Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (135)

Search Parameters:
Keywords = lubricant removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 15881 KiB  
Article
Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution
by Xin Zheng, Ke Zheng, Jie Gao, Yan Wang, Pengtao An, Yongqiang Ma, Hongjun Hei, Shuaiwu Qu and Shengwang Yu
Materials 2025, 18(15), 3659; https://doi.org/10.3390/ma18153659 - 4 Aug 2025
Viewed by 17
Abstract
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of [...] Read more.
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of chemomechanical abrasive polishing (CMAP) with a slurry containing high-concentration H2O2 and varying mass percentages of SiO2 powder and diamond particles on surface morphology, surface roughness, material removal rate (MRR), and microstrain of PCD disks. The contributions of mechanical action, chemical action, and bubble cavitation to the CMAP process are analyzed. Scanning electron microscopy (SEM) observations indicate that large grains present in PCD are effectively eliminated after CMAP, leading to a notable reduction in surface roughness. The optimal results are obtained with 60 wt% SiO2 powder and 40 wt% diamond particles, achieving a maximum MRR of 1039.78 μm/(MPa·h) (15.5% improvement compared to the mechanical method) and a minimum surface roughness (Sa) of 3.59 μm. Additionally, the microstrain on the PCD disk shows a slight reduction following the CMAP process. The material removal mechanism is primarily attributed to mechanical action (70.8%), with bubble cavitation and chemical action (27.5%) and action of SiO2 (1.7%) playing secondary roles. The incorporation of SiO2 leads to the formation of a lubricating layer, significantly reducing surface damage and decreasing the surface roughness Sa to 1.39 µm. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 680
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 2192 KiB  
Article
Intermittent Catheters with Integrated Amphiphilic Surfactant Reduce Urethral Microtrauma in an Ex Vivo Model Compared with Polyvinylpyrrolidone-Coated Intermittent Catheters
by Luca Barbieri, Makhara S. Ung, Katherine E. Hill, Ased Ali and Laura A. Smith Callahan
J. Funct. Biomater. 2025, 16(7), 256; https://doi.org/10.3390/jfb16070256 - 10 Jul 2025
Viewed by 721
Abstract
Intermittent catheterization mitigates urinary retention for over 300,000 people in the US every year, but can cause microtrauma in the urothelium, compromising its barrier function and increasing the risk of pathogen entry, which may affect user health. To reduce adverse effects, intermittent catheters [...] Read more.
Intermittent catheterization mitigates urinary retention for over 300,000 people in the US every year, but can cause microtrauma in the urothelium, compromising its barrier function and increasing the risk of pathogen entry, which may affect user health. To reduce adverse effects, intermittent catheters (ICs) with increased lubricity are used. A common strategy to enhance IC lubricity is to apply a polyvinylpyrrolidone (PVP) coating to ICs; however, this coating can become adhesive upon drying, potentially leading to microtrauma. An alternative approach for lubricity is the migration of integrated amphiphilic surfactant (IAS) within the IC to the surface. The present work examines differences in urethral microtrauma caused by the simulated catheterization of ex vivo porcine urethral tissue using PVP-coated and IAS ICs. Scanning electron microscopy and fluorescence microscopy of the tissue showed the removal of the apical cell layer after contact with the PVP-coated ICs, but not the IAS IC. More extracellular matrices and DNA were observed on the PVP-coated ICs than the IAS IC after tissue contact. Contact angle analysis of the polar and dispersive components of the surface energy demonstrated that the PVP-coated ICs promoted mucoadhesion, while the IAS IC limited mucoadhesion. Overall, the results indicate that IAS ICs cause less microtrauma to urethral tissue than traditional PVP-coated ICs. Full article
(This article belongs to the Collection Feature Papers in Biomaterials for Healthcare Applications)
Show Figures

Figure 1

37 pages, 4353 KiB  
Article
Tribo-Electrochemical Characterization of Brush-Scrubbed Post-CMP Cleaning: Results for Tartrate-Supported Removal of Residual Oxides from Copper Films
by Collin M. Reff, Kassapa U. Gamagedara, David R. Santefort and Dipankar Roy
Lubricants 2025, 13(7), 301; https://doi.org/10.3390/lubricants13070301 - 8 Jul 2025
Viewed by 528
Abstract
Wafer cleaning after chemical mechanical planarization (CMP) is a critical processing step for copper metallization in integrated circuits. Post-CMP cleaning (PCMPC) commonly combines surface (electro)chemistry with the tribology of brush scrubbing to remove CMP residues from wafer surfaces. While the complex mechanisms of [...] Read more.
Wafer cleaning after chemical mechanical planarization (CMP) is a critical processing step for copper metallization in integrated circuits. Post-CMP cleaning (PCMPC) commonly combines surface (electro)chemistry with the tribology of brush scrubbing to remove CMP residues from wafer surfaces. While the complex mechanisms of brush-operated PCMPC are supported by this combination, the conventional electroanalytical methods of assessing PCMPC efficiency are typically operated in the absence of surface brushing. Using a model experimental system with tartaric acid (TA) as a cost-effective cleaner of Cu-oxides, we illustrate here how post-CMP Cu samples can be electrochemically examined using brush cleaning to design/assess PCMPC test solutions. A pH-neutral cleaning solution is employed, where TA also serves as a partial dissolution suppressor of Cu, and CMP-treated wafer samples are scrubbed with a commercial PCMPC brush as sample surfaces are simultaneously probed with electrochemical measurements. The results show the active roles of tribology/lubrication and surface chemistry in the removal of CMP residues. The electrochemically determined residue removal efficiencies of PCMPC are found to be ~97% and ~56% in the presence and in the absence of surface brushing, respectively. The implications of these findings are explored in the general context of evaluating PCMPC formulations. Full article
(This article belongs to the Special Issue Advances in Tribochemistry)
Show Figures

Figure 1

22 pages, 3879 KiB  
Article
Dimensional and Surface Quality Evaluation of Inconel 718 Alloy After Grinding with Environmentally Friendly Cooling-Lubrication Technique and Graphene Enriched Cutting Fluid
by Déborah de Oliveira, Raphael Lima de Paiva, Mayara Fernanda Pereira, Rosenda Valdés Arencibia, Rogerio Valentim Gelamo and Rosemar Batista da Silva
Appl. Mech. 2025, 6(3), 50; https://doi.org/10.3390/applmech6030050 - 2 Jul 2025
Viewed by 412
Abstract
Properly refrigerating hard-to-cut alloys during grinding is key to achieve high quality, strict tolerances, and good surface finishing. Nonetheless, literature about the influence of cooling-lubrication conditions (CLCs) on dimensional accuracy of ground components is still scarce. Thus, this work aims to evaluate surface [...] Read more.
Properly refrigerating hard-to-cut alloys during grinding is key to achieve high quality, strict tolerances, and good surface finishing. Nonetheless, literature about the influence of cooling-lubrication conditions (CLCs) on dimensional accuracy of ground components is still scarce. Thus, this work aims to evaluate surface quality, grinding power, and dimensional accuracy of Inconel 718 workpieces after grinding with silicon carbide grinding wheel at different grinding conditions. Four different CLCs were tested: flood, minimum quantity of lubrication (MQL) without graphene, and with multilayer graphene (MG) at two distinct concentrations: 0.05 and 0.10 wt.%. Different radial depths of cut values were also tested. The results showed that the material’s removed height increased with radial depth of cut, leading to coarse tolerance (IT) grades. Machining with the MQL WG resulted in higher dimensional precision with an IT grade varying between IT6 and IT7, followed by MQL MG 0.10% (IT7), MQL MG 0.05% (IT7-IT8), and flood (IT8). The lower tolerances achieved with MG were attributed to the lowering in the friction coefficient of the workpiece material sliding through the abrasive grits with no material removal (micro-plowing mechanism), thereby reducing grinding power and the removed height in comparison to the other CLC tested. Full article
Show Figures

Figure 1

17 pages, 10204 KiB  
Article
Effect of Nanographene Water-Based Lubricant (NGWL) on Removal Behavior of Pure Copper
by Ziheng Wang, Zhenjing Duan, Shuaishuai Wang, Ji Tan, Peng Bian, Jiyu Liu, Jinlong Song and Xin Liu
Lubricants 2025, 13(7), 286; https://doi.org/10.3390/lubricants13070286 - 26 Jun 2025
Viewed by 435
Abstract
Pure copper is an important metal material in the fields of integrated circuits, mold manufacturing, and aerospace. Its excellent ductility and plasticity lead to problems such as burrs and tool wear in cutting, which poses great challenges to the improvement of machining accuracy [...] Read more.
Pure copper is an important metal material in the fields of integrated circuits, mold manufacturing, and aerospace. Its excellent ductility and plasticity lead to problems such as burrs and tool wear in cutting, which poses great challenges to the improvement of machining accuracy and surface quality. To achieve high-quality and efficient processing of pure copper, this paper proposes to use nanographene water-based lubricant (NGWL) to regulate its removal behavior. A single-grain diamond scribing test and a micro-milling test were carried out to systematically study the action mechanism of NGWL on removal behavior of pure copper. The results showed that, compared with dry scribing at normal forces of 100, 400, 700, and 1000 mN, the material removal efficiency induced by NGWL was increased by 54.1%, 80.7%, 44.8%, and 30.3%, respectively. Compared with dry micro-milling at feed speeds of 200, 600, 1000, and 1400 μm/s, for the 75°XT4E tool, the surface roughness Sa with NGWL-assisted micro-milling was reduced by 75.5%, 73.1%, 61.4%, and 44.2%, respectively. Similarly, for the 65°UDT4E tool, compared to dry micro-milling, the Sa with NGWL lubrication was also reduced by 28.9%, 52.2%, 54.4%, and 36.9%, respectively. The Sa of pure copper induced by NGWL could be as low as about 20 nm without scales. Overall, NGWL can regulate removal behavior of pure copper by alleviating plastic deformation and promoting ductile fracture, thereby providing a new approach to achieving high-quality and efficient processing of pure copper. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

21 pages, 6191 KiB  
Article
Single-Step Drilling Using Novel Modified Drill Bits Under Dry, Water, and Kerosene Conditions and Optimization of Process Parameters via MOGA-ANN and RSM
by Sumitava Paul, Barun Haldar, Hillol Joardar, Nripen Mondal, Naser A. Alsaleh and Maaz Akhtar
Lubricants 2025, 13(6), 273; https://doi.org/10.3390/lubricants13060273 - 18 Jun 2025
Viewed by 1097
Abstract
The burr removal and finishing of drilled hole walls typically require multiple post-processing steps. This experimental study introduces a novel single-step drilling approach using modified drill bits for simultaneous burr removal and surface finishing in aluminum 6061-T6. The odified-1 drill, equipped with a [...] Read more.
The burr removal and finishing of drilled hole walls typically require multiple post-processing steps. This experimental study introduces a novel single-step drilling approach using modified drill bits for simultaneous burr removal and surface finishing in aluminum 6061-T6. The odified-1 drill, equipped with a deburring micro-insert, achieved superior results, with a chamfer height of −2.829 mm, drilling temperature of 40.28 ◦C, and surface roughness of 0.082 µm under optimal conditions. Multi-objective optimization using the RSM and MOGA-ANN identified the optimal drilling parameters for the Modified-1 drill at 3000 rpm under water lubrication as compared to dry conditions and kerosene. Experimental validation confirmed the high prediction accuracy, with deviations under 6%. These results establish the Modified-1 twist drill bit with a deburring
 micro-insert as a highly effective tool for burr-free high-quality drilling in a single operation. This innovative drill design presents an efficient, single-step solution for burr elimination, chamfer formation, and surface finishing in drilling operations. Full article
Show Figures

Figure 1

19 pages, 6302 KiB  
Article
Effect of Pulsating Motion Conditions on Relubrication Behavior and Dimensions of Laterally Extruded Internal Gears
by Alireza Soleymanipoor and Tomoyoshi Maeno
J. Manuf. Mater. Process. 2025, 9(6), 190; https://doi.org/10.3390/jmmp9060190 - 10 Jun 2025
Cited by 1 | Viewed by 505
Abstract
An environmentally friendly alternative to phosphate-based lubrication was studied through the lateral cold extrusion forging of internal gears using pulsating motion. A die set with a removable punch enabled a detailed observation of relubrication, forming load, material flow, and gear geometry. Pulsating motion [...] Read more.
An environmentally friendly alternative to phosphate-based lubrication was studied through the lateral cold extrusion forging of internal gears using pulsating motion. A die set with a removable punch enabled a detailed observation of relubrication, forming load, material flow, and gear geometry. Pulsating motion with liquid lubricant significantly reduced the forming load during punch penetration, while no such effect was observed under dry conditions. Even when the number of pulses (n) was set to 1, relubrication occurred, and a comparable load reduction to that of n = 3 was achieved, shortening the forming time. When n = 3, pulsating motion contributed to increased gear height and reduced separated burr formation; however, it also caused slightly incomplete tooth filling, which may be undesirable for precision applications. Varying the pulse start position from 5.50 mm to 13.30 mm influenced forming load and material flow, further affecting gear geometry. During punch extraction, the presence of liquid lubricant reduced the load and suppressed material displacement, while dry conditions led to higher extraction loads and more deformation. Full article
Show Figures

Figure 1

17 pages, 2426 KiB  
Article
Explanatory Model of the Material Removal Mechanisms and Grinding Wheel Wear During Grinding of PCD with Water-Based Cooling Lubricants
by Peter Breuer, Eike Reuter, Sebastian Prinz and Thomas Bergs
Processes 2025, 13(6), 1671; https://doi.org/10.3390/pr13061671 - 26 May 2025
Viewed by 423
Abstract
Polycrystalline diamond (PCD), which is widely used to manufacture cutting tools due to its extreme hardness, in most cases requires grinding for machining. The cooling lubricant selected for PCD grinding largely affects the frictional conditions and the thermo-mechanical load collective between the diamond [...] Read more.
Polycrystalline diamond (PCD), which is widely used to manufacture cutting tools due to its extreme hardness, in most cases requires grinding for machining. The cooling lubricant selected for PCD grinding largely affects the frictional conditions and the thermo-mechanical load collective between the diamond grinding wheel and the PCD. As a consequence of this, the material removal and grinding wheel wear mechanisms during grinding PCD depend on the cooling lubricant used. In this study, experimental and numerical investigations were taken into account, demonstrating that using a water-based cooling lubricant during PCD grinding predominantly leads to a mechanical load on workpiece and grinding wheel rather than thermal loads. These original findings can be used to complement existing explanatory models of the PCD grinding process valid for grinding with oil as a cooling lubricant. The aim of this work is to contribute a novel extension to the existing material removal and grinding wheel wear models to enable them for the grinding process with a water-based cooling lubricant. The knowledge obtained from this work is intended to serve as a basis for future industrial process design. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 3996 KiB  
Article
Exploring the Combination of Microgels and Nanostructured Fluids for the Cleaning of Works of Art
by Jacopo Vialetto, David Chelazzi, Marco Laurati and Giovanna Poggi
Gels 2025, 11(6), 382; https://doi.org/10.3390/gels11060382 - 23 May 2025
Viewed by 338
Abstract
Cultural Heritage is a vital socioeconomic driver that must contend with works of art continuously exposed to degradation processes, which are further exacerbated by climate change. Aged coatings, varnishes, and soil can compromise the appearance of artworks, preventing their preservation and valorization. In [...] Read more.
Cultural Heritage is a vital socioeconomic driver that must contend with works of art continuously exposed to degradation processes, which are further exacerbated by climate change. Aged coatings, varnishes, and soil can compromise the appearance of artworks, preventing their preservation and valorization. In response, soft matter and colloidal systems, such as nanostructured cleaning fluids (NCFs), have proved to be valuable solutions for safely and effectively cleaning works of art. Here, a novel cleaning system is proposed, for the first time employing microgels of poly(N-isopropylacrylamide) (PNIPAM) with surface chains of oligoethylene glycol methyl ether methacrylate (OEGMA) to favor shear deformation by lubrication. These microgels are loaded with NCFs featuring “green” solvents and different kinds of bio-derived or petroleum-based surfactants (non-ionic, zwitterionic). Rheological characterization of the combined systems highlighted a sharp transition from solid to liquid-like state in the 21–24 °C range when the zwitterionic surfactant dodecyldimethylamine oxide was used; the system displays a solid-like behavior at rest but flows easily at intermediate strains. At slightly higher temperature (>24 °C), an inversion of the G′, G″ values was observed, leading to a system that behaves as a liquid. Such control of rheological behavior is significant for feasible and complete removal of soiled polymer coatings from textured ceramic surfaces, which are difficult to clean with conventional gels, without leaving residues. These results position the PNIPAM-OEGMA microgels as promising cleaning materials for the conservation of Cultural Heritage, with possible applications also in fields where gelled systems are of interest (pharmaceutics, cosmetics, detergency, etc.). Full article
(This article belongs to the Special Issue Gel Materials for Heritage Conservation)
Show Figures

Figure 1

19 pages, 6709 KiB  
Article
Influence of Cutting Parameters and MQL on Surface Finish and Work Hardening of Inconel 617
by Rachel Lai, Andres Hurtado Carreon, Jose M. DePaiva and Stephen C. Veldhuis
Appl. Sci. 2025, 15(11), 5869; https://doi.org/10.3390/app15115869 - 23 May 2025
Viewed by 450
Abstract
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. [...] Read more.
Inconel 617 is a nickel-based superalloy that is a primary candidate for use in next-generation nuclear applications such as the Gen IV Molten Salt Reactor (MSR) and Very-High-Temperature Reactor (VHTR) due to its corrosion and oxidation resistance and high strength in elevated temperatures. However, Inconel 617 machinability is poor due to its hardness and tendency to work harden during manufacturing. While the machinability of its sister grade, Inconel 718, has been widely studied and understood due to its applications in aerospace, there is a lack of knowledge regarding the behaviour of Inconel 617 in machining. To address this gap, this paper investigates the influence of cutting parameters in the turning of Inconel 617 and compares the impact of Minimum Quantity Lubrication (MQL) turning against conventional coolant. This investigation was performed through three distinct studies: Study A compared the performance of commercial coatings, Study B investigated the influence of cutting parameters on the surface finish, and Study C compared the performance of MQL to flood coolant. This work demonstrated that AlTiN coatings performed the best and doubled the tool life of a standard tungsten carbide insert compared to its uncoated form. Additionally, the feed rate had the largest impact on the surface roughness, especially at high feeds, with the best surface quality found at the lowest feed rate of 0.075 mm/rev. The utilization of MQL had mixed results compared to a conventional flood coolant in the machining of Inconel 617. Surface finish was improved as high as 47% under MQL conditions compared to the flood coolant; however, work hardening at the surface was also shown to increase by 10–20%. Understanding this, it is possible that MQL can completely remove the need for a conventional coolant in the machining of Inconel 617 components for the manufacturing of next-generation reactors. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

23 pages, 3482 KiB  
Article
Eco-Friendly Biosurfactant: Tackling Oil Pollution in Terrestrial and Aquatic Ecosystems
by Kaio Wêdann Oliveira, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Gleice Paula Araújo, Attilio Converti, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Fermentation 2025, 11(4), 199; https://doi.org/10.3390/fermentation11040199 - 8 Apr 2025
Viewed by 1176
Abstract
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of [...] Read more.
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of affected environments. The use of biosurfactants is an effective option for the cleaning of storage tanks and the remediation of contaminated soils and effluents. The scope of this work was to assess the production and application of a Starmerella bombicola ATCC 22214 biosurfactant to remediate marine and terrestrial environment polluted by oil. The production of the biosurfactant was optimized in terms of carbon/nitrogen sources and culture conditions using flasks. The performance of the biosurfactant was tested in clayey soil, silty soil, and standard sand, as well as smooth surfaces and industrial effluents contaminated with oils (fuel oils B1 for thermal power generation, diesel, and motor oil). The ideal culture medium for the production of the biosurfactant contained 2% glucose and 5% glycerol, with agitation at 200 rpm, fermentation for 180 h and a 5% inoculum, resulting in a yield of 1.5 g/L. The biosurfactant had high emulsification indices (86.6% for motor oil and 51.7% for diesel) and exhibited good stability under different pH values, temperatures and concentrations of NaCl. The critical micelle concentration was 0.4 g/L, with a surface tension of 26.85 mN/m. In remediation tests, the biosurfactant enabled the removal of no less than 99% of motor oil from different types of soil. The results showed that the biosurfactant produced by Starmerella bombicola is a promising agent for the remediation of environments contaminated by oil derivatives, especially in industrial environments and for the treatment of oily effluents. Full article
Show Figures

Figure 1

25 pages, 7148 KiB  
Article
Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Eucalyptus globulus Extract and Their Separation Properties in Lubricant–Water Emulsions
by Yacu Vicente Alca-Ramos, Noemi-Raquel Checca-Huaman, Renzo Rueda-Vellasmin, Edson Caetano Passamani and Juan A. Ramos-Guivar
Nanomaterials 2025, 15(5), 382; https://doi.org/10.3390/nano15050382 - 1 Mar 2025
Cited by 1 | Viewed by 1153
Abstract
The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using Eucalyptus globulus extract in an aqueous medium has been [...] Read more.
The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using Eucalyptus globulus extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm. The optimum concentration was found at 5% w/v, where the biosynthesis reaction time and ammonium hydroxide amount were the lowest of all samples. This extract concentration was tested, including in replicated samples, for a scale-up process, yielded a total mass of 70 g. It was found by Rietveld and electron microscopy analyses that the structural and morphological properties, such as crystalline and particle sizes (9 nm), are equivalent when scaling the synthesis process. 57Fe Mössbauer spectroscopy results indicated that Fe ions are atomically ordered and in a trivalent state in all samples, corroborating with structural results found by X-ray diffraction. Magnetic analysis showed that the scale-up sample exhibited ferrimagnetic-like behavior suitable for magnetic remediation performance (55 emu g−1). The eucalyptus functionalization was demonstrated by thermogravimetric measurements, whereas the colloidal analysis supported the stability of the magnetic suspensions at pH = 7 (zeta potential > −20 mV). The kinetic adsorption performance indicated a fast kinetic adsorption time of 40 min and remarkable removal efficiency of 96% for lubricant removal from water (emulsion systems). The infrared analysis confirmed the presence of the eucalyptus chemical groups even after the removal experiments. These results suggest that the scale-up sample can be recovered for future and sustainable magnetic remediation processes. Full article
(This article belongs to the Special Issue Nanoscale Materials for Detection and Remediation of Water Pollutants)
Show Figures

Figure 1

19 pages, 9952 KiB  
Article
Multiple Regression Analysis and Non-Dominated Sorting Genetic Algorithm II Optimization of Machining Carbon-Fiber-Reinforced Polyethylene Terephthalate Glycol Parts Fabricated via Additive Manufacturing Under Dry and Lubricated Conditions
by Anastasios Tzotzis, Nikolaos Efkolidis, Kai Cheng and Panagiotis Kyratsis
Lubricants 2025, 13(2), 63; https://doi.org/10.3390/lubricants13020063 - 2 Feb 2025
Cited by 1 | Viewed by 1785
Abstract
The present research deals with the processing of the additively manufactured Carbon-Fiber-Reinforced Polymer (CFRP) under dry and lubricated cutting conditions, focusing on the generated surface roughness. The cutting speed, feed, and depth of cut were selected as the continuous variables. A comparison between [...] Read more.
The present research deals with the processing of the additively manufactured Carbon-Fiber-Reinforced Polymer (CFRP) under dry and lubricated cutting conditions, focusing on the generated surface roughness. The cutting speed, feed, and depth of cut were selected as the continuous variables. A comparison between the generated surface roughness of the dry and the lubricated cuts revealed that the presence of coolant contributed towards reducing surface roughness by more than 20% in most cases. Next, a regression analysis was performed with the obtained measurements, yielding a robust prediction model, with the determination coefficient R2 being equal to 94.65%. It was determined that feed and the corresponding interactions contributed more than 45% to the model’s R2, followed by the depth of cut and the machining condition. In addition, the cutting speed was the variable with the least effect on the response. The Non-Dominated Sorting Genetic Algorithm 2 (NSGA-II) was employed to identify the front of optimal solutions that consider both minimizing surface roughness and maximizing Material Removal Rate (MRR). Finally, a set of extra experiments proved the validity of the model by exhibiting relative error values, between the measured and predicted roughness, below 10%. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

17 pages, 13348 KiB  
Article
Structure Modulation and Self-Lubricating Properties of Porous TiN–MoS2 Composite Coating Under Humidity–Fluctuating Conditions
by Tiancheng Ye, Kai Le, Ganggang Wang, Zhenghao Ren, Yuzhen Liu, Liwei Zheng, Hui Tian and Shusheng Xu
Lubricants 2025, 13(2), 61; https://doi.org/10.3390/lubricants13020061 - 1 Feb 2025
Cited by 1 | Viewed by 1331
Abstract
To improve the friction performance and service life of protective coatings in humidity-fluctuating environments, porous hard titanium nitride (TiN)–molybdenum disulfide (MoS2) composite coatings were prepared by using direct current magnetron sputtering (DCMS) with the mode of oblique angle deposition (OAD) and [...] Read more.
To improve the friction performance and service life of protective coatings in humidity-fluctuating environments, porous hard titanium nitride (TiN)–molybdenum disulfide (MoS2) composite coatings were prepared by using direct current magnetron sputtering (DCMS) with the mode of oblique angle deposition (OAD) and chemical vapor deposition (CVD) technologies. The structure and chemical component were characterized by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), grazing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The tribological properties of these TiN–MoS2 composite coatings were investigated. The results indicate that the porous TiN–MoS2 composite coating exhibited outstanding friction performance and long service life under humidity-fluctuating environments. At the initial 20% relative humidity (RH) stage, the MoS2 on the porous TiN–MoS2 composite coating surface worked as an effective lubricant; thus, the coating demonstrated excellent lubrication performance, and the friction coefficient (COF) was about 0.05. As the humidity was alternated to 70% RH, the lubrication effect diminished due to the production of molybdenum oxide (MoO3), and the COF was about 0.2, which was attributed to the degradation of MoS2 on the wear track and the release of fresh MoS2 from the porous TiN matrix. After the environmental conditions shifted from 70% to 20% RH, the MoO3 was removed, and the lubrication effect was restored. In summary, TiN–MoS2 porous composite coating offers a promising approach for lubrication in humidity-fluctuating environments. Full article
(This article belongs to the Special Issue Coatings and Lubrication in Extreme Environments)
Show Figures

Figure 1

Back to TopTop