Development of a Macro X-ray Fluorescence (MA-XRF) Scanner System for In Situ Analysis of Paintings That Operates in a Static or Dynamic Method
Abstract
:1. Introduction
2. Materials and Methods
Module with X-ray Generator and Detector
3. Results and Discussion
3.1. Analytical Characterization of the System: Resolution, Stability, and Detection Limit
3.2. Paintings Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocha, K.M.J.; Leitão, R.G.; Oliveira-Barros, E.G.; Oliveira, M.A.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T. Elemental Distribution by Synchrotron X-ray Microfluorescence of Prostate 3D Cell Culture. X-ray Spectrom. 2019, 48, 476–481. [Google Scholar] [CrossRef]
- Alberti, R.; Frizzi, T.; Gironda, M.; Occhipinti, M.; Parsani, T.; Seccaroni, C.; Tatì, A. From Noise to Information. Analysing Macro-XRF Mapping of Strontium Impurities in Raphael’s Baglioni Entombment in the Galleria Borghese, Rome. J. Cult. Herit. 2022, 58, 130–136. [Google Scholar] [CrossRef]
- Francis, A.D.A.; Nardes, R.C.; Filho, H.S.G.; dos Santos, R.S.; de Araújo, O.M.O.; Machado, A.S.; Calgam, T.; Bueno, R.; Canellas, C.; Gonçalves, E.A.S.; et al. Characterization of a Sacred Statuette Replica of “Nossa Senhora Da Conceição Aparecida” Using X-ray Spectrometry Techniques. Radiat. Phys. Chem. 2020, 167, 108266. [Google Scholar] [CrossRef]
- Kim, J.J.; Ling, F.T.; Plattenberger, D.A.; Clarens, A.F.; Lanzirotti, A.; Newville, M.; Peters, C.A. SMART Mineral Mapping: Synchrotron-Based Machine Learning Approach for 2D Characterization with Coupled Micro XRF-XRD. Comput. Geosci. 2021, 156, 104898. [Google Scholar] [CrossRef]
- Mera, M.F.; Rubio, M.; Pérez, C.A.; Cazón, S.; Merlo, M.; Muñoz, S.E. SR Induced Micro-XRF for Studying the Spatial Distribution of Pb in Plants Used for Soil Phytoremediation. Radiat. Phys. Chem. 2019, 154, 69–73. [Google Scholar] [CrossRef]
- Trummer, C.; Mendez-Martin, F.; Kothleitner, G.; Haberfehlner, G. 3D Nanoscale Elemental Mapping of Precipitates in Steel: Evaluation of Analytical Electron Tomography and Comparison to Atom Probe Tomography. Micron 2022, 156, 103233. [Google Scholar] [CrossRef]
- Prado, G.; Arthuzzi, J.C.L.; Osés, G.L.; Callefo, F.; Maldanis, L.; Sucerquia, P.; Becker-Kerber, B.; Romero, G.R.; Quiroz-Valle, F.R.; Galante, D. Synchrotron Radiation in Palaeontological Investigations: Examples from Brazilian Fossils and Its Potential to South American Palaeontology. J. S. Am. Earth Sci. 2021, 108, 102973. [Google Scholar] [CrossRef]
- Cotte, M.; Genty-Vincent, A.; Janssens, K.; Susini, J. Applications of Synchrotron X-ray Nano-Probes in the Field of Cultural Heritage. Comptes Rendus Phys. 2018, 19, 575–588. [Google Scholar] [CrossRef]
- Langstraat, K.; Knijnenberg, A.; Edelman, G.; van de Merwe, L.; van Loon, A.; Dik, J.; van Asten, A. Large Area Imaging of Forensic Evidence with MA-XRF. Sci. Rep. 2017, 7, 15056. [Google Scholar] [CrossRef]
- Silva, A.L.M.; Cirino, S.; Carvalho, M.L.; Manso, M.; Pessanha, S.; Azevedo, C.D.R.; Carramate, L.F.N.D.; Santos, J.P.; Guerra, M.; Veloso, J.F.C.A. Elemental Mapping in a Contemporary Miniature by Full-Field X-ray Fluorescence Imaging with Gaseous Detector vs. Scanning X-ray Fluorescence Imaging with Polycapillary Optics. Spectrochim. Acta Part B At. Spectrosc. 2017, 129, 1–7. [Google Scholar] [CrossRef]
- Alfeld, M.; Pedroso, J.V.; van Eikema Hommes, M.; Van der Snickt, G.; Tauber, G.; Blaas, J.; Haschke, M.; Erler, K.; Dik, J.; Janssens, K. A Mobile Instrument for in Situ Scanning Macro-XRF Investigation of Historical Paintings. J. Anal. At. Spectrom. 2013, 28, 760–767. [Google Scholar] [CrossRef]
- Sanches, F.; Franzi, I.; Cavalcante, J.; Borges, R.; de Paula, A.; Machado, A.; Nardes, R.; Santos, R.; Gama Filho, H.; Freitas, R.; et al. Multi-Technique Characterization of Cartonnage and Linen Samples of an Egyptian Mummy from the Roman Period. Quantum Beam Sci. 2024, 8, 22. [Google Scholar] [CrossRef]
- Alfeld, M.; de Viguerie, L. Recent Developments in Spectroscopic Imaging Techniques for Historical Paintings—A Review. Spectrochim. Acta Part B At. Spectrosc. 2017, 136, 81–105. [Google Scholar] [CrossRef]
- Pereira, M.O.; Felix, V.S.; Oliveira, A.L.; Ferreira, D.S.; Pimenta, A.R.; Carvalho, C.S.; Silva, F.L.; Perez, C.A.; Galante, D.; Freitas, R.P. Investigating Counterfeiting of an Artwork by XRF, SEM-EDS, FTIR and Synchrotron Radiation Induced MA-XRF at LNLS-BRAZIL. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 118925. [Google Scholar] [CrossRef]
- Monico, L.; Cartechini, L.; Rosi, F.; Chieli, A.; Grazia, C.; De Meyer, S.; Nuyts, G.; Vanmeert, F.; Janssens, K.; Cotte, M.; et al. Probing the Chemistry of CdS Paints in The Scream by in Situ Noninvasive Spectroscopies and Synchrotron Radiation X-ray Techniques. Sci. Adv. 2020, 6, eaay3514. [Google Scholar] [CrossRef]
- Gestels, A.; Van der Snickt, G.; Caen, J.; Nuyts, G.; Legrand, S.; Vanmeert, F.; Detry, F.; Janssens, K.; Steenackers, G. Combined MA-XRF, MA-XRPD and SEM-EDX Analysis of a Medieval Stained-Glass Panel Formerly from Notre Dame, Paris Reveals Its Material History. Microchem. J. 2022, 177, 107304. [Google Scholar] [CrossRef]
- Van der Snickt, G.; Legrand, S.; Slama, I.; Van Zuien, E.; Gruber, G.; Van der Stighelen, K.; Klaassen, L.; Oberthaler, E.; Janssens, K. In Situ Macro X-ray Fluorescence (MA-XRF) Scanning as a Non-Invasive Tool to Probe for Subsurface Modifications in Paintings by P.P. Rubens. Microchem. J. 2018, 138, 238–245. [Google Scholar] [CrossRef]
- Alfeld, M.; Tempel, P.; van der Wijk, V. Cable Robots as Conventional Linear Stage Alternatives for the Investigation of Complex-Shaped Objects via Macroscopic X-ray Fluorescence Imaging. Quantum Beam Sci. 2023, 7, 37. [Google Scholar] [CrossRef]
- Alfeld, M.; De Nolf, W.; Cagno, S.; Appel, K.; Siddons, D.P.; Kuczewski, A.; Janssens, K.; Dik, J.; Trentelman, K.; Walton, M.; et al. Revealing Hidden Paint Layers in Oil Paintings by Means of Scanning Macro-XRF: A Mock-up Study Based on Rembrandt’s “An Old Man in Military Costume”. J. Anal. At. Spectrom. 2013, 28, 40–51. [Google Scholar] [CrossRef]
- da Silva, A.T.; Legrand, S.; Van der Snickt, G.; Featherstone, R.; Janssens, K.; Bottinelli, G. MA-XRF Imaging on René Magritte’s La Condition Humaine: Insights into the Artist’s Palette and Technique and the Discovery of a Third Quarter of La Pose Enchantée. Herit. Sci. 2017, 5, 37. [Google Scholar] [CrossRef]
- Dik, J.; Janssens, K.; Van Der Snickt, G.; van der Loeff, L.; Rickers, K.; Cotte, M. Visualization of a Lost Painting by Vincent van Gogh Using Synchrotron Radiation Based X-ray Fluorescence Elemental Mapping. Anal. Chem. 2008, 80, 6436–6442. [Google Scholar] [CrossRef]
- dos Santos, H.C.; Caliri, C.; Pappalardo, L.; Catalano, R.; Orlando, A.; Rizzo, F.; Romano, F.P. Real-Time MA-XRF Imaging Spectroscopy of the Virgin with the Child Painted by Antonello de Saliba in 1497. Microchem. J. 2018, 140, 96–104. [Google Scholar] [CrossRef]
- Pimenta, A.; Felix, V.; Oliveira, M.; Andrade, M.; Oliveira, M.; Freitas, R. Investigating Brazilian Paintings from the 19th Century by MA-XRF. Quantum Beam Sci. 2023, 7, 9. [Google Scholar] [CrossRef]
- Alberti, R.; Frizzi, T.; Bombelli, L.; Gironda, M.; Aresi, N.; Rosi, F.; Miliani, C.; Tranquilli, G.; Talarico, F.; Cartechini, L. CRONO: A Fast and Reconfigurable Macro X-ray Fluorescence Scanner for in-Situ Investigations of Polychrome Surfaces. X-ray Spectrom. 2017, 46, 297–302. [Google Scholar] [CrossRef]
- Campos, P.H.O.V.; Appoloni, C.R.; Rizzutto, M.A.; Leite, A.R.; Assis, R.F.; Santos, H.C.; Silva, T.F.; Rodrigues, C.L.; Tabacniks, M.H.; Added, N. A Low-Cost Portable System for Elemental Mapping by XRF Aiming in Situ Analyses. Appl. Radiat. Isot. 2019, 152, 78–85. [Google Scholar] [CrossRef]
- Lins, S.A.B.; Manso, M.; Lins, P.A.B.; Brunetti, A.; Sodo, A.; Gigante, G.E.; Fabbri, A.; Branchini, P.; Tortora, L.; Ridolfi, S. Modular MA-XRF Scanner Development in the Multi-Analytical Characterisation of a 17th Century Azulejo from Portugal. Sensors 2021, 21, 1913. [Google Scholar] [CrossRef]
- Ravaud, E.; Pichon, L.; Laval, E.; Gonzalez, V.; Eveno, M.; Calligaro, T. Development of a Versatile XRF Scanner for the Elemental Imaging of Paintworks. Appl. Phys. A 2016, 122, 17. [Google Scholar] [CrossRef]
- Alfeld, M.; Janssens, K.; Dik, J.; de Nolf, W.; van der Snickt, G. Optimization of Mobile Scanning Macro-XRF Systems for the in Situ Investigation of Historical Paintings. J. Anal. At. Spectrom. 2011, 26, 899. [Google Scholar] [CrossRef]
- Pouyet, E.; Barbi, N.; Chopp, H.; Healy, O.; Katsaggelos, A.; Moak, S.; Mott, R.; Vermeulen, M.; Walton, M. Development of a Highly Mobile and Versatile Large MA-XRF Scanner for in Situ Analyses of Painted Work of Arts. X-ray Spectrom. 2021, 50, 263–271. [Google Scholar] [CrossRef]
- Alfeld, M.W. Development of Scanning Macr-XRF for the Investigation of Historical Paintings. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium, 2013. [Google Scholar]
- Romano, F.P.; Caliri, C.; Nicotra, P.; Di Martino, S.; Pappalardo, L.; Rizzo, F.; Santos, H.C. Real-Time Elemental Imaging of Large Dimension Paintings with a Novel Mobile Macro X-ray Fluorescence (MA-XRF) Scanning Technique. J. Anal. At. Spectrom. 2017, 32, 773–781. [Google Scholar] [CrossRef]
- Langhoff, N.; Simionovici, A.; Arkadiev, V.; Knüpfer, W.; Čechák, T.; Leonhardt, J.; Chavanne, J. X-ray Sources. In Handbook of Practical X-ray Fluorescence Analysis; Beckhoff, B., Kanngießer, H.B., Langhoff, N., Wedell, R., Wolff, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 33–83. ISBN 978-3-540-28603-5. [Google Scholar]
- Arai, T. Introduction. In Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–31. [Google Scholar]
- Scholze, F.; Longoni, A.; Fiorini, C.; Strüder, L.; Meidinger, N.; Hartmann, R.; Kawahara, N.; Shoji, T. X-ray Detectors and XRF Detection Channels. In Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 199–308. [Google Scholar]
- Penner-Hahn, J.E. Handbook of X-ray Spectrometry, 2nd ed., Revised and Expanded Edited by René E. Van Grieken (University of Antwerp) and Andrzej A. Markowicz (Vienna, Austria). Marcel Dekker, Inc: New York and Basel. 2002. Xvi + 984 pp. $250.00. ISBN 0-8247-0600-5. J. Am. Chem. Soc. 2002, 124, 12627. [Google Scholar] [CrossRef]
- Moxtek Link Moxtek Generator. Available online: https://moxtek.com/wp-content/uploads/pdfs/TUB-DATA-1005-50kV-Cable-with-MAGNUM-X-ray-Source-Rev-L.pdf (accessed on 20 September 2024).
- Amptek Amptek Detector. Available online: https://www.amptek.com/products/x-ray-detectors/fastsdd-x-ray-detectors-for-xrf-eds/fastsdd-silicon-drift-detector (accessed on 20 September 2024).
- Alfeld, M.; Janssens, K. Strategies for Processing Mega-Pixel X-ray Fluorescence Hyperspectral Data: A Case Study on a Version of Caravaggio’s Painting Supper at Emmaus. J. Anal. At. Spectrom. 2015, 30, 777–789. [Google Scholar] [CrossRef]
- Solé, V.A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A Multiplatform Code for the Analysis of Energy-Dispersive X-ray Fluorescence Spectra. Spectrochim. Acta-Part B At. Spectrosc. 2007, 62, 63–68. [Google Scholar] [CrossRef]
- Pseudo-Voigt Pseudo-Voigt. Available online: https://docs.mantidproject.org/nightly/fitting/fitfunctions/PseudoVoigt.html (accessed on 20 September 2024).
- Ryan, C.G.; Clayton, E.; Griffin, W.L.; Sie, S.H.; Cousens, D.R. SNIP, a Statistics-Sensitive Background Treatment for the Quantitative Analysis of PIXE Spectra in Geoscience Applications. Nucl. Inst. Methods Phys. Res. B 1988, 34, 396–402. [Google Scholar] [CrossRef]
- Van Grieken, R.; Markowicz, A. Handbook of X-ray Spectrometry; Practical Spectroscopy; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9780203908709. [Google Scholar]
- Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š. The Use of Various X-ray Fluorescence Analysis Modalities for the Investigation of Historical Paintings: The Case Study on the Late Gothic Panel Painting. Radiat. Phys. Chem. 2017, 139, 100–108. [Google Scholar] [CrossRef]
- Bassel, L.; Tauzin, X.; Queffelec, A.; Ferrier, C.; Lacanette, D.; Chapoulie, R.; Bousquet, B. Fluorescence-Based Knife-Edge Beam Diameter Measurement to Characterize X-ray Beam Profiles in Reflection Geometry. Spectrochim. Acta Part B At. Spectrosc. 2016, 118, 98–101. [Google Scholar] [CrossRef]
- Felix, V.S.; Mello, U.L.; Pereira, M.O.; Oliveira, A.L.; Ferreira, D.S.; Carvalho, C.S.; Silva, F.L.; Pimenta, A.R.; Diniz, M.G.; Freitas, R.P. Analysis of a European Cupboard by XRF, Raman and FT-IR. Radiat. Phys. Chem. 2018, 151, 198–204. [Google Scholar] [CrossRef]
- de Queiroz Baddini, A.L.; de Paula Santos, J.L.V.; Tavares, R.R.; de Paula, L.S.; da Costa Araújo Filho, H.; Freitas, R.P. PLS-DA and Data Fusion of Visible Reflectance, XRF and FTIR Spectroscopy in the Classification of Mixed Historical Pigments. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120384. [Google Scholar] [CrossRef]
- Calza, C.; Oliveira, D.F.; de Souza Rocha, H.; Pedreira, A.; Lopes, R.T. Analysis of the Painting “Gioventú” (Eliseu Visconti) Using EDXRF and Computed Radiography. Appl. Radiat. Isot. 2010, 68, 861–865. [Google Scholar] [CrossRef]
- Calza, C.; Pedreira, A.; Lopesa, R.T. Analysis of Paintings from the Nineteenth Century Brazilian Painter Rodolfo Amoedo Using EDXRF Portable System. X-ray Spectrom. 2009, 38, 327–332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, R.P.d.; Oliveira, M.A.d.; Oliveira, M.B.d.; Pimenta, A.R.; Felix, V.d.S.; Pereira, M.O.; Gonçalves, E.A.S.; Grechi, J.V.L.; Silva, F.L.e.; Carvalho, C.d.S.; et al. Development of a Macro X-ray Fluorescence (MA-XRF) Scanner System for In Situ Analysis of Paintings That Operates in a Static or Dynamic Method. Quantum Beam Sci. 2024, 8, 26. https://doi.org/10.3390/qubs8040026
Freitas RPd, Oliveira MAd, Oliveira MBd, Pimenta AR, Felix VdS, Pereira MO, Gonçalves EAS, Grechi JVL, Silva FLe, Carvalho CdS, et al. Development of a Macro X-ray Fluorescence (MA-XRF) Scanner System for In Situ Analysis of Paintings That Operates in a Static or Dynamic Method. Quantum Beam Science. 2024; 8(4):26. https://doi.org/10.3390/qubs8040026
Chicago/Turabian StyleFreitas, Renato P. de, Miguel A. de Oliveira, Matheus B. de Oliveira, André R. Pimenta, Valter de S. Felix, Marcelo O. Pereira, Elicardo A. S. Gonçalves, João V. L. Grechi, Fabricio L. e. Silva, Cristiano de S. Carvalho, and et al. 2024. "Development of a Macro X-ray Fluorescence (MA-XRF) Scanner System for In Situ Analysis of Paintings That Operates in a Static or Dynamic Method" Quantum Beam Science 8, no. 4: 26. https://doi.org/10.3390/qubs8040026
APA StyleFreitas, R. P. d., Oliveira, M. A. d., Oliveira, M. B. d., Pimenta, A. R., Felix, V. d. S., Pereira, M. O., Gonçalves, E. A. S., Grechi, J. V. L., Silva, F. L. e., Carvalho, C. d. S., Ataliba, J. G. R. S., Pereira, L. O., Muniz, L. C., Santos, R. B. d., & Vital, V. d. S. (2024). Development of a Macro X-ray Fluorescence (MA-XRF) Scanner System for In Situ Analysis of Paintings That Operates in a Static or Dynamic Method. Quantum Beam Science, 8(4), 26. https://doi.org/10.3390/qubs8040026