Intermittent Catheters with Integrated Amphiphilic Surfactant Reduce Urethral Microtrauma in an Ex Vivo Model Compared with Polyvinylpyrrolidone-Coated Intermittent Catheters †
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porcine Tissue
2.3. Catheters
2.4. Simulated Catheterization Adhesion Testing
2.5. Scanning Electron Microscopy (SEM)
2.6. Confocal and Fluorescence Imaging
2.7. Alcian Blue Staining
2.8. Biochemical Quantifications
2.9. Contact Angle Measurements
2.10. Surface Energy Calculations
2.11. Statistical Analysis
3. Results
3.1. Imaging the Urothelial Tissue After IC Contact
3.2. Imaging the IC Samples After Contact with Urethral Tissue
3.3. Biochemical Quantification of Transfer from Urethral Tissue to ICs
3.4. Urethral Tissue and ICs Surface Energy Components
4. Discussion
Study Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECM | Extracellular Matrix |
GAG(s) | Glycosaminoglycan(s) |
HMDS | Hexamethyldisilazane |
IAS | Integrated Amphiphilic Surfactant |
IC(s) | Intermittent Catheter(s) |
PBS | Phosphate-Buffered Saline |
PVP | Polyvinylpyrrolidone |
SEM | Scanning Electron Microscopy |
sGAG | Sulfated Glycosaminoglycan |
UTIs | Urinary tract infections |
WGA | Wheat Germ Agglutin |
References
- Jamison, J.; Maguire, S.; McCann, J. Catheter policies for management of long term voiding problems in adults with neurogenic bladder disorders. Cochrane Database Syst. Rev. 2013, 11, CD004375. [Google Scholar] [CrossRef] [PubMed]
- Prieto, J.A.; Murphy, C.L.; Stewart, F.; Fader, M. Intermittent catheter techniques, strategies and designs for managing long-term bladder conditions. Cochrane Database Syst. Rev. 2021, 10, CD006008. [Google Scholar] [CrossRef] [PubMed]
- Weynants, L.; Hervé, F.; Decalf, V.; Kumps, C.; Pieters, R.; Troyer, B.; Everaert, K. Clean intermittent self-catheterization as a treatment modality for urinary retention: Perceptions of urologists. Int. Neurourol. J. 2017, 21, 189–196. [Google Scholar] [CrossRef]
- Secretariat, M.A. Hydrophilic catheters: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2006, 6, 1–31. [Google Scholar]
- Ontario, H.Q. Intermittent catheters for chronic urinary retention: A health technology assessment. Ont. Health Technol. Assess. Ser. 2019, 19, 1–153. [Google Scholar]
- Pinder, B.; Lloyd, A.J.; Elwick, H.; Denys, P.; Marley, J.; Bonniaud, V. Development and psychometric validation of the intermittent self-catheterization questionnaire. Clin. Ther. 2012, 34, 2302–2313. [Google Scholar] [CrossRef]
- Tunney, M.M.; Gorman, S.P. Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials 2002, 23, 4601–4608. [Google Scholar] [CrossRef]
- Kazmierska, K.; Szwast, M.; Ciach, T. Determination of urethral catheter surface lubricity. J. Mater. Sci. Mater. Med. 2008, 19, 2301–2306. [Google Scholar] [CrossRef]
- Pollard, D.; Allen, D.; Irwin, N.J.; Moore, J.V.; McClelland, N.; McCoy, C.P. Evaluation of an integrated amphiphilic surfactant as an alternative to traditional polyvinylpyrrolidone coatings for hydrophilic intermittent urinary catheters. Biotribology 2022, 32, 2352–5738. [Google Scholar] [CrossRef]
- Lee, J. Intrinsic adhesion properties of poly(vinyl pyrrolidone) to pharmaceutical materials: Humidity effect. Macromolar Biosci. 2005, 5, 1085–1093. [Google Scholar] [CrossRef]
- Fader, M.; Moore, K.N.; Cottenden, A.M.; Pettersson, L.; Brooks, R.; Malone-Lee, J. Coat. Catheter. Intermittent Catheter. Smooth Or Sticky? BJU Int. 2001, 88, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, S.; Fagerholm, R.; Ruutu, M. Patient experience with hydrophilic catheters used in clean intermittent catheterization. J. Pediatr. Urol. 2008, 4, 367–371. [Google Scholar] [CrossRef]
- Rognoni, C.; Tarricone, R. Intermittent catheterization with hydrophilic and non-hydrophilic urinary catheters: Systematic literature review and meta-analyses. BMC Urol. 2017, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, W.; Ruan, H.; Yang, B.; Zhang, S.; Li, L. Impact of hydrophilic catheters on urinary tract infections in people with spinal cord injury: Systematic review and meta-analysis of randomized controlled trials. Arch. Phys. Med. Rehabil. 2013, 94, 782–787. [Google Scholar] [CrossRef]
- Feng, D.; Cheng, L.; Bai, Y.; Yang, Y.; Han, P. Outcomes comparison of hydrophilic and non-hydrophilic catheters for patients with intermittent catheterization: An updated meta-analysis. Asian J. Surg. 2020, 43, 633–635. [Google Scholar] [CrossRef]
- Jafari, N.V.; Rohn, J.L. The urothelium: A multi-faceted barrier against a harsh environment. Mucosal Immunol. 2022, 15, 1127–1142. [Google Scholar] [CrossRef] [PubMed]
- Klingler, C.H. Glycosaminoglycans: How much do we know about their role in the bladder? Urologia 2016, 83 (Suppl. 1), 11–14. [Google Scholar] [CrossRef]
- Birder, L.A.; Ruggieri, M.; Takeda, M.; van Koeveringe, G.; Veltkamp, S.; Korstanje, C.; Parsons, B.; Fry, C.H. How does the urothelium affect bladder function in health and disease? Neurourol. Urodyn. 2012, 31, 293–299. [Google Scholar] [CrossRef]
- Winder, M.; Tobin, G.; Zupancic, D.; Romih, R. Signalling molecules in the urothelium. Biomed. Res. Int. 2014, 2014, 297295. [Google Scholar] [CrossRef]
- Montalbetti, N.; Stocker, S.D.; Apodaca, G.; Bastacky, S.I.; Carattino, M.D. Urinary K(+) promotes irritative voiding symptoms and pain in the face of urothelial barrier dysfunction. Sci. Rep. 2019, 9, 5509. [Google Scholar] [CrossRef]
- Parsons, C.L. A model for the function of glycosaminoglycans in the urinary tract. World J. Urol. 1994, 12, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Pollard, D.; Ali, A.; McCoy, C.P.; Carson, L.; Wylie, M.P. Comparing an integrated amphiphilic surfactant to traditional hydrophilic coatings for the reduction of catheter-associated urethral microtrauma. ACS Omega 2024, 9, 22410–22422. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Gupta, A.B.; Kumar, R.; Yadav, J.; Kumar, B. Mucoadhesive polymers: Means of improving the mucoadhesive properties of drug delivery system. J. Chem. Pharm. Res. 2010, 2, 418–432. [Google Scholar]
- Jabbari, E.; Wisniewski, N.; Peppas, N.A. Evidence of mucoadhesion by chain interpenetration at a poly (acrylic acid)/mucin interface using ATR-FTIR spectroscopy. J. Control. Release 1993, 26, 99–108. [Google Scholar] [CrossRef]
- Lehr, C.M.; Boddé, H.E.; Bouwstra, J.A.; Junginger, H.E. A surface energy analysis of mucoadhesion II. Prediction of mucoadhesive performance by spreading coefficients. Eur. J. Pharm. Sci. 1993, 1, 19–30. [Google Scholar] [CrossRef]
- Rillosi, M.; Buckton, G. Modelling mucoadhesion by use of surface energy terms obtained from the Lewis acid-Lewis base approach. II. Studies on anionic, cationic, and unionisable polymers. Pharm. Res. 1995, 12, 669–675. [Google Scholar] [CrossRef]
- Shojaei, A.H.; Li, X. Mechanisms of buccal mucoadhesion of novel copolymers of acrylic acid and polyethylene glycol monomethylether monomethacrylate. J. Control. Release 1997, 47, 151–161. [Google Scholar] [CrossRef]
- Boddupalli, B.M.; Mohammed, Z.N.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 381–387. [Google Scholar] [CrossRef]
- Kinloch, A. Science of Adhesion: A Review. I. Surface and Interfacial Aspects. J. Mater. Sci. 1980, 15, 2141–2166. [Google Scholar]
- Peppas, N.A.; Buri, P.A. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release 1985, 2, 257–275. [Google Scholar] [CrossRef]
- Lehr, C.M.; Bouwstra, J.A.; Boddé, H.E.; Junginger, H.E. A surface energy analysis of mucoadhesion: Contact angle measurements on polycarbophil and pig intestinal mucosa in physiologically relevant fluids. Pharm. Res. 1992, 9, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Landauro, M.H.; Tentor, F.; Pedersen, T.; Jacobsen, L.; Bagi, P. Improved Performance With the Micro-Hole Zone Intermittent Catheter: A Combined Analysis of 3 Randomized Controlled Studies Comparing the New Catheter Technology With a Conventional Eyelet Catheter. J. Wound Ostomy Cont. Nurs. 2023, 50, 504–511. [Google Scholar] [CrossRef]
- Schroder, B.; Tentor, F.; Miclaus, T.; Staerk, K.; Andersen, T.E.; Spinelli, M.; Rendeli, C.; Del Popolo, G.; Bagi, P.; Nielsen, L.F. New micro-hole zone catheter reduces residual urine and mucosal microtrauma in a lower urinary tract model. Sci. Rep. 2024, 14, 2268. [Google Scholar] [CrossRef]
- Thiruchelvam, N.; Hashim, H.; Forman, C.R.; Jacobsen, L.; Sperup, T.; Andersen, K. New compact micro-hole zone catheter enables women to achieve effective bladder emptying without flow-stops. Br. J. Nurs. 2024, 33, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, E.M.; Davis, N.F.; Cunnane, C.V.; Lorentz, K.L.; Ryan, A.J.; Hess, J.; Weinbaum, J.S.; Walsh, M.T.; O’Brien, F.J.; Vorp, D.A. Mechanical, compositional and morphological characterisation of the human male urethra for the development of a biomimetic tissue engineered urethral scaffold. Biomaterials 2021, 269, 120651. [Google Scholar] [CrossRef]
- Lee, K.; Han, J. Analysis of the urine fow characteristics inside catheters for intermittent catheter selection. Sci. Rep. 2024, 14, 13273. [Google Scholar] [CrossRef]
- Barbieri, L.; Ung, M.S.; Neessen, J.T.; Ali, A.; Pytel, R.Z.; Callahan, L.A.S. Intermittent catheters with integrated amphiphilic surfactant associated with less urethral microtrauma in ex vivo model. In Proceedings of the EAU24—39th Annual EAU Congress EAU24, Paris, France, 6 April 2024. [Google Scholar]
- Callahan, L.A.S.; Ung, M.S.; Barbieri, L.; Neessen, J.T.; Ali, A. Integrated amphiphilic surfactant intermittent catheters reduce urethral microtrauma in ex vivo porcine model. Continence 2024, 12, 101593. [Google Scholar] [CrossRef]
- Cunnane, C.V.; Croghan, S.M.; Walsh, M.T.; Cunnane, E.M.; Davis, N.F.; Flood, H.D.; Mulvihill, J.J.E. Cryopreservation of porcine urethral tissue: Storage at −20 °C preserves the mechanical, failure and geometrical properties. J. Mech. Behav. Biomed. Mater. 2021, 119, 104516. [Google Scholar] [CrossRef]
- Urinary Catheter Types and Sizes and How to Choose. Available online: https://www.compactcath.com/blog/catheter-types-and-sizes/ (accessed on 7 February 2025).
- Leroux, C.; Turmel, N.; Chesnel, C.; Grasland, M.; Le Breton, F.; Amarenco, G.; Hentzen, C. Determinants and impact of the time to perform clean intermittent self-catheterization on patient adherence and quality of life: A prospective observational study. Neurourol. Urodyn. 2021, 40, 1027–1034. [Google Scholar] [CrossRef]
- Lukacz, E.S.; Sampselle, C.; Gray, M.; Macdiarmid, S.; Rosenberg, M.; Ellsworth, P.; Palmer, M.H. A healthy bladder: A consensus statement. Int. J. Clin. Pract. 2011, 65, 1026–1036. [Google Scholar] [CrossRef]
- Smith, L.A.; Liu, X.; Hu, J.; Ma, P.X. The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 2010, 31, 5526–5535. [Google Scholar] [CrossRef] [PubMed]
- Callahan, L.A.; Ganios, A.M.; Childers, E.P.; Weiner, S.D.; Becker, M.L. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young’s modulus gradient. Acta Biomater. 2013, 9, 6095–6104. [Google Scholar] [CrossRef]
- Andrade, J.D.; Ma, S.M.; King, R.N.; Gregonis, D.E. Contact angles at the solid–water interface. J. Colloid. Interface Sci. 1979, 72, 488–494. [Google Scholar] [CrossRef]
- Roudman, A.R.; DiGiano, F.A. Surface energy of experimental and commercial nanofiltration membranes. J. Membr. Sci. 2000, 175, 61–73. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Fowkes, F.M. Attractive forces at interfaces. Ind. Eng. Chem. Res. 1964, 56, 40–52. [Google Scholar] [CrossRef]
- Arnold, L.L.; Cano, M.; St John, M.; Eldan, M.; van Gemert, M.; Cohen, S.M. Effects of dietary dimethylarsinic acid on the urine and urothelium of rats. Carcinogenesis 1999, 20, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.; Hicks, R.M. Surface ultrastructure of the epithelia lining the normal human lower urinary tract. Br. J. Exp. Pathol. 1981, 62, 232–251. [Google Scholar]
- Kerec Kos, M.; Veranic, P.; Erman, A. Poly-L-lysine as an effective and safe desquamation inducer of urinary bladder epithelium. Polymers 2019, 11, 1506. [Google Scholar] [CrossRef]
- Karakaidos, P.; Rampias, T. Monitoring of active notch signaling in mouse bladder urothelium. Methods Mol. Biol. 2021, 2346, 121–134. [Google Scholar] [CrossRef]
- Lazzeri, M.; Hurle, R.; Casale, P.; Buffi, N.; Lughezzani, G.; Fiorini, G.; Peschechera, R.; Pasini, L.; Zandegiacomo, S.; Benetti, A.; et al. Managing chronic bladder diseases with the administration of exogenous glycosaminoglycans: An update on the evidence. Ther. Adv. Urol. 2016, 8, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Gao, Y.; Duan, L. Recent advances in hydrogel coatings for urinary catheters. J. Appl. Polym. Sci. 2023, 140, e53701. [Google Scholar] [CrossRef]
- Liao, X.; Liu, Y.; Liang, S.; Li, K. Effects of hydrophilic coated catheters on urethral trauma, microtrauma and adverse events with intermittent catheterization in patients with bladder dysfunction: A systematic review and meta-analysis. Int. Urol. Nephrol. 2022, 54, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Sarica, S.; Akkoc, Y.; Karapolat, H.; Aktug, H. Comparison of the use of conventional, hydrophilic and gel-lubricated catheters with regard to urethral micro trauma, urinary system infection, and patient satisfaction in patients with spinal cord injury: A randomized controlled study. Eur. J. Phys. Rehabil. Med. 2010, 46, 473–479. [Google Scholar]
- Moore, J.V.; Burns, J.; McClelland, N.; Quinn, J.; McCoy, C.P. Understanding the properties of intermittent catheters to inform future development. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 2024, 238, 713–727. [Google Scholar] [CrossRef]
- Barken, K.B.; Vaabengaard, R. A scoping review on the impact of hydrophilic versus non-hydrophilic intermittent catheters on UTI, QoL, satisfaction, preference, and other outcomes in neurogenic and non-neurogenic patients suffering from urinary retention. BMC Urol. 2022, 22, 153. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; Garvin, C.P.; Gorman, S.P. Design of a simulated urethra model for the quantitative assessment of urinary catheter lubricity. J. Mater. Sci. Mater. Med. 2001, 12, 15–21. [Google Scholar] [CrossRef]
- Velaer, K.N.; Welk, B.; Ginsberg, D.; Myers, J.; Shem, K.; Elliott, C. Time burden of bladder management in individuals with spinal cord injury. Top. Spinal Cord. Inj. Rehabil. 2021, 27, 83–91. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Nielsen, N.F.; Ramirez, A.L.; Sørensen, J.; Walter, M.; Krassioukov, A.V. Time needed to perform intermittent catheterization in adults with spinal cord injury: A pilot randomized controlled cross-over trial. Cont. Rep. 2022, 2, 100010. [Google Scholar] [CrossRef]
- Jhang, J.F.; Kuo, H.C. Electron microscopic study of the urothelium in patients with interstitial cystitis and ketamine related cystitis—An association with clinical characteristics. J. Urol. 2017, 197, e50. [Google Scholar] [CrossRef]
- Jhang, J.F.; Ho, H.C.; Jiang, Y.H.; Lee, C.L.; Hsu, Y.H.; Kuo, H.C. Electron microscopic characteristics of interstitial cystitis/bladder pain syndrome and their association with clinical condition. PLoS ONE 2018, 13, e0198816. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.; Bengtsson, O.; Israelsson, A.; Jonsson, A.C.; Lindh, A.S.; Utas, J. The importance of osmolality for intermittent catheterization of the urethra. Spinal Cord. 2000, 38, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Lecamwasam, J.P.; Harrison, G.; Vanderwee, M.A.; Miller, T.E. Host defence mechanisms in the bladder. II. Disruption of the layer of mucus. Br. J. Exp. Pathol. 1988, 69, 759–770. [Google Scholar] [PubMed]
- Woodbury, M.G.; Hayes, K.C.; Askes, H.K. Intermittent catheterization practices following spinal cord injury: A national survey. Can. J. Urol. 2008, 15, 4065–4071. [Google Scholar]
- Leite, F.L.; Bueno, C.C.; Róz, A.L.D.; Ziemath, E.C.; Oliveira, O.N. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856. [Google Scholar] [CrossRef]
- Adair, J.H.; Suvaci, E.; Sindel, J. Surface and colloid chemistry. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
(dyn/cm) | (dyn/cm) | |||
---|---|---|---|---|
Urethral Tissue | 38.40° (±0.88) | 43.49° (±6.63) | 20.39 (±4.45) | 37.73 (±3.52) |
IAS | 34.82° (±0.60) | 135.63° (±11.72) | 158.09 (±20.85) | 1.29 (±1.29) |
PVP-coated, Brand A | 29.22° (±1.32) | 38.33° (±3.75) | 23.66 (±2.96) | 40.40 (±1.82) |
PVP-coated, Brand B | 32.08° (±0.15) | 36.50° (±3.04) | 20.76 (±1.69) | 41.30 (±1.77) |
PVP-coated, Brand C | 27.81° (±4.26) | 31.38° (±2.12) | 20.79 (±1.91) | 43.62 (±0.90) |
PVP-coated, Brand D | 32.63° (±2.97) | 41.41° (±3.71) | 23.18 (±3.96) | 38.86 (±1.90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, L.; Ung, M.S.; Hill, K.E.; Ali, A.; Smith Callahan, L.A. Intermittent Catheters with Integrated Amphiphilic Surfactant Reduce Urethral Microtrauma in an Ex Vivo Model Compared with Polyvinylpyrrolidone-Coated Intermittent Catheters. J. Funct. Biomater. 2025, 16, 256. https://doi.org/10.3390/jfb16070256
Barbieri L, Ung MS, Hill KE, Ali A, Smith Callahan LA. Intermittent Catheters with Integrated Amphiphilic Surfactant Reduce Urethral Microtrauma in an Ex Vivo Model Compared with Polyvinylpyrrolidone-Coated Intermittent Catheters. Journal of Functional Biomaterials. 2025; 16(7):256. https://doi.org/10.3390/jfb16070256
Chicago/Turabian StyleBarbieri, Luca, Makhara S. Ung, Katherine E. Hill, Ased Ali, and Laura A. Smith Callahan. 2025. "Intermittent Catheters with Integrated Amphiphilic Surfactant Reduce Urethral Microtrauma in an Ex Vivo Model Compared with Polyvinylpyrrolidone-Coated Intermittent Catheters" Journal of Functional Biomaterials 16, no. 7: 256. https://doi.org/10.3390/jfb16070256
APA StyleBarbieri, L., Ung, M. S., Hill, K. E., Ali, A., & Smith Callahan, L. A. (2025). Intermittent Catheters with Integrated Amphiphilic Surfactant Reduce Urethral Microtrauma in an Ex Vivo Model Compared with Polyvinylpyrrolidone-Coated Intermittent Catheters. Journal of Functional Biomaterials, 16(7), 256. https://doi.org/10.3390/jfb16070256