Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = lymph node-on-chip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 1612 KB  
Review
Microengineered Breast Cancer Models: Shaping the Future of Personalized Oncology
by Tudor-Alexandru Popoiu, Anca Maria Cimpean, Florina Bojin, Simona Cerbu, Miruna-Cristiana Gug, Catalin-Alexandru Pirvu, Stelian Pantea and Adrian Neagu
Cancers 2025, 17(19), 3160; https://doi.org/10.3390/cancers17193160 - 29 Sep 2025
Abstract
Background: Breast cancer remains the most prevalent malignancy in women worldwide, characterized by remarkable genetic, molecular, and clinical heterogeneity. Traditional preclinical models have significantly advanced our understanding of tumor biology, yet consistently fall short in recapitulating the complexity of the human tumor [...] Read more.
Background: Breast cancer remains the most prevalent malignancy in women worldwide, characterized by remarkable genetic, molecular, and clinical heterogeneity. Traditional preclinical models have significantly advanced our understanding of tumor biology, yet consistently fall short in recapitulating the complexity of the human tumor microenvironment (TME), immune, and metastatic behavior. In recent years, breast cancer-on-a-chip (BCOC) have emerged as powerful microengineered systems that integrate patient-derived cells, stromal and immune components, and physiological stimuli such as perfusion, hypoxia, and acidic milieu within controlled three-dimensional microenvironments. Aim: To comprehensively review the BCOC development and application, encompassing fabrication materials, biological modeling of key subtypes (DCIS, luminal A, triple-negative), dynamic tumor–stroma–immune crosstalk, and organotropic metastasis to bone, liver, brain, lungs, and lymph nodes. Methods: We selected papers from academic trusted databases (PubMed, Web of Science, Google Scholar) by using Breast Cancer, Microfluidic System, and Breast Cancer on a Chip as the main search terms. Results: We critically discuss and highlight how microfluidic systems replicate essential features of disease progression—such as epithelial-to-mesenchymal transition, vascular invasion, immune evasion, and therapy resistance—with unprecedented physiological relevance. Special attention has been paid to the integration of liquid biopsy technologies within microfluidic platforms for non-invasive, real-time analysis of circulating tumor cells, cell-free nucleic acids, and exosomes. Conclusions: In light of regulatory momentum toward reducing animal use in drug development, BCOC platforms stand at the forefront of a new era in precision oncology. By bridging biological fidelity with engineering innovation, these systems hold immense potential to transform cancer research, therapy screening, and personalized medicine. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

37 pages, 989 KB  
Review
In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions
by Ignacio Losada-Fernández, Ane San Martín, Sergio Moreno-Nombela, Leticia Suárez-Cabrera, Leticia Valencia, Paloma Pérez-Aciego and Diego Velasco
Cosmetics 2025, 12(4), 173; https://doi.org/10.3390/cosmetics12040173 - 12 Aug 2025
Viewed by 1292
Abstract
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation [...] Read more.
Allergic contact dermatitis is one of the most common adverse events associated with cosmetic use. Accordingly, assessment of skin sensitisation hazard is required for safety evaluation of cosmetic ingredients. The transition to the use of alternative methods for testing has made skin sensitisation an intense field in the past decades. The first alternative methods have been in place for almost a decade, but none as stand-alone replacement for the reference murine Local Lymph Node Assay (LLNA). While strategies to combine data from several methods are being evaluated and refined, individual methods face technical limitations. These include issues related to their applicability to highly lipophilic substances and the lack of reliable potency estimation, which remain important obstacles to their widespread adoption as replacement for animal methods. The unique characteristics of in vitro skin models represented an attractive alternative, potentially overcoming these limitations and offering a more physiologically relevant environment for the assessment of the response in keratinocytes and dendritic cells. In this review, we recapitulate how reconstructed human skin models have been used as platforms for skin sensitisation testing, including the latest approaches using organ-on-a-chip and microfluidic technologies, aimed to develop next-generation organotypic skin models with increased complexity and monitoring capabilities. Full article
Show Figures

Figure 1

15 pages, 5363 KB  
Article
Compact and Handheld SiPM-Based Gamma Camera for Radio-Guided Surgery and Medical Imaging
by Fabio Acerbi, Aramis Raiola, Cyril Alispach, Hossein Arabi, Habib Zaidi, Alberto Gola and Domenico Della Volpe
Instruments 2025, 9(2), 14; https://doi.org/10.3390/instruments9020014 - 15 Jun 2025
Viewed by 1043
Abstract
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, [...] Read more.
In the continuous pursuit of minimally invasive interventions while ensuring a radical excision of lesions, Radio-Guided Surgery (RGS) has been for years the standard for image-guided surgery procedures, such as the Sentinel Lymph Node biopsy (SLN), Radio-guided Seed Localization (RSL), etc. In RGS, the lesion has to be identified precisely, in terms of position and extension. In such a context, going beyond the current one-point probes, introducing portable but high-resolution cameras, handholdable by the surgeon, would be highly beneficial. We developed and tested a novel compact, low-power, handheld gamma camera for radio-guided surgery. This is based on a particular position-sensitive Silicon Photomultiplier (SiPM) technology—the FBK linearly graded SiPM (LG-SiPM). Within the camera, the photodetector is made up of a 3 × 3 array of 10 × 10 mm2 SiPM chips having a total area of more than 30 × 30 mm2. This is coupled with a pixelated scintillator and a parallel-hole collimator. With the LG-SiPM technology, it is possible to significantly reduce the number of readout channels to just eight, simplifying the complexity and lowering the power consumption of the readout electronics while still preserving a good position resolution. The novel gamma camera is light (weight), and it is made to be a fully stand-alone system, therefore featuring wireless communication, battery power, and wireless recharge capabilities. We designed, simulated (electrically), and tested (functionally) the first prototypes of the novel gamma camera. We characterized the intrinsic position resolution (tested with pulsed light) as being ~200 µm, and the sensitivity and resolution when detecting gamma rays from Tc-99m source measured between 134 and 481 cps/MBq and as good as 1.4–1.9 mm, respectively. Full article
Show Figures

Figure 1

43 pages, 7519 KB  
Review
Bone-on-a-Chip Systems for Hematological Cancers
by Gül Kozalak and Ali Koşar
Biosensors 2025, 15(3), 176; https://doi.org/10.3390/bios15030176 - 9 Mar 2025
Viewed by 2292
Abstract
Hematological malignancies originating from blood, bone marrow, and lymph nodes include leukemia, lymphoma, and myeloma, which necessitate the use of a distinct chemotherapeutic approach. Drug resistance frequently complicates their treatment, highlighting the need for predictive tools to guide therapeutic decisions. Conventional 2D/3D cell [...] Read more.
Hematological malignancies originating from blood, bone marrow, and lymph nodes include leukemia, lymphoma, and myeloma, which necessitate the use of a distinct chemotherapeutic approach. Drug resistance frequently complicates their treatment, highlighting the need for predictive tools to guide therapeutic decisions. Conventional 2D/3D cell cultures do not fully encompass in vivo criteria, and translating disease models from mice to humans proves challenging. Organ-on-a-chip technology presents an avenue to surmount genetic disparities between species, offering precise design, concurrent manipulation of various cell types, and extrapolation of data to human physiology. The development of bone-on-a-chip (BoC) systems is crucial for accurately representing the in vivo bone microenvironment, predicting drug responses for hematological cancers, mitigating drug resistance, and facilitating personalized therapeutic interventions. BoC systems for modeling hematological cancers and drug research can encompass intricate designs and integrated platforms for analyzing drug response data to simulate disease scenarios. This review provides a comprehensive examination of BoC systems applicable to modeling hematological cancers and visualizing drug responses within the intricate context of bone. It thoroughly discusses the materials pertinent to BoC systems, suitable in vitro techniques, the predictive capabilities of BoC systems in clinical settings, and their potential for commercialization. Full article
Show Figures

Figure 1

14 pages, 11663 KB  
Article
Integrated SERS-Microfluidic Sensor Based on Nano-Micro Hierarchical Cactus-like Array Substrates for the Early Diagnosis of Prostate Cancer
by Huakun Jia, Weiyang Meng, Rongke Gao, Yeru Wang, Changbiao Zhan, Yiyue Yu, Haojie Cong and Liandong Yu
Biosensors 2024, 14(12), 579; https://doi.org/10.3390/bios14120579 - 28 Nov 2024
Cited by 2 | Viewed by 2390
Abstract
The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy [...] Read more.
The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis. By combining EpCAM aptamer-labeled SERS nanoprobes and a CD63 aptamer-labeled CAS, a ‘sandwich’ structure was formed and applied to the microfluidic chips, further enhancing the Raman scattering signal of Raman reporter molecules. The results indicate that the integrated microfluidic sensor exhibits a good linear response within the detection concentration range of 105 particles μL−1 to 1 particle μL−1. The detection limit of exosomes in cancer cells can reach 1 particle μL−1. Therefore, we believed that the CAS integrated microfluidic sensor offers a superior solution for the early diagnosis and therapeutic intervention of prostate cancer. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

24 pages, 2540 KB  
Review
Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation
by Qi Wang, Yuanzhan Yang, Zixuan Chen, Bo Li, Yumeng Niu and Xiaoqiong Li
Pharmaceutics 2024, 16(5), 666; https://doi.org/10.3390/pharmaceutics16050666 - 16 May 2024
Cited by 9 | Viewed by 4375
Abstract
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body’s adaptive immune responses [...] Read more.
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body’s adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases’ pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell–cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

13 pages, 6567 KB  
Communication
Plug-and-Play Lymph Node-on-Chip: Secondary Tumor Modeling by the Combination of Cell Spheroid, Collagen Sponge and T-Cells
by Sergei V. German, Anatolii A. Abalymov, Maxim A. Kurochkin, Yuliya Kan, Dmitry A. Gorin and Marina V. Novoselova
Int. J. Mol. Sci. 2023, 24(4), 3183; https://doi.org/10.3390/ijms24043183 - 6 Feb 2023
Cited by 11 | Viewed by 3972
Abstract
Towards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model [...] Read more.
Towards the improvement of the efficient study of drugs and contrast agents, the 3D microfluidic platforms are currently being actively developed for testing these substances and particles in vitro. Here, we have elaborated a microfluidic lymph node-on-chip (LNOC) as a tissue engineered model of a secondary tumor in lymph node (LN) formed due to the metastasis process. The developed chip has a collagen sponge with a 3D spheroid of 4T1 cells located inside, simulating secondary tumor in the lymphoid tissue. This collagen sponge has a morphology and porosity comparable to that of a native human LN. To demonstrate the suitability of the obtained chip for pharmacological applications, we used it to evaluate the effect of contrast agent/drug carrier size, on the penetration and accumulation of particles in 3D spheroids modeling secondary tumor. For this, the 0.3, 0.5 and 4 μm bovine serum albumin (BSA)/tannic acid (TA) capsules were mixed with lymphocytes and pumped through the developed chip. The capsule penetration was examined by scanning with fluorescence microscopy followed by quantitative image analysis. The results show that capsules with a size of 0.3 μm passed more easily to the tumor spheroid and penetrated inside. We hope that the device will represent a reliable alternative to in vivo early secondary tumor models and decrease the amount of in vivo experiments in the frame of preclinical study. Full article
(This article belongs to the Special Issue Biopolymers in Tissue Engineering)
Show Figures

Graphical abstract

17 pages, 2150 KB  
Article
Sentinel Lymph Node Gene Expression Signature Predicts Recurrence-Free Survival in Cutaneous Melanoma
by Lilit Karapetyan, William Gooding, Aofei Li, Xi Yang, Andrew Knight, Hassan M. Abushukair, Danielle Vargas De Stefano, Cindy Sander, Arivarasan Karunamurthy, Monica Panelli, Walter J. Storkus, Ahmad A. Tarhini and John M. Kirkwood
Cancers 2022, 14(20), 4973; https://doi.org/10.3390/cancers14204973 - 11 Oct 2022
Cited by 6 | Viewed by 3110
Abstract
We sought to develop a sentinel lymph node gene expression signature score predictive of disease recurrence in patients with cutaneous melanoma. Gene expression profiling was performed on SLN biopsies using U133A 2.0 Affymetrix gene chips. The top 25 genes associated with recurrence-free survival [...] Read more.
We sought to develop a sentinel lymph node gene expression signature score predictive of disease recurrence in patients with cutaneous melanoma. Gene expression profiling was performed on SLN biopsies using U133A 2.0 Affymetrix gene chips. The top 25 genes associated with recurrence-free survival (RFS) were selected and a penalized regression function was used to select 12 genes with a non-zero coefficient. A proportional hazards regression model was used to evaluate the association between clinical covariates, gene signature score, and RFS. Among the 45 patients evaluated, 23 (51%) had a positive SLN. Twenty-one (46.7%) patients developed disease recurrence. For the top 25 differentially expressed genes (DEG), 12 non-zero penalized coefficients were estimated (CLGN, C1QTNF3, ADORA3, ARHGAP8, DCTN1, ASPSCR1, CHRFAM7A, ZNF223, PDE6G, CXCL3, HEXIM1, HLA-DRB). This 12-gene signature score was significantly associated with RFS (p < 0.0001) and produced a bootstrap C index of 0.888. In univariate analysis, Breslow thickness, presence of primary tumor ulceration, SLN positivity were each significantly associated with RFS. After simultaneously adjusting for these prognostic factors in relation to the gene signature, the 12-gene score remained a significant independent predictor for RFS (p < 0.0001). This SLN 12-gene signature risk score is associated with melanoma recurrence regardless of SLN status and may be used as a prognostic factor for RFS. Full article
(This article belongs to the Special Issue Melanoma Metastasis: New and Evolving Concepts)
Show Figures

Figure 1

16 pages, 5203 KB  
Article
TdIF1-LSD1 Axis Regulates Epithelial—Mesenchymal Transition and Metastasis via Histone Demethylation of E-Cadherin Promoter in Lung Cancer
by Qi Liu, Juan Xiong, Derong Xu, Nan Hao, Yujuan Zhang, Yi Sang, Zhigang Wang, Xiufen Zheng, Jeffrey Min, Hong Diao, Jacques Raphael, Saman Maleki Vareki, James Koropatnick and Weiping Min
Int. J. Mol. Sci. 2022, 23(1), 250; https://doi.org/10.3390/ijms23010250 - 27 Dec 2021
Cited by 14 | Viewed by 4320
Abstract
We have previously found that TdT-interacting factor 1 (TdIF1) is a potential oncogene expressed in non-small cell lung cancer (NSCLC) and is associated with poor prognosis. However, its exact mechanism is still unclear. The lysine-specific demethylase 1 (LSD1) is a crucial mediator of [...] Read more.
We have previously found that TdT-interacting factor 1 (TdIF1) is a potential oncogene expressed in non-small cell lung cancer (NSCLC) and is associated with poor prognosis. However, its exact mechanism is still unclear. The lysine-specific demethylase 1 (LSD1) is a crucial mediator of the epithelial–mesenchymal transition (EMT), an important process triggered during cancer metastasis. Here, we confirm that TdIF1 is highly expressed in NSCLC and related to lymph node metastasis through The Cancer Genome Atlas (TCGA) analysis of clinical samples. Silencing TdIF1 can regulate the expression of EMT-related factors and impair the migration and invasion ability of cancer cells in vitro. An analysis of tumor xenografts in nude mice confirmed that silencing TdIF1 inhibits tumor growth. Furthermore, we determined the interaction between TdIF1 and LSD1 using immunoprecipitation. Chromatin immunoprecipitation (ChIP) revealed that TdIF1 was enriched in the E-cadherin promoter region. The knockdown of TdIF1 repressed the enrichment of LSD1 at the E-cadherin promoter region, thereby regulating the level of promoter histone methylation and modulating E-cadherin transcription activity, ultimately leading to changes in EMT factors and cancer cell migration and invasion ability. The LSD1 inhibitor and TdIF1 knockdown combination showed a synergistic effect in inhibiting the growth, migration, and invasion of NSCLC cells. Taken together, this is the first demonstration that TdIF1 regulates E-cadherin transcription by recruiting LSD1 to the promoter region, thereby promoting EMT and tumor metastasis and highlighting the potential of TdIF1 as a therapeutic target for NSCLC. Full article
Show Figures

Figure 1

18 pages, 1265 KB  
Article
Mathematical Modeling of Lymph Node Drainage Function by Neural Network
by Rufina Tretiakova, Alexey Setukha, Rostislav Savinkov, Dmitry Grebennikov and Gennady Bocharov
Mathematics 2021, 9(23), 3093; https://doi.org/10.3390/math9233093 - 30 Nov 2021
Cited by 11 | Viewed by 3763
Abstract
The lymph node (LN) represents a key structural component of the lymphatic system network responsible for the fluid balance in tissues and the immune system functioning. Playing an important role in providing the immune defense of the host organism, LNs can also contribute [...] Read more.
The lymph node (LN) represents a key structural component of the lymphatic system network responsible for the fluid balance in tissues and the immune system functioning. Playing an important role in providing the immune defense of the host organism, LNs can also contribute to the progression of pathological processes, e.g., the spreading of cancer cells. To gain a deeper understanding of the transport function of LNs, experimental approaches are used. Mathematical modeling of the fluid transport through the LN represents a complementary tool for studying the LN functioning under broadly varying physiological conditions. We developed an artificial neural network (NN) model to describe the lymph node drainage function. The NN model predicts the flow characteristics through the LN, including the exchange with the blood vascular systems in relation to the boundary and lymphodynamic conditions, such as the afferent lymph flow, Darcy’s law constants and Starling’s equation parameters. The model is formulated as a feedforward NN with one hidden layer. The NN complements the computational physics-based model of a stationary fluid flow through the LN and the fluid transport across the blood vessel system of the LN. The physical model is specified as a system of boundary integral equations (IEs) equivalent to the original partial differential equations (PDEs; Darcy’s Law and Starling’s equation) formulations. The IE model has been used to generate the training dataset for identifying the NN model architecture and parameters. The computation of the output LN drainage function characteristics (the fluid flow parameters and the exchange with blood) with the trained NN model required about 1000-fold less central processing unit (CPU) time than computationally tracing the flow characteristics of interest with the physics-based IE model. The use of the presented computational models will allow for a more realistic description and prediction of the immune cell circulation, cytokine distribution and drug pharmacokinetics in humans under various health and disease states as well as assisting in the development of artificial LN-on-a-chip technologies. Full article
(This article belongs to the Special Issue Transport Phenomena Equations: Modelling and Applications)
Show Figures

Figure 1

15 pages, 1898 KB  
Article
Multi-Compartment Lymph-Node-on-a-Chip Enables Measurement of Immune Cell Motility in Response to Drugs
by Nicholas Hallfors, Aya Shanti, Jiranuwat Sapudom, Jeremy Teo, Georg Petroianu, SungMun Lee, Lourdes Planelles and Cesare Stefanini
Bioengineering 2021, 8(2), 19; https://doi.org/10.3390/bioengineering8020019 - 31 Jan 2021
Cited by 20 | Viewed by 5665
Abstract
Organs On-a-Chip represent novel platforms for modelling human physiology and disease. The lymph node (LN) is a relevant immune organ in which B and T lymphocytes are spatially organized in a complex architecture, and it is the place where the immune response initiates. [...] Read more.
Organs On-a-Chip represent novel platforms for modelling human physiology and disease. The lymph node (LN) is a relevant immune organ in which B and T lymphocytes are spatially organized in a complex architecture, and it is the place where the immune response initiates. The present study addresses the utility of a recently designed LN-on-a-chip to dissect and understand the effect of drugs delivered to cells in a fluidic multicellular 3D setting that mimics the human LN. To do so, we analyzed the motility and viability of human B and T cells exposed to hydroxychloroquine (HCQ). We show that the innovative LN platform, which operates at a microscale level, allows real-time monitoring of co-cultured B and T cells by imaging, and supports cellular random movement. HCQ delivered to cells through a constant and continuous flow induces a reduction in T cell velocity while promotes persistent rotational motion. We also find that HCQ increases the production of reactive oxygen species in T cells. Taken together, these results highlight the potential of the LN-on-a-chip to be applied in drug screening and development, and in cellular dynamics studies. Full article
(This article belongs to the Special Issue Organs-on-Chips, Volume 2)
Show Figures

Figure 1

17 pages, 1747 KB  
Article
Multi-Compartment 3D-Cultured Organ-on-a-Chip: Towards a Biomimetic Lymph Node for Drug Development
by Aya Shanti, Bisan Samara, Amal Abdullah, Nicholas Hallfors, Dino Accoto, Jiranuwat Sapudom, Aseel Alatoom, Jeremy Teo, Serena Danti and Cesare Stefanini
Pharmaceutics 2020, 12(5), 464; https://doi.org/10.3390/pharmaceutics12050464 - 19 May 2020
Cited by 67 | Viewed by 14232
Abstract
The interaction of immune cells with drugs and/or with other cell types should be mechanistically investigated in order to reduce attrition of new drug development. However, they are currently only limited technologies that address this need. In our work, we developed initial but [...] Read more.
The interaction of immune cells with drugs and/or with other cell types should be mechanistically investigated in order to reduce attrition of new drug development. However, they are currently only limited technologies that address this need. In our work, we developed initial but significant building blocks that enable such immune-drug studies. We developed a novel microfluidic platform replicating the Lymph Node (LN) microenvironment called LN-on-a-chip, starting from design all the way to microfabrication, characterization and validation in terms of architectural features, fluidics, cytocompatibility, and usability. To prove the biomimetics of this microenvironment, we inserted different immune cell types in a microfluidic device, which showed an in-vivo-like spatial distribution. We demonstrated that the developed LN-on-a-chip incorporates key features of the native human LN, namely, (i) similarity in extracellular matrix composition, morphology, porosity, stiffness, and permeability, (ii) compartmentalization of immune cells within distinct structural domains, (iii) replication of the lymphatic fluid flow pattern, (iv) viability of encapsulated cells in collagen over the typical timeframe of immunotoxicity experiments, and (v) interaction among different cell types across chamber boundaries. Further studies with this platform may assess the immune cell function as a step forward to disclose the effects of pharmaceutics to downstream immunology in more physiologically relevant microenvironments. Full article
(This article belongs to the Special Issue Microfluidics as a Tool for Drug Delivery)
Show Figures

Figure 1

32 pages, 3301 KB  
Review
Blood and Lymphatic Vasculatures On-Chip Platforms and Their Applications for Organ-Specific In Vitro Modeling
by Aria R. Henderson, Hyoann Choi and Esak Lee
Micromachines 2020, 11(2), 147; https://doi.org/10.3390/mi11020147 - 29 Jan 2020
Cited by 40 | Viewed by 12365
Abstract
The human circulatory system is divided into two complementary and different systems, the cardiovascular and the lymphatic system. The cardiovascular system is mainly concerned with providing nutrients to the body via blood and transporting wastes away from the tissues to be released from [...] Read more.
The human circulatory system is divided into two complementary and different systems, the cardiovascular and the lymphatic system. The cardiovascular system is mainly concerned with providing nutrients to the body via blood and transporting wastes away from the tissues to be released from the body. The lymphatic system focuses on the transport of fluid, cells, and lipid from interstitial tissue spaces to lymph nodes and, ultimately, to the cardiovascular system, as well as helps coordinate interstitial fluid and lipid homeostasis and immune responses. In addition to having distinct structures from each other, each system also has organ-specific variations throughout the body and both systems play important roles in maintaining homeostasis. Dysfunction of either system leads to devastating and potentially fatal diseases, warranting accurate models of both blood and lymphatic vessels for better studies. As these models also require physiological flow (luminal and interstitial), extracellular matrix conditions, dimensionality, chemotactic biochemical gradient, and stiffness, to better reflect in vivo, three dimensional (3D) microfluidic (on-a-chip) devices are promising platforms to model human physiology and pathology. In this review, we discuss the heterogeneity of both blood and lymphatic vessels, as well as current in vitro models. We, then, explore the organ-specific features of each system with examples in the gut and the brain and the implications of dysfunction of either vasculature in these organs. We close the review with discussions on current in vitro models for specific diseases with an emphasis on on-chip techniques. Full article
Show Figures

Figure 1

Back to TopTop