Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = lymphatic lipids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4272 KiB  
Article
Adjuvant Templating Improves On-Target/Off-Target Antibody Ratio Better than Linker Addition for M2-Derived Peptide Amphiphile Micelle Vaccines
by Megan C. Schulte, Adam C. Boll, Natalie L. Conomos, Farnoushsadat Rezaei, Agustin T. Barcellona, Adam G. Schrum and Bret D. Ulery
Vaccines 2025, 13(4), 422; https://doi.org/10.3390/vaccines13040422 - 17 Apr 2025
Viewed by 715
Abstract
Background: Peptide amphiphile micelles (PAMs) are a promising lipid-based nanotechnology currently in development for a variety of applications ranging from atherosclerosis to cancer therapy. Especially relevant for immune applications, PAMs improve trafficking through lymphatic vessels, enhance uptake by antigen-presenting cells, and inhibit the [...] Read more.
Background: Peptide amphiphile micelles (PAMs) are a promising lipid-based nanotechnology currently in development for a variety of applications ranging from atherosclerosis to cancer therapy. Especially relevant for immune applications, PAMs improve trafficking through lymphatic vessels, enhance uptake by antigen-presenting cells, and inhibit the protease-mediated degradation of cargo. However, the creation of the peptide amphiphiles (PAs) necessary to induce micellization often requires modifying an immunotarget peptide with non-native moieties, which can induce the production of off-target antibodies. Methods: PAs containing different linkers between the antigen and non-native flanking regions were synthesized and physically characterized. BALB/c mice were then subcutaneously immunized on days 0 and 14 with these formulations and ELISAs were conducted on the sera collected from vaccinated mice on day 35 to evaluate antibody responses. Results: We determined that Palm2K-M22–16-(KE)4 PAMs elicited off-target antibody responses and sought to avoid these unintended responses by adding linkers in between the M22–16 antigen and the non-native flanking regions (i.e., Palm2K- and -(KE)4) of the PA. Most significantly, the addition of diproline linkers on either side of the M22–16 antigen conferred a loss of β-sheet structure, whereas changing the method of lipid attachment from Palm2K- to Pam2CS-induced the formation of primarily spherical micelles compared to a mixture of spherical and short cylindrical micelles. Despite these morphological changes, all linker-containing PAMs still induced the production of off-target antibodies. Excitingly, however, the formulation containing a Pam2CS moiety (intended to mimic the adjuvanticity of the TLR2 agonist adjuvant Pam2CSK4) elicited high on-target antibody titers similar to those induced by PAMs co-delivered with Pam2CSK4. Conclusions: While the linkers tested did not completely eliminate the production of off-target antibodies elicited by the PAMs, the inclusion of a Pam2CS moiety both increased the amount of on-target antibodies and improved the ratio of on-target to off-target antibodies in response to the M22–16 vaccine. Full article
(This article belongs to the Special Issue Synthetic Vaccines)
Show Figures

Figure 1

30 pages, 2798 KiB  
Review
Barriers and Strategies for Oral Peptide and Protein Therapeutics Delivery: Update on Clinical Advances
by Kshitis Chandra Baral and Ki Young Choi
Pharmaceutics 2025, 17(4), 397; https://doi.org/10.3390/pharmaceutics17040397 - 21 Mar 2025
Cited by 2 | Viewed by 4575
Abstract
Peptide and protein (PP) therapeutics are highly specific and potent biomolecules that treat chronic and complex diseases. However, their oral delivery is significantly hindered by enzymatic degradation, instability, and poor permeability through the gastrointestinal (GI) epithelium, resulting in low bioavailability. Various strategies have [...] Read more.
Peptide and protein (PP) therapeutics are highly specific and potent biomolecules that treat chronic and complex diseases. However, their oral delivery is significantly hindered by enzymatic degradation, instability, and poor permeability through the gastrointestinal (GI) epithelium, resulting in low bioavailability. Various strategies have emerged as transformative solutions to address existing challenges, offering enhanced protection, stabilization, and absorption of PPs. These strategies primarily focus on two major challenges: protecting the PP against harsh conditions and enhancing permeation across the intestinal membrane. Innovative approaches such as pH modulation and incorporation of enzyme inhibitors are usually used to mitigate proteolytic degradation of PP during transit across the GI tract. In a similar vein, absorption enhancers and prodrug strategies facilitate epithelial transport, while targeted delivery systems focus on specific areas of the GI tract to enhance absorption. Likewise, mucus-penetrating and mucoadhesive strategies have enhanced retention and interaction with epithelial cells, effectively overcoming barriers like the mucus layer and tight epithelial junctions. Furthermore, structural modifications such as lipidation, peptide cyclization, and polyethylene glycosylation are promising alternatives to render stability, prolong circulation time, and membrane permeability. In particular, functional biomaterials, active targeting, and lymphatic transport strategies have provided new platforms for oral PP delivery. Advancing in materials science, nanotechnology, and the disruption of medical devices holds new frontiers to overcome barriers. Despite substantial advancements, the limited success in clinical translation underscores the urgency of innovative strategies. This review presents oral PPs as a promising platform, highlighting the key barriers and strategies to transform their therapeutic landscapes. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

28 pages, 10485 KiB  
Review
Advances and Techniques in Medical Imaging and Minimally Invasive Interventions for Disorders of the Central Conducting and Mesenteric Lymphatic System
by Frederic J. Bertino and Kin Fen Kevin Fung
Lymphatics 2025, 3(1), 8; https://doi.org/10.3390/lymphatics3010008 - 19 Mar 2025
Viewed by 1604
Abstract
The central conducting lymphatics (CCL) and mesenteric lymphatic systems are responsible for lipid absorption, fluid regulation, and protein delivery into the bloodstream. Disruptions in these systems can result in debilitating conditions such as chylothorax, plastic bronchitis, post-operative lymphocele, protein-losing enteropathy (PLE), and chylous [...] Read more.
The central conducting lymphatics (CCL) and mesenteric lymphatic systems are responsible for lipid absorption, fluid regulation, and protein delivery into the bloodstream. Disruptions in these systems can result in debilitating conditions such as chylothorax, plastic bronchitis, post-operative lymphocele, protein-losing enteropathy (PLE), and chylous ascites. Advances in imaging techniques, including magnetic resonance lymphangiography (MRL), computed tomography lymphangiography (CTL), and fluoroscopic lymphangiography, allow for detailed anatomic and functional evaluation of the lymphatic system, facilitating accurate diagnosis and intervention by interventional radiologists. This review explores the embryology, anatomy, and pathophysiology of the lymphatic system and discusses imaging modalities and interventional techniques employed to manage disorders of the conducting lymphatics in the chest and abdomen. Thoracic duct embolization (TDE), percutaneous transhepatic lymphatic embolization (PTLE), and sclerotherapy are highlighted as effective, minimally invasive approaches to treat lymphatic leaks and obstructions and have shown high success rates in reducing symptoms and improving patient outcomes, particularly when medical management fails. This review seeks to demonstrate how anatomical imaging can facilitate minimally invasive procedures to rectify disorders of lymphatic flow. Full article
Show Figures

Figure 1

13 pages, 2138 KiB  
Article
The Impact of Cannabidiol (CBD) on Lipid Absorption and Lymphatic Transport in Rats
by Qi Zhu, Qing Yang, Ling Shen, Meifeng Xu and Min Liu
Nutrients 2025, 17(6), 1034; https://doi.org/10.3390/nu17061034 - 15 Mar 2025
Viewed by 1335
Abstract
Background: Cannabidiol (CBD) exerts diverse metabolic effects, yet its influence on intestinal lipid metabolism remains unclear. Methods: In this study, we investigated whether short-term (one-week) CBD treatment affects lipid absorption and transport through the lymphatic system using a validated lymph fistula model. Results: [...] Read more.
Background: Cannabidiol (CBD) exerts diverse metabolic effects, yet its influence on intestinal lipid metabolism remains unclear. Methods: In this study, we investigated whether short-term (one-week) CBD treatment affects lipid absorption and transport through the lymphatic system using a validated lymph fistula model. Results: CBD treatment significantly enhanced the transport of radiolabeled triglycerides through the lymphatic system. This effect appeared specific, as CBD did not substantially alter cholesterol output in the lymph. Chemical assays indicated that CBD treatment did not significantly alter total triglycerides, cholesterol, phospholipids, or non-esterified fatty acid levels in the lymph. However, it significantly enhanced the lymphatic output of apolipoprotein A4 (ApoA4) and apolipoprotein A1 (ApoA1). Additionally, gene expression analysis revealed a downregulation of vascular endothelial growth factor receptor 1 (Flt1) in the small intestine, leading to increased lymphatic lacteal permeability and altered lipid transport dynamics. Conclusions: These findings indicate that short-term CBD treatment modulates lymphatic lipid composition and apolipoprotein secretion by regulating lymphatic lacteal function, thereby influencing lipid transport and metabolism. This study provides novel insights into CBD’s role in facilitating TG-rich lipoprotein transport via the lymphatic system, highlighting its potential therapeutic applications in lipid-related disorders. Full article
(This article belongs to the Special Issue Functional Lipids and Human Health)
Show Figures

Figure 1

21 pages, 2578 KiB  
Article
HRAMS Proteomics Insights on the Anti-Filarial Effect of Ocimum sanctum: Implications in Phytochemical-Based Drug-Targeting and Designing
by Ayushi Mishra, Vipin Kumar, Sunil Kumar, HariOm Singh and Anchal Singh
Proteomes 2025, 13(1), 2; https://doi.org/10.3390/proteomes13010002 - 27 Dec 2024
Viewed by 1438
Abstract
Lymphatic filariasis (LF) continues to impact 657 million individuals worldwide, resulting in lifelong and chronic impairment. The prevalent anti-filarial medications—DEC, albendazole, and ivermectin—exhibit limited adulticidal efficacy. Despite ongoing LF eradication programs, novel therapeutic strategies are essential for effective control. This study examines the [...] Read more.
Lymphatic filariasis (LF) continues to impact 657 million individuals worldwide, resulting in lifelong and chronic impairment. The prevalent anti-filarial medications—DEC, albendazole, and ivermectin—exhibit limited adulticidal efficacy. Despite ongoing LF eradication programs, novel therapeutic strategies are essential for effective control. This study examines the mechanism of action of Ocimum sanctum on the filarial parasites Setaria cervi via a synergistic biochemical and proteomics methodology. The ethanolic extract of Ocimum sanctum (EOS) demonstrated potential anti-filarial action in the MTT reduction experiment, with an LC50 value of 197.24 µg/mL. After EOS treatment, an elevation in lipid peroxidation (51.92%), protein carbonylation (48.99%), and NADPH oxidase (88.88%) activity, along with a reduction in glutathione (GSH) (−39.23%), glutathione reductase (GR) (−60.17%), and glutathione S transferase (GST) (−50.48%) activity, was observed. The 2D gel electrophoresis identified 20 decreased and 11 increased protein spots in the EOS-treated parasites relative to the control group. Additionally, in drug docking analysis, the EOS bioactive substances ursolic acid, rutin, and rosmarinic acid show a significant binding affinity with the principal differentially expressed proteins. This paper demonstrates, for the first time, that the anti-filarial efficacy of EOS is primarily facilitated by its impact on energy metabolism, antioxidant mechanisms, and stress response systems of the parasites. Full article
Show Figures

Figure 1

21 pages, 3197 KiB  
Article
Plasmalogens Improve Lymphatic Clearance of Amyloid Beta from Mouse Brain and Cognitive Functions
by Alexander Shirokov, Daria Zlatogosrkaya, Viktoria Adushkina, Elena Vodovozova, Kristina Kardashevskaya, Ruslan Sultanov, Sergey Kasyanov, Inna Blokhina, Andrey Terskov, Maria Tzoy, Arina Evsyukova, Alexander Dubrovsky, Matvey Tuzhilkin, Inna Elezarova, Alexander Dmitrenko, Maria Manzhaeva, Valeria Krupnova, Anastasiia Semiachkina-Glushkovskaia, Egor Ilyukov, Dmitry Myagkov, Dmitry Tuktarov, Sergey Popov, Tymophey Inozemzev, Nikita Navolokin, Ivan Fedosov and Oxana Semyachkina-Glushkovskayaadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2024, 25(23), 12552; https://doi.org/10.3390/ijms252312552 - 22 Nov 2024
Cited by 1 | Viewed by 1537
Abstract
Amyloid beta (Aβ) is a neuronal metabolic product that plays an important role in maintaining brain homeostasis. Normally, intensive brain Aβ formation is accompanied by its effective lymphatic removal. However, the excessive accumulation of brain Aβ is observed with age and during the [...] Read more.
Amyloid beta (Aβ) is a neuronal metabolic product that plays an important role in maintaining brain homeostasis. Normally, intensive brain Aβ formation is accompanied by its effective lymphatic removal. However, the excessive accumulation of brain Aβ is observed with age and during the development of Alzheimer’s disease (AD) leading to cognitive impairment and memory deficits. There is emerging evidence that plasmalogens (Pls), as one of the key brain lipids, may be beneficial for AD and cognitive aging. Here, we studied the effects of Pls on cognitive functions and the lymphatic clearance of Aβ from the brain of AD mice and mice of different ages. The results showed that Pls effectively reduce brain Aβ levels and facilitate learning in aged but not old mice. In AD mice, Pls improve the lymphatic clearance of Aβ that is accompanied by an increase in general motor activity and an improvement of the emotional status and learning ability. Thus, these findings suggest that Pls could be a promising candidate for the alternative or concomitant therapy of AD and age-related brain diseases to enhance the lymphatic clearance of Aβ from the brain and cognitive functions. Full article
(This article belongs to the Special Issue The Role of Enzymes in Metabolic Processes)
Show Figures

Graphical abstract

11 pages, 1783 KiB  
Article
The Role of Lymph-Adipose Crosstalk in Alcohol-Induced Perilymphatic Adipose Tissue Dysfunction
by Kourtney D. Weaver, Liz Simon, Patricia E. Molina and Flavia Souza-Smith
Int. J. Mol. Sci. 2024, 25(19), 10811; https://doi.org/10.3390/ijms251910811 - 8 Oct 2024
Cited by 2 | Viewed by 1152
Abstract
Chronic alcohol use leads to metabolic dysfunction in adipose tissue. The underlying mechanisms and the contribution of alcohol-induced adipose tissue dysfunction to systemic metabolic dysregulation are not well understood. In our previous studies, we found that chronic alcohol feeding induces mesenteric lymphatic leakage, [...] Read more.
Chronic alcohol use leads to metabolic dysfunction in adipose tissue. The underlying mechanisms and the contribution of alcohol-induced adipose tissue dysfunction to systemic metabolic dysregulation are not well understood. In our previous studies, we found that chronic alcohol feeding induces mesenteric lymphatic leakage, perilymphatic adipose tissue (PLAT) inflammation, and local insulin resistance in rats. The goal of this study was to further explore the link between alcohol-induced lymphatic leakage and PLAT immunometabolic dysregulation, locally and systemically, using in vivo and ex vivo approaches. Male rats received a Lieber–DeCarli liquid diet, of which 36% of the calories were from alcohol, for 10 weeks. Time-matched control animals were pair-fed. Adipokine levels were measured in PLAT, subcutaneous fat, plasma, and mesenteric lymph samples. Glucose tolerance was assessed after 10 weeks. Further, we used a novel ex vivo lymph-stimulated naïve PLAT explant approach to modeling lymph leakage to assess changes in adipokine secretion and expression of proinflammatory markers after stimulation with lymph from alcohol- or pair-fed animals. Our data show that chronic alcohol-fed rats presented PLAT-specific decreases in adiponectin and leptin levels, alterations in the expression of genes involved in lipid metabolic pathways, and associated impaired whole-body glucose homeostasis. Further, we found that direct naïve PLAT stimulation with lymph contents from alcohol-fed animals increased IL-6 expression in demonstrating the ability of lymph contents to differentially impact naïve adipose tissue. Overall, chronic alcohol feeding leads to depot-specific alterations in metabolic profile, impaired systemic glucose tolerance, and lymph-induced adipose tissue inflammation. The specific lymph components leading to PLAT immunometabolic dysregulation remain to be determined. Full article
Show Figures

Figure 1

31 pages, 2020 KiB  
Review
Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health
by Rebecka A. Sadler, Anna K. Shoveller, Umesh K. Shandilya, Armen Charchoglyan, Lauraine Wagter-Lesperance, Byram W. Bridle, Bonnie A. Mallard and Niel A. Karrow
Curr. Issues Mol. Biol. 2024, 46(7), 7001-7031; https://doi.org/10.3390/cimb46070418 - 4 Jul 2024
Cited by 9 | Viewed by 6574
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule’s importance to human health includes but is not limited to [...] Read more.
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule’s importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK’s properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases. Full article
Show Figures

Graphical abstract

16 pages, 2396 KiB  
Article
In Vivo Absorption and Lymphatic Bioavailability of Docosahexaenoic Acid from Microalgal Oil According to Its Physical and Chemical Form of Vectorization
by Leslie Couëdelo, Stephanie Lennon, Hélène Abrous, Ikram Chamekh, Corentin Bouju, Hugues Griffon, Carole Vaysse, Lionel Larvol and Gildas Breton
Nutrients 2024, 16(7), 1014; https://doi.org/10.3390/nu16071014 - 30 Mar 2024
Cited by 2 | Viewed by 2657
Abstract
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities [...] Read more.
Docosahexaenoic acid (DHA) is an essential fatty acid (FA) with proven pro-health effects, but improving its bioavailability is becoming a public health issue. The bioavailability of DHA from microalgal (A) oil has been comprehensively assessed, particularly in terms of the molecular structuring capabilities offered by A-oil. Here, we explored the impact of five DHA-rich formulas differing in terms of (i) molecular structure, i.e., ethyl ester (EE), monoglyceride (MG), or triglyceride (TG), and (ii) supramolecular form, i.e., emulsified TG or TG + phospholipids (PL blend) on the lymphatic kinetics of DHA absorption and the lipid characteristics of the resulting lipoproteins. We demonstrated in rats that the conventional A-DHA TG structure afforded more effective DHA absorption than the EE structure (+23%). Furthermore, the A-DHA MG and A-DHA emulsions were the better DHA vectors (AUC: 89% and +42%, respectively) due to improved lipolysis. The A-DHA MG and A-DHA emulsion presented the richest DHA content in TG (+40%) and PL (+50%) of lymphatic chylomicrons, which could affect the metabolic fate of DHA. We concluded that structuring A-DHA in TG or EE form would better serve for tissue and hepatic metabolism whereas A-DHA in MG and emulsion form could better target nerve tissues. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

13 pages, 1519 KiB  
Review
Oral Drug Delivery via Intestinal Lymphatic Transport Utilizing Lipid-Based Lyotropic Liquid Crystals
by Linh Dinh and Bingfang Yan
Liquids 2023, 3(4), 456-468; https://doi.org/10.3390/liquids3040029 - 20 Nov 2023
Cited by 9 | Viewed by 5356
Abstract
Lyotropic liquid crystals (LLCs) are liquids that have crystalline structures. LLCs as drug delivery systems that can deliver hydrophobic, hydrophilic, and amphiphilic agents. Due to their unique phases and structures, LLCs can protect both small molecules and biologics from the gastrointestinal tract’s harsh [...] Read more.
Lyotropic liquid crystals (LLCs) are liquids that have crystalline structures. LLCs as drug delivery systems that can deliver hydrophobic, hydrophilic, and amphiphilic agents. Due to their unique phases and structures, LLCs can protect both small molecules and biologics from the gastrointestinal tract’s harsh environment, thus making LLCs attractive as carriers for oral drug delivery. In this review, we discuss the advantages of LLCs and LLCs as oral formulations targeting intestinal lymphatic transport. In oral LLC formulations, the relationship between the micelle compositions and the resulting LLC structures as well as intestinal transport and absorption were determined. In addition, we further demonstrated approaches for the enhancement of intestinal lymphatic transport: (1) lipid-based LLCs promoting chylomicron secretion and (2) the design of LLC nanoparticles with M cell-triggered ligands for targeting the M cell pathway. In this review, we introduce LLC drug delivery systems and their characteristics. Our review focuses on recent approaches using oral LLC drug delivery strategies targeting the intestinal lymphatic system to enhance drug bioavailability. Full article
(This article belongs to the Topic Recent Advances in Liquid Crystals)
Show Figures

Figure 1

21 pages, 15573 KiB  
Article
The Development of Dermal Self-Double-Emulsifying Drug Delivery Systems: Preformulation Studies as the Keys to Success
by Daniélle van Staden, Richard K. Haynes and Joe M. Viljoen
Pharmaceuticals 2023, 16(10), 1348; https://doi.org/10.3390/ph16101348 - 25 Sep 2023
Viewed by 2212
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior to other lipid-based oral drug delivery systems in terms of providing drug protection against the gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced lymphatic drug uptake, improved control [...] Read more.
Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior to other lipid-based oral drug delivery systems in terms of providing drug protection against the gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced lymphatic drug uptake, improved control over plasma concentration profiles of drugs, enhanced stability, and drug loading efficiency. Interest in dermal spontaneous emulsions has increased, given that systems have been reported to deliver drugs across mucus membranes, as well as the outermost layer of the skin into the underlying layers. The background and development of a double spontaneous emulsion incorporating four anti-tubercular drugs, clofazimine (CFZ), isoniazid (INH), pyrazinamide (PZY), and rifampicin (RIF), are described here. Our methods involved examination of oil miscibility, the construction of pseudoternary phase diagrams, the determination of self-emulsification performance and the emulsion stability index of primary emulsions (PEs), solubility, and isothermal micro calorimetry compatibility and examination of emulsions via microscopy. Overall, the potential of self-double-emulsifying drug delivery systems (SDEDDSs) as a dermal drug delivery vehicle is now demonstrated. The key to success here is the conduct of preformulation studies to enable the development of dermal SDEDDSs. To our knowledge, this work represents the first successful example of the production of SDEDDSs capable of incorporating four individual drugs. Full article
(This article belongs to the Special Issue Recent Advances in Skin Drug Delivery)
Show Figures

Graphical abstract

15 pages, 4850 KiB  
Article
Plasma Exosome Proteins ILK1 and CD14 Correlated with Organ-Specific Metastasis in Advanced Gastric Cancer Patients
by Chenfei Zhou, Changting Qiao, Jun Ji, Wenqi Xi, Jinling Jiang, Liting Guo, Junwei Wu, Feng Qi, Qu Cai, Steven W. M. Olde Damink and Jun Zhang
Cancers 2023, 15(15), 3986; https://doi.org/10.3390/cancers15153986 - 5 Aug 2023
Cited by 7 | Viewed by 2642
Abstract
The exosome plays important roles in driving tumor metastasis, while the role of exosome proteins during organ-specific metastasis in gastric cancer has not been fully understood. To address this question, peripheral blood samples from 12 AGC patients with organ-specific metastasis, including distant lymphatic, [...] Read more.
The exosome plays important roles in driving tumor metastasis, while the role of exosome proteins during organ-specific metastasis in gastric cancer has not been fully understood. To address this question, peripheral blood samples from 12 AGC patients with organ-specific metastasis, including distant lymphatic, hepatic and peritoneal metastasis, were collected to purify exosomes and to detect exosome proteins by Nano-HPLC–MS/MS. Gastric cancer cell lines were used for in vitro experiments. Peripheral blood sample and ascites sample from one patient were further analyzed by single-cell RNA sequencing. GO and KEGG enrichment analysis showed different expression proteins of hepatic metastasis were correlated with lipid metabolism. For peritoneal metastasis, actin cytoskeleton regulation and glycolysis/gluconeogenesis could be enriched. ILK1 and CD14 were correlated with hepatic and peritoneal metastasis, respectively. Overexpression of CD14 and ILK1 impacted the colony formation ability of gastric cancer and increased expression of Vimentin. CD14 derived from immune cells in malignant ascites correlated with high activation of chemokine- and cytokine-mediated signaling pathways. In summary, biological functions of plasma exosome proteins among AGC patients with different metastatic modes were distinct, in which ILK1 and CD14 were correlated with organ-specific metastasis. Full article
(This article belongs to the Special Issue Signaling Pathway in Gastrointestinal Cancer)
Show Figures

Figure 1

18 pages, 3720 KiB  
Article
Enhanced Codelivery of Gefitinib and Azacitidine for Treatment of Metastatic-Resistant Lung Cancer Using Biodegradable Lipid Nanoparticles
by Ehab M. Elzayat, Abdelrahman Y. Sherif, Fahd A. Nasr, Mohamed W. Attwa, Doaa H. Alshora, Sheikh F. Ahmad and Ali S. Alqahtani
Materials 2023, 16(15), 5364; https://doi.org/10.3390/ma16155364 - 30 Jul 2023
Cited by 9 | Viewed by 2264
Abstract
Lung cancer is a formidable challenge in clinical practice owing to its metastatic nature and resistance to conventional treatments. The codelivery of anticancer agents offers a potential solution to overcome resistance and minimize systemic toxicity. The encapsulation of these agents within nanostructured lipid [...] Read more.
Lung cancer is a formidable challenge in clinical practice owing to its metastatic nature and resistance to conventional treatments. The codelivery of anticancer agents offers a potential solution to overcome resistance and minimize systemic toxicity. The encapsulation of these agents within nanostructured lipid carriers (NLCs) provides a promising strategy to enhance lymphatic delivery and reduce the risk of relapse. This study aimed to develop an NLC formulation loaded with Gefitinib and Azacitidine (GEF-AZT-NLC) for the treatment of metastatic-resistant lung cancer. The physicochemical properties of the formulations were characterized, and in vitro drug release was evaluated using the dialysis bag method. The cytotoxic activity of the GEF-AZT-NLC formulations was assessed on a lung cancer cell line, and hemocompatibility was evaluated using suspended red blood cells. The prepared formulations exhibited nanoscale size (235–272 nm) and negative zeta potential values (−15 to −31 mV). In vitro study revealed that the GEF-AZT-NLC formulation retained more than 20% and 60% of GEF and AZT, respectively, at the end of the experiment. Hemocompatibility study demonstrated the safety of the formulation for therapeutic use, while cytotoxicity studies suggested that the encapsulation of both anticancer agents within NLCs could be advantageous in treating resistant cancer cells. In conclusion, the GEF-AZT-NLC formulation developed in this study holds promise as a potential therapeutic tool for treating metastatic-resistant lung cancer. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications)
Show Figures

Figure 1

21 pages, 668 KiB  
Article
Effect of Manual Lymphatic Drainage on the Concentrations of Selected Adipokines, Cytokines, C-Reactive Protein and Parameters of Carbohydrate and Lipid Metabolism in Patients with Abnormal Body Mass Index: Focus on Markers of Obesity and Insulin Resistance
by Klaudia Antoniak-Pietrynczak, Katarzyna Zorena, Marta Jaskulak, Rita Hansdorfer-Korzon and Marek Koziński
Int. J. Mol. Sci. 2023, 24(12), 10338; https://doi.org/10.3390/ijms241210338 - 19 Jun 2023
Cited by 7 | Viewed by 3523
Abstract
The aim of the study was to assess the impact of manual lymphatic drainage (MLD) on the parameters of carbohydrate metabolism, lipid metabolism and the level of selected adipokines and cytokines in people with abnormal body mass index (BMI). In addition, an attempt [...] Read more.
The aim of the study was to assess the impact of manual lymphatic drainage (MLD) on the parameters of carbohydrate metabolism, lipid metabolism and the level of selected adipokines and cytokines in people with abnormal body mass index (BMI). In addition, an attempt was made to assess the optimal cut-off values of serum concentrations of the biochemical parameters studied in identifying the risk of obesity and insulin resistance (IR). The study included 60 subjects who underwent 10 and 30 min long MLD sessions three times a week. The study group included 15 patients with a normal body mass index (group I; n = 15), overweight patients (group II; n = 15) and obese patients (group III; n = 10). The control group was IV; n = 20 subjects not undergoing MLD. Biochemical tests were carried out on all subjects at stage 0′ (before MLD therapy) and at stage 1′ (one month after MLD therapy). In the control group, the time between the sample collection at stage 0′ and stage 1′ was the same as in the study group. Our results showed that 10 MLD sessions may have a positive effect on the selected biochemical parameters, including insulin, 2h-PG, leptin and HOMA-IR values in normal weight and overweight patients. In addition, in the study group, the highest AUCROC values in identifying the risk of obesity were found for leptin (AUCROC = 82.79%; cut-off = 17.7 ng/mL; p = 0.00004), insulin (AUCROC = 81.51%; cut-off = 9.5 µIU/mL; p = 0.00009) and C-peptide (AUCROC = 80.68%; cut-off = 2.3 ng/mL; p = 0.0001) concentrations as well as for HOMA-IR values (AUCROC = 79.97%; cut-off = 1.8; p = 0.0002). When considering the risk of IR, we observed the highest diagnostic value for insulin (AUCROC = 93.05%; cut-off = 1.8 ng/mL; p = 0.053), which was followed by C-peptide (AUCROC = 89.35%; cut-off = 17.7 ng/mL; p = 0.000001), leptin (AUCROC = 79.76%; cut-off = 17.6 ng/mL; p = 0.0002) and total cholesterol (AUCROC = 77.31%; cut-off = 198 mg/dL; p = 0.0008). Our results indicate that MLD may have a positive effect on selected biochemical parameters, including insulin, 2h-PG, leptin and HOMA-IR, in normal weight and overweight patients. In addition, we successfully established optimal cut-off values for leptin in the assessment of obesity and insulin in the assessment of insulin resistance in patients with abnormal body mass index. Based on our findings, we hypothesize that MLD, when combined with caloric restriction and physical activity, may serve as an effective preventive intervention against the development of obesity and insulin resistance. Full article
Show Figures

Figure 1

38 pages, 6651 KiB  
Review
Intracellular Membrane Transport in Vascular Endothelial Cells
by Alexander A. Mironov, Anna Mironov, Barbara Sanavio, Silke Krol and Galina V. Beznoussenko
Int. J. Mol. Sci. 2023, 24(6), 5791; https://doi.org/10.3390/ijms24065791 - 17 Mar 2023
Cited by 11 | Viewed by 4253
Abstract
The main component of blood and lymphatic vessels is the endothelium covering their luminal surface. It plays a significant role in many cardiovascular diseases. Tremendous progress has been made in deciphering of molecular mechanisms involved into intracellular transport. However, molecular machines are mostly [...] Read more.
The main component of blood and lymphatic vessels is the endothelium covering their luminal surface. It plays a significant role in many cardiovascular diseases. Tremendous progress has been made in deciphering of molecular mechanisms involved into intracellular transport. However, molecular machines are mostly characterized in vitro. It is important to adapt this knowledge to the situation existing in tissues and organs. Moreover, contradictions have accumulated within the field related to the function of endothelial cells (ECs) and their trans-endothelial pathways. This has induced necessity for the re-evaluation of several mechanisms related to the function of vascular ECs and intracellular transport and transcytosis there. Here, we analyze available data related to intracellular transport within ECs and re-examine several hypotheses about the role of different mechanisms in transcytosis across ECs. We propose a new classification of vascular endothelium and hypotheses related to the functional role of caveolae and mechanisms of lipid transport through ECs. Full article
(This article belongs to the Special Issue Intracellular Membrane Transport: Models and Machines)
Show Figures

Figure 1

Back to TopTop