Macro and microanalytical methods such as XRD (X-ray diffraction), XRF (X-ray fluorescence), and SEM&EDS (Scanning Electron Microscopy & Energy-dispersive X-ray Spectroscopy) were employed. The results show that barium in the slag is evenly distributed, and after sufficient crushing, it can be separated by gravity concentration. The barium content can be enriched from 20% to over 80%. This research provides theoretical support for the separation of barium compounds from barium slag. Full article
(This article belongs to the Special Issue Advances in Wastewater and Solid Waste Treatment Processes)
Show Figures

Figure 1

13 pages, 3570 KB  
Article
Utilization of Anthropogenic and Natural Waste to Produce Construction Raw Materials
by Bakhytzhan Sarsenbayev, Said-Alvi Murtazaev, Madina Salamanova, Erzhan Kuldeyev, Magomed Saidumov, Nuraly Sarsenbayev, Sultan Auyesbek, Gaukhar Sauganova and Aisulu Abduova
Sustainability 2025, 17(7), 2791; https://doi.org/10.3390/su17072791 - 21 Mar 2025
Cited by 1 | Viewed by 663
Abstract
The concept of the sustainable development of the world economy is currently aimed at achieving carbon neutrality, and this is due to the global warming of the planet. Energy and construction make a significant contribution to the release of carbon emissions into the [...] Read more.
The concept of the sustainable development of the world economy is currently aimed at achieving carbon neutrality, and this is due to the global warming of the planet. Energy and construction make a significant contribution to the release of carbon emissions into the environment and atmosphere. According to statistics, simply burning one ton of Portland cement clinker provokes the release of at least half a ton of carbon dioxide. In this study, the prepared samples were subjected to electron diffraction studies, as well as the X-ray phase analysis of the zone (XRF) using an ARLX’TRA diffractometer. Studies of macro- and microstructures were carried out using a Quanta 3D 200i scanning microscope. The obtained spectra were processed using EDAX TEAM software. The study of the microstructure of the samples showed that the bulk of the heterogeneous systems consisted of volumetric aggregates and intergrowths, i.e., small accumulations on their surfaces with pronounced cleavage, features of the microstructure indicating mineral formation processes. Therefore, the development of low-carbon construction models will make it possible to make a contribution and open an effective path to the implementation of climate policy through the rational use of natural resources and the involvement of industrial waste and nature-like technologies in the production process. In this regard, one of the options for solving the identified problems is to revise existing technologies and develop low-carbon, low-clinker binders using industrial waste and substandard raw materials. Full article
Show Figures

Figure 1

25 pages, 8644 KB  
Article
Investigating the Causes of Substandard Concrete Strength: A Macro- and Microanalysis
by Xi Du, Youliang Chen, Lantao Xu, Aiping Shen, Bo Lu, Jie Wu, Tomas Manuel Fernandez-Steeger and Rafig Azzam
Materials 2025, 18(5), 953; https://doi.org/10.3390/ma18050953 - 21 Feb 2025
Cited by 2 | Viewed by 1209
Abstract
This study investigates the root causes of substandard concrete quality in a newly constructed residential complex, addressing the critical issue of compressive strength failure in structural elements. To tackle this problem, twelve core samples were extracted from affected areas and analyzed using a [...] Read more.
This study investigates the root causes of substandard concrete quality in a newly constructed residential complex, addressing the critical issue of compressive strength failure in structural elements. To tackle this problem, twelve core samples were extracted from affected areas and analyzed using a combination of macro-scale techniques (high-temperature heating, acid-immersion tests) and advanced microscopic methods (SEM-EDS, XRF, XRD, FTIR, TGA). The results revealed that while material proportions generally met specifications, uneven aggregate gradation and excessive use of mineral admixtures were key factors compromising strength. Microscopic analysis further identified harmful phases and chemical corrosion products, such as sulfates, which weakened the concrete matrix. These findings underscore the necessity of stringent quality control in raw material selection, aggregate gradation, and admixture dosage. The research demonstrates that integrating macro- and microanalytical methods can significantly optimize concrete mix designs, enhance durability, and prevent premature deterioration in reinforced concrete structures. This approach has broad implications for improving construction quality and ensuring the longevity of residential and infrastructure projects. Full article
Show Figures

Figure 1

14 pages, 5956 KB  
Article
Development of a Macro X-ray Fluorescence (MA-XRF) Scanner System for In Situ Analysis of Paintings That Operates in a Static or Dynamic Method
by Renato P. de Freitas, Miguel A. de Oliveira, Matheus B. de Oliveira, André R. Pimenta, Valter de S. Felix, Marcelo O. Pereira, Elicardo A. S. Gonçalves, João V. L. Grechi, Fabricio L. e. Silva, Cristiano de S. Carvalho, Jonas G. R. S. Ataliba, Leandro O. Pereira, Lucas C. Muniz, Robson B. dos Santos and Vitor da S. Vital
Quantum Beam Sci. 2024, 8(4), 26; https://doi.org/10.3390/qubs8040026 - 17 Oct 2024
Cited by 2 | Viewed by 3557
Abstract
This work presents the development of a macro X-ray fluorescence (MA-XRF) scanner system for in situ analysis of paintings. The instrument was developed to operate using continuous acquisitions, where the module with the X-ray tube and detector moves at a constant speed, dynamically [...] Read more.
This work presents the development of a macro X-ray fluorescence (MA-XRF) scanner system for in situ analysis of paintings. The instrument was developed to operate using continuous acquisitions, where the module with the X-ray tube and detector moves at a constant speed, dynamically collecting spectra for each pixel of the artwork. Another possible configuration for the instrument is static acquisitions, where the module with the X-ray tube and detector remains stationary to acquire spectra for each pixel. The work also includes the analytical characterization of the system, which incorporates a 1.00 mm collimator that allows for a resolution of 1.76 mm. Additionally, the study presents the results of the analysis of two Brazilian paintings using this instrument. The elemental maps obtained enabled the characterization of the pigments used in the creation of the artworks and materials used in restoration processes. Full article
(This article belongs to the Special Issue New Advances in Macro X-ray Fluorescence Applications)
Show Figures

Figure 1

23 pages, 21453 KB  
Article
Painting the Past in the 19th Century: Materials, Methods, and Perspectives in Watercolour Replicas
by Tea Ghigo and Christian Hirschle
Heritage 2024, 7(8), 4300-4322; https://doi.org/10.3390/heritage7080203 - 10 Aug 2024
Viewed by 12698
Abstract
This study focuses on the material characterisation of a collection of 19th-century watercolour replicas that reproduce ancient Egyptian mural paintings and illuminated decorations from medieval manuscripts. Non-contact analyses, including macro-X-ray fluorescence (MA-XRF), X-ray diffraction (XRD), and fibre-optic reflectance spectroscopy (FORS), were employed to [...] Read more.
This study focuses on the material characterisation of a collection of 19th-century watercolour replicas that reproduce ancient Egyptian mural paintings and illuminated decorations from medieval manuscripts. Non-contact analyses, including macro-X-ray fluorescence (MA-XRF), X-ray diffraction (XRD), and fibre-optic reflectance spectroscopy (FORS), were employed to examine the composition of the painting materials, particularly the pigments. The findings are contextualised through archival research into 19th-century technical sources on historical painting and illuminating practices, as well as contemporaneous pigment catalogues that reported commercial prices. Ultimately, this research aimed to explore whether 19th-century artists engaged with historical material practices beyond mere visual representation in their depictions of historical subjects. The results obtained from the replicas of medieval illuminations are groundbreaking, as they challenge prevailing scholarly assumptions. Notably, the use of pigments such as minium and ultramarine blue, which were held in high regard during the Middle Ages, along with the use of chalk in the preparation of the support, suggest that, in an industrialised world where engagement with material culture was increasingly driven by commercial profit, some academic circles still sought to explore and preserve selected historical material practices in the art of painting. Full article
(This article belongs to the Section Artistic Heritage)
Show Figures

Figure 1

18 pages, 2155 KB  
Article
Tillage and Straw Management Practices Influences Soil Nutrient Distribution: A Case Study from North-Eastern Romania
by Anca Elena Calistru, Feodor Filipov, Irina Gabriela Cara, Marius Cioboată, Denis Țopa and Gerard Jităreanu
Land 2024, 13(5), 625; https://doi.org/10.3390/land13050625 - 7 May 2024
Cited by 16 | Viewed by 3458
Abstract
Tillage practices govern crop quality and quantity through soil nutrient availability and crop root systems. A deeper knowledge of the impact of conservation tillage on soil chemical characteristics (such as pH, soil organic carbon, macro and micronutrient storage and distribution) is required for [...] Read more.
Tillage practices govern crop quality and quantity through soil nutrient availability and crop root systems. A deeper knowledge of the impact of conservation tillage on soil chemical characteristics (such as pH, soil organic carbon, macro and micronutrient storage and distribution) is required for both the promotion of agricultural sustainability and environmental preservation. This study assesses the changes in soil features and properties in the context of a long-field experiment with different tillage systems and straw management practices. Research findings revealed that compared with conventional tillage (CT) conservative tillage with partial straw retention (MT) and no-tillage with straw mulching (NT) substantially boosted the organic carbon (OC) (by 6–19%), total nitrogen (TN) (by 2–12%), and available potassium content (AK) (by 2–5%), in 0–30 cm soil depth. However, the stratification trend was observed for available macro and micronutrient content (Zn, Fe, Mn) in both conservative management practices. The concentration of Cu indicates a constant pattern through a 0–30 cm soil profile with a higher concentration under MT (1.41 mg kg−1) compared to NT (1.10 mg kg−1). In particular, the results failed to establish if conservation tillage can increase the total phosphorus (TP) and potassium content (TK), where only in surface 0–10 cm an increase was observed. This research also suggested that the X-ray fluorescence analysis (XRF) of total micronutrient content (Zn, Cu, Fe, Mn) is minimal or unpredictable with no substantial differences between the tillage systems and straw return management practices. These findings suggest that conservation tillage in north-eastern Romania might be optimal to maintain soil quality status and sustain high yields. Full article
(This article belongs to the Special Issue Soil Management for Soil Health)
Show Figures

Figure 1

17 pages, 5474 KB  
Article
Application of Macro X-ray Fluorescence Fast Mapping to Thickness Estimation of Layered Pigments
by Riccardo Zito, Letizia Bonizzoni and Nicola Ludwig
Sustainability 2024, 16(6), 2467; https://doi.org/10.3390/su16062467 - 15 Mar 2024
Cited by 1 | Viewed by 2486
Abstract
Even though X-ray fluorescence (XRF) is strictly an atomic method, this technique has been developed mostly at research centers for nuclear physics. One of its most valuable variations is the mapping mode that allows it to shift XRF from a punctual to an [...] Read more.
Even though X-ray fluorescence (XRF) is strictly an atomic method, this technique has been developed mostly at research centers for nuclear physics. One of its most valuable variations is the mapping mode that allows it to shift XRF from a punctual to an image technique. Macro X-ray Fluorescence (MA-XRF) is a widespread analytical technique applied in cultural heritage for characterizing the elemental composition of pigments with a non-destructive, rapid and green approach. When dealing with cultural heritage materials, the sustainability of the applied techniques is directly linked to the limited impact on the work of art. MA-XRF can reveal hidden sub-surface layers or restorations, but, nonetheless, it is hardly adopted for estimating the thickness of layers without resorting to complex Monte Carlo simulations or without combining information from other techniques. Exploiting the recurrent presence of lead white under pictorial layers in historical artworks, we perform a calibration on stand-alone layers produced ad hoc for the relative absorption of Pb L fluorescence lines, and then, their ratio is successfully used to estimate the thickness of azurite and ultramarine blue layers over lead white. The final result is rendered as a heatmap, easy to present to non-technical personnel frequently involved in the cultural heritage field. The new proposed procedure for calculating layer thickness extends the concept of non-invasive applications, paving the way to the possibility of performing stratigraphy without sampling. Full article
Show Figures

Figure 1

13 pages, 3417 KB  
Article
Combined Scanned Macro X-Ray Fluorescence and Reflectance Spectroscopy Mapping on Corroded Ancient Bronzes
by Jacopo Orsilli and Simone Caglio
Minerals 2024, 14(2), 192; https://doi.org/10.3390/min14020192 - 12 Feb 2024
Cited by 9 | Viewed by 2783
Abstract
Bronze is an alloy composed primarily of copper and tin and since its discovery is widespread in the whole world. This alloy can thus be found in many archaeological sites and its study can give information about the technology of production, the trading [...] Read more.
Bronze is an alloy composed primarily of copper and tin and since its discovery is widespread in the whole world. This alloy can thus be found in many archaeological sites and its study can give information about the technology of production, the trading routes, or the warfare within a region. However, bronze artefacts can undergo severe alteration processes, and the formation of corrosion layers of different copper minerals can prevent the readability of the artefact or even destroy it, as in the case of the ‘bronze disease’. Their preservation is crucial for maintaining a connection to our cultural heritage. In this paper, we present the study of some corroded bronze artefacts found in different burying conditions. They have been analysed through a scanner system that combines two non-invasive techniques, macro XRF (MA-XRF) and visible, near infrared, short wave infrared (VIS-NIR-SWIR) reflectance, to unravel information about the metal and the patina composition, thickness, and distribution. As the corrosion of bronze depends on the burying conditions and the alloy composition, these data are of the utmost importance to understanding the alteration processes occurring in the archaeological site and to ensure the artefacts’ optimal preservation. Full article
Show Figures

Figure 1

Back to TopTop