Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (131)

Search Parameters:
Keywords = lubricant medium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 29737 KiB  
Article
A Comparative Investigation of CFD Approaches for Oil–Air Two-Phase Flow in High-Speed Lubricated Rolling Bearings
by Ruifeng Zhao, Pengfei Zhou, Jianfeng Zhong, Duan Yang and Jie Ling
Machines 2025, 13(8), 678; https://doi.org/10.3390/machines13080678 - 1 Aug 2025
Viewed by 269
Abstract
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is [...] Read more.
Analyzing the two-phase flow behavior in bearing lubrication is crucial for understanding friction and wear mechanisms, optimizing lubrication design, and improving bearing operational efficiency and reliability. However, the complexity of oil–air two-phase flow in high-speed bearings poses significant research challenges. Currently, there is a lack of comparative studies employing different simulation strategies to address this issue, leaving a gap in evidence-based guidance for selecting appropriate simulation approaches in practical applications. This study begins with a comparative analysis between experimental and simulation results to validate the reliability of the adopted simulation approach. Subsequently, a comparative evaluation of different simulation methods is conducted to provide a scientific basis for relevant decision-making. Evaluated from three dimensions—adaptability to rotational speed conditions, research focuses (oil distribution and power loss), and computational economy—the findings reveal that FVM excels at medium-to-high speeds, accurately predicting continuous oil film distribution and power loss, while MPS, leveraging its meshless Lagrangian characteristics, demonstrates superior capability in describing physical phenomena under extreme conditions, albeit with higher computational costs. Economically, FVM, supported by mature software ecosystems and parallel computing optimization, is more suitable for industrial design applications, whereas MPS, being more reliant on high-performance hardware, is better suited for academic research and customized scenarios. The study further proposes that future research could adopt an FVM-MPS coupled approach to balance efficiency and precision, offering a new paradigm for multi-scale lubrication analysis in bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

13 pages, 1623 KiB  
Article
Effect of Absolute Ethanol and Thermal Treatment on Shrinkage and Mechanical Properties of TPU Electrospun Nanofiber Membranes
by Lei Wang, Ming Kong, Shengchun Wang, Chunsheng Li and Min Yang
Coatings 2025, 15(8), 897; https://doi.org/10.3390/coatings15080897 - 1 Aug 2025
Viewed by 284
Abstract
Thermoplastic polyurethane (TPU) electrospun fiber membranes possess unique micro-nano structures and excellent properties. Adjusting their wettability enables the directional transportation of lubricants. A conventional method for adjusting porosity and wettability involves inducing membrane shrinkage using absolute ethanol and heat treatment. However, the shrinkage [...] Read more.
Thermoplastic polyurethane (TPU) electrospun fiber membranes possess unique micro-nano structures and excellent properties. Adjusting their wettability enables the directional transportation of lubricants. A conventional method for adjusting porosity and wettability involves inducing membrane shrinkage using absolute ethanol and heat treatment. However, the shrinkage response and the corresponding changes in the tensile properties of TPU fiber membranes after induction remain unclear, limiting their applications. Thus, in this study, after being peeled off, the samples were first left to stand at room temperature (RT) for 24 h to release residual stress and stabilize their dimensions, and then treated with dehydrated ethanol at RT and high temperature, respectively, with their shrinkage behaviors observed and recorded. The results showed that TPU nanofiber membranes shrank significantly in absolute ethanol, and the degree of shrinkage was temperature-dependent. The shrinkage rates were 2% and 4% in dehydrated ethanol at room temperature and high temperature, respectively, and heating increased the shrinkage effect by 200%. These findings prove that absolute ethanol causes TPU fibers to shrink, and high temperatures further promote shrinkage. However, although the strong synergistic effect of heat and solvent accelerates shrinkage, it may induce internal structural defects, resulting in the deterioration of mechanical properties. The contraction response induced by anhydrous ethanol stimulation can be used to directionally adjust the local density and modulus of TPU nanofiber membranes, thereby changing the wettability. This approach provides new opportunities for applications in areas such as medium transportation and interface friction reduction in lubrication systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

12 pages, 3098 KiB  
Article
Novel Numerical Analysis of a Self-Circulating Bearing
by Elizabeth J. Clifford and Christopher C. Daniels
Appl. Sci. 2025, 15(10), 5337; https://doi.org/10.3390/app15105337 - 10 May 2025
Viewed by 308
Abstract
A novel closed-form solution representing the fluid motion within a porous bushing was created to develop a recently patented bearing configuration with a self-contained lubrication system. The configuration has a lubricant reservoir surrounding the porous bushing that continuously supplies lubricant without an external [...] Read more.
A novel closed-form solution representing the fluid motion within a porous bushing was created to develop a recently patented bearing configuration with a self-contained lubrication system. The configuration has a lubricant reservoir surrounding the porous bushing that continuously supplies lubricant without an external pump. In regions of low pressure, the lubricant moves into the bearing clearance; where clearance pressure is high, the lubricant is transferred to the porous bushing and refills the supply reservoir. The porous bushing’s pressure distribution was used within Darcy’s law to determine the injection velocity into the bearing clearance. Selected cases were compared with previously published work for approach validation. The validity of assuming a linear distribution within the porous media was investigated, as was the variance of the attitude angle for eccentricity and the effects of porous medium thickness and bearing parameter on bearing load capacity. It was concluded that increasing the feeding parameter increased the bearing load capacity. The porous bearing’s pressure distribution, commonly assumed to be linear, was discovered to be increasingly nonlinear near the bearing’s axial ends. The effect of nonlinearity on the bearing load capacity depended on the thickness of the porous bushing and the eccentricity of the bearing. Full article
(This article belongs to the Special Issue Research on Friction and Lubrication: Surfaces, Bearings and Gears)
Show Figures

Figure 1

15 pages, 6083 KiB  
Article
Investigation of 1,3-Diketone and Nano-Copper Additives for Enhancing Boundary Lubrication Performance
by Jingsi Wang, Dezhi Teng, Jiawei Fan, Xi Zhang, Qihang Cui, Ke Li and Pay Jun Liew
J. Mar. Sci. Eng. 2025, 13(5), 912; https://doi.org/10.3390/jmse13050912 - 4 May 2025
Viewed by 611
Abstract
In this work, 1,3-diketone synthesized via the Claisen condensation method and nano-copper particles modified by the Brust–Schiffrin method were added into a commercial marine medium-speed diesel engine cylinder piston oil to evaluate their effects on boundary lubrication performance. Friction and wear tests conducted [...] Read more.
In this work, 1,3-diketone synthesized via the Claisen condensation method and nano-copper particles modified by the Brust–Schiffrin method were added into a commercial marine medium-speed diesel engine cylinder piston oil to evaluate their effects on boundary lubrication performance. Friction and wear tests conducted on CKS-coated piston ring and cast-iron cylinder liner samples demonstrated significant reductions in both friction and wear with the addition of 1,3-diketone and nano-copper particles. Compared to the original oil without additives, the friction force was reduced by up to 16.7%, while the wear of the piston ring and cylinder liner was decreased by up to 21.6% and 15.1% at 150 °C, respectively. A worn surface analysis indicated that the addition of 1,3-diketone and functionalized nano-copper particles influenced the depolymerization and tribo-chemical reactions of the anti-wear additive ZDDP (zinc dialkyldithiophosphate) in the original engine oil. This modification enhanced the oil’s anti-friction and anti-wear properties, offering valuable insights into the development of eco-friendly lubricants for energy-efficient systems. Full article
Show Figures

Figure 1

10 pages, 8534 KiB  
Article
Analysis of the Effect of Grease Containing Magnesium Hydroxysilicate in Wind Power Bearing Field Tests
by Peng Wang, Changxing Yang, Bowen Shi and Huizhe Zhang
Processes 2025, 13(5), 1385; https://doi.org/10.3390/pr13051385 - 1 May 2025
Viewed by 415
Abstract
Ultra-high-power wind turbine generator bearings are susceptible to micro-spalling and electrical erosion in long-cycle operation, which seriously affects the operating efficiency and service life of the unit. For this reason, this paper adopts a kind of composite grease containing nano-hydroxy magnesium silicate powder [...] Read more.
Ultra-high-power wind turbine generator bearings are susceptible to micro-spalling and electrical erosion in long-cycle operation, which seriously affects the operating efficiency and service life of the unit. For this reason, this paper adopts a kind of composite grease containing nano-hydroxy magnesium silicate powder and, through the wind turbine assembly machine test and raceway surface analysis, systematically investigates its impact on bearing temperature rise, bearing vibration, and wind turbine power under actual working conditions to meet the lubrication requirements of wind turbine generator bearings. The results of the study showed that the composite grease significantly reduced the operating temperature of the wind turbine bearings under full operating conditions. It is worth noting that the reduction in generator bearing temperature varied among the three turbines due to uncertain environmental factors. In addition, the grease effectively increased the output power of the turbine under medium wind speed loading conditions, further verifying its potential value and practical effect in the application of wind turbines. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 12941 KiB  
Article
Dynamic Multibody Modeling of Spherical Roller Bearings with Localized Defects for Large-Scale Rotating Machinery
by Luca Giraudo, Luigi Gianpio Di Maggio, Lorenzo Giorio and Cristiana Delprete
Sensors 2025, 25(8), 2419; https://doi.org/10.3390/s25082419 - 11 Apr 2025
Cited by 3 | Viewed by 634
Abstract
Early fault detection in rotating machinery is crucial for optimizing maintenance and minimizing downtime costs, especially in medium-to-large-scale industrial applications. This study presents a multibody model developed in the Simulink® Simscape environment to simulate the dynamic behavior of medium-sized spherical bearings. The [...] Read more.
Early fault detection in rotating machinery is crucial for optimizing maintenance and minimizing downtime costs, especially in medium-to-large-scale industrial applications. This study presents a multibody model developed in the Simulink® Simscape environment to simulate the dynamic behavior of medium-sized spherical bearings. The model includes descriptions of the six degrees of freedoms of each subcomponent, and was validated by comparison with experimental measurements acquired on a test rig capable of applying heavy radial loads. The results show a good fit between experimental and simulated signals in terms of identifying characteristic fault frequencies, which highlights the model’s ability to reproduce vibrations induced by localized defects on the inner and outer races. Amplitude differences can be attributed to simplifications such as neglected housing compliancies and lubrication effects, and do not alter the model’s effectiveness in detecting fault signatures. In conclusion, the developed model represents a promising tool for generating useful datasets for training diagnostic and prognostic algorithms, thereby contributing to the improvement of predictive maintenance strategies in industrial settings. Despite some amplitude discrepancies, the model proves useful for generating fault data and supporting condition monitoring strategies for industrial machinery. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2025)
Show Figures

Figure 1

23 pages, 3482 KiB  
Article
Eco-Friendly Biosurfactant: Tackling Oil Pollution in Terrestrial and Aquatic Ecosystems
by Kaio Wêdann Oliveira, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Gleice Paula Araújo, Attilio Converti, Rita de Cássia F. Soares da Silva and Leonie A. Sarubbo
Fermentation 2025, 11(4), 199; https://doi.org/10.3390/fermentation11040199 - 8 Apr 2025
Cited by 1 | Viewed by 1235
Abstract
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of [...] Read more.
Spills involving fuels and lubricating oils in industrial environments caused by the fueling of machines, inadequate storage and the washing of equipment are significant sources of environmental pollution, impacting soil and water bodies. Such incidents alter the microbiological, chemical and physical properties of affected environments. The use of biosurfactants is an effective option for the cleaning of storage tanks and the remediation of contaminated soils and effluents. The scope of this work was to assess the production and application of a Starmerella bombicola ATCC 22214 biosurfactant to remediate marine and terrestrial environment polluted by oil. The production of the biosurfactant was optimized in terms of carbon/nitrogen sources and culture conditions using flasks. The performance of the biosurfactant was tested in clayey soil, silty soil, and standard sand, as well as smooth surfaces and industrial effluents contaminated with oils (fuel oils B1 for thermal power generation, diesel, and motor oil). The ideal culture medium for the production of the biosurfactant contained 2% glucose and 5% glycerol, with agitation at 200 rpm, fermentation for 180 h and a 5% inoculum, resulting in a yield of 1.5 g/L. The biosurfactant had high emulsification indices (86.6% for motor oil and 51.7% for diesel) and exhibited good stability under different pH values, temperatures and concentrations of NaCl. The critical micelle concentration was 0.4 g/L, with a surface tension of 26.85 mN/m. In remediation tests, the biosurfactant enabled the removal of no less than 99% of motor oil from different types of soil. The results showed that the biosurfactant produced by Starmerella bombicola is a promising agent for the remediation of environments contaminated by oil derivatives, especially in industrial environments and for the treatment of oily effluents. Full article
Show Figures

Figure 1

22 pages, 6875 KiB  
Article
Evaluation of Flange Grease on Revenue Service Tracks Using Laser-Based Systems and Machine Learning
by Aditya Rahalkar, S. Morteza Mirzaei, Yang Chen, Carvel Holton and Mehdi Ahmadian
Infrastructures 2025, 10(4), 80; https://doi.org/10.3390/infrastructures10040080 - 31 Mar 2025
Viewed by 678
Abstract
This study presents a machine learning approach for estimating the presence and extent of flange-face lubrication on a rail. It offers an alternative to the current empirical and subjective methods for lubrication assessment, in which track engineers’ periodic visual inspections are used to [...] Read more.
This study presents a machine learning approach for estimating the presence and extent of flange-face lubrication on a rail. It offers an alternative to the current empirical and subjective methods for lubrication assessment, in which track engineers’ periodic visual inspections are used to evaluate the condition of the rail. This alternative approach uses a laser-based optical sensing system developed by the Railway Technologies Laboratory (RTL) located at Virginia Tech in Blacksburg, VA, combined with a machine learning calibration model. The optical sensing system can capture the fluorescence emitted by the grease to identify its presence, while the machine learning model classifies the extent of grease present into four thickness indices (TIs), from 0 to 3, representing heavy (3), medium (2), light (1) and low/no (0) lubrication. Both laboratory and field tests are conducted, with the results demonstrating the ability of the system to differentiate lubrication levels and measure the presence or absence of grease and TI with an accuracy of 90%. Full article
Show Figures

Figure 1

18 pages, 5609 KiB  
Article
Construction of High-Load-Bearing Capacity Polyamide-Imide Self-Lubricating Coatings with Various Nanoparticles Through Worn Surface of Cobblestone-like Road
by Wenyong Ye, Mengchuan Niu, Lijie Bian, Chunjian Duan, Chuanping Gao, Pingyu Zhang, Yujuan Zhang and Shengmao Zhang
Coatings 2025, 15(3), 338; https://doi.org/10.3390/coatings15030338 - 14 Mar 2025
Cited by 1 | Viewed by 666
Abstract
Polymer composite coatings exhibit excellent mechanical properties, chemical resistance, and self-lubricating characteristics, providing an effective solution to address the failure of transmission components under harsh operating conditions, including high-speed, high-pressure, and oil-deficient environments, which often lead to excessive friction and limited bearing performance. [...] Read more.
Polymer composite coatings exhibit excellent mechanical properties, chemical resistance, and self-lubricating characteristics, providing an effective solution to address the failure of transmission components under harsh operating conditions, including high-speed, high-pressure, and oil-deficient environments, which often lead to excessive friction and limited bearing performance. This study fabricated three polyamide-imide (PAI) composite coatings modified with monodisperse surface-modified nano-silica (SiO2) via direct spraying and compared their physicochemical parameters. The tribological performance of the three coatings was evaluated using ring-block high-speed friction and wear tester under continuous loading conditions. The tests were conducted using diesel engine oil CI4-5W40, supplemented with oil-soluble cerium dioxide (CeO2) nanoparticles as an energy-efficient and restorative additive, as the lubricating medium. The experimental results demonstrated that the PAI composite coating exhibited a load-bearing capacity exceeding 1000 N (66 MPa). The wear mechanism analysis reveals that CeO2 nanoparticles embedded in the coating surface form a cobblestone-like protective layer. This unique microstructure compensates for the surface pits generated by PAI matrix transfer and minimizes direct contact between the coating and steel ring. Additionally, the synergistic interaction between short carbon fiber (SCF) and the tribofilm contributes to the exceptional tribological properties of the coating, including coefficients of friction as low as 0.04 and wear rates below 0.41 × 10−8 mm3/N·m. The experimental findings could provide an experimental and theoretical foundation for the application of coatings under conditions involving finished lubricants. Full article
Show Figures

Figure 1

28 pages, 6588 KiB  
Article
Formulation and Evaluation of Solid Self-Nanoemulsifying Drug Delivery System of Cannabidiol for Enhanced Solubility and Bioavailability
by Fengying Wu, Qing Ma, Guanghui Tian, Kaixian Chen, Rulei Yang and Jingshan Shen
Pharmaceutics 2025, 17(3), 340; https://doi.org/10.3390/pharmaceutics17030340 - 6 Mar 2025
Cited by 2 | Viewed by 2834
Abstract
Background/Objectives: This study aims to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) to enhance the solubility and oral bioavailability of cannabidiol (CBD). Methods: According to the solubility of CBD and pseudo-ternary phase diagrams of the different ingredients, an oil (medium-chain triglyceride, MCT), [...] Read more.
Background/Objectives: This study aims to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) to enhance the solubility and oral bioavailability of cannabidiol (CBD). Methods: According to the solubility of CBD and pseudo-ternary phase diagrams of the different ingredients, an oil (medium-chain triglyceride, MCT), mixed surfactants (Labrasol, Tween 80), and a co-surfactant (Transcutol) were selected for the SNEDDS. CBD-loaded SNEDDS formulations were prepared and characterized. The optimal SNEDDS was converted into solid SNEDDS powders via solid carrier adsorption and spray drying techniques. Various evaluations including flowability, drug release, self-emulsifying capacity, X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), morphology, and pharmacokinetic characteristics were conducted. Subsequently, the solid powders with fillers, disintegrants, and lubricants were added to the capsules for accelerated stability testing. Results: The investigations showed that the two S-SNEDDS formulations improved the CBD’s solubility and in vitro drug release, with good storage stability. The pharmacokinetic data of Sprague Dawley rats indicated that a single oral dose of L-SNEDDS and spray drying SNEDDS led to a quicker absorption and a higher Cmax of CBD compared to the two oil-based controls (CBD-sesame oil (similar to Epidiolex®) and CBD-MCT), which is favorable for the application of CBD products. Conclusions: SNEDDS is a prospective strategy for enhancing the solubility and oral bioavailability of CBD, and solid SNEDDS offers flexibility for developing more CBD-loaded solid formulations. Moreover, SNEDDS provides new concepts and methods for other poorly water-soluble drugs. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

17 pages, 9632 KiB  
Article
Wear and Corrosion Behavior of Diamond-like Carbon Coatings in Artificial Saliva
by Monika Madej, Katarzyna Piotrowska, Martin Vicen and Viera Zatkaliková
Coatings 2025, 15(3), 305; https://doi.org/10.3390/coatings15030305 - 5 Mar 2025
Cited by 1 | Viewed by 1559
Abstract
This study investigates the properties of diamond-like carbon (DLC) coatings deposited onto a Ti6Al4V titanium alloy using plasma-assisted chemical vapor deposition (PACVD). The research encompasses adhesion tests, hardness, surface characterization, as well as corrosion and tribological evaluations. Artificial saliva was employed as both [...] Read more.
This study investigates the properties of diamond-like carbon (DLC) coatings deposited onto a Ti6Al4V titanium alloy using plasma-assisted chemical vapor deposition (PACVD). The research encompasses adhesion tests, hardness, surface characterization, as well as corrosion and tribological evaluations. Artificial saliva was employed as both the lubricating and corrosive medium. Microscopic examination revealed a uniform coating with a thickness of about 3.2 µm. Scratch test results indicated that the deposited DLC coating exhibited superior adhesion, lower frictional resistance, and reduced wear compared to the titanium alloy. The coating deposition increased the hardness of the Ti6Al4V alloy by about 75%. Friction coefficients, measured under dry and lubricated conditions, were approximately 80% lower for the DLC-coated samples. Corrosion studies revealed that both the coated and uncoated surfaces demonstrated typical passive behavior and high corrosion resistance in artificial saliva. For DLC coatings, the corrosion current density and the corrosion rate were reduced by 85%. Microscopic observations of wear tracks following tribological and scratch tests confirmed the inferior wear and scratch resistance of the titanium alloy relative to the DLC coating. Under both dry and lubricated conditions (with artificial saliva), the volumetric wear rate of the titanium alloy was over 90% higher than for the DLC coating. Full article
Show Figures

Graphical abstract

25 pages, 7148 KiB  
Article
Biosynthesis Scale-Up Process for Magnetic Iron-Oxide Nanoparticles Using Eucalyptus globulus Extract and Their Separation Properties in Lubricant–Water Emulsions
by Yacu Vicente Alca-Ramos, Noemi-Raquel Checca-Huaman, Renzo Rueda-Vellasmin, Edson Caetano Passamani and Juan A. Ramos-Guivar
Nanomaterials 2025, 15(5), 382; https://doi.org/10.3390/nano15050382 - 1 Mar 2025
Cited by 1 | Viewed by 1238
Abstract
The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using Eucalyptus globulus extract in an aqueous medium has been [...] Read more.
The use of natural organic extracts in nanoparticle synthesis can reduce environmental impacts and reagent costs. With that purpose in mind, a novel biosynthesis procedure for the formation of magnetic iron-oxide nanoparticles (IONPs) using Eucalyptus globulus extract in an aqueous medium has been systematically carried out. First, the biosynthesis was optimized for various extract concentrations, prepared by decoction and infusion methods, and yielded IONPs with sizes from 4 to 9 nm. The optimum concentration was found at 5% w/v, where the biosynthesis reaction time and ammonium hydroxide amount were the lowest of all samples. This extract concentration was tested, including in replicated samples, for a scale-up process, yielded a total mass of 70 g. It was found by Rietveld and electron microscopy analyses that the structural and morphological properties, such as crystalline and particle sizes (9 nm), are equivalent when scaling the synthesis process. 57Fe Mössbauer spectroscopy results indicated that Fe ions are atomically ordered and in a trivalent state in all samples, corroborating with structural results found by X-ray diffraction. Magnetic analysis showed that the scale-up sample exhibited ferrimagnetic-like behavior suitable for magnetic remediation performance (55 emu g−1). The eucalyptus functionalization was demonstrated by thermogravimetric measurements, whereas the colloidal analysis supported the stability of the magnetic suspensions at pH = 7 (zeta potential > −20 mV). The kinetic adsorption performance indicated a fast kinetic adsorption time of 40 min and remarkable removal efficiency of 96% for lubricant removal from water (emulsion systems). The infrared analysis confirmed the presence of the eucalyptus chemical groups even after the removal experiments. These results suggest that the scale-up sample can be recovered for future and sustainable magnetic remediation processes. Full article
(This article belongs to the Special Issue Nanoscale Materials for Detection and Remediation of Water Pollutants)
Show Figures

Figure 1

25 pages, 40092 KiB  
Article
Innovative Solutions in the Design of Microfinishing Attachments for Surface Finishing with Abrasive Films
by Wojciech Kacalak, Katarzyna Tandecka, Zbigniew Budniak and Thomas G. Mathia
Micromachines 2025, 16(2), 165; https://doi.org/10.3390/mi16020165 - 30 Jan 2025
Viewed by 814
Abstract
The study introduces new technologies of microfinishing, which are primarily aimed at cylindrical surfaces but with machining effectiveness, precision, and surface longevity. In the newly proposed dual-zone microfinishing method, symmetrical abrasive film feeding systems are adapted with a lever mechanism and a pivoting [...] Read more.
The study introduces new technologies of microfinishing, which are primarily aimed at cylindrical surfaces but with machining effectiveness, precision, and surface longevity. In the newly proposed dual-zone microfinishing method, symmetrical abrasive film feeding systems are adapted with a lever mechanism and a pivoting pressing assembly to simultaneously conduct processing in two zones. With such a design, uniform force distribution is ensured, while mechanical deformation is reduced to raise the utility of the abrasive film and lower scraps for better economic performance. Also, the application of microfinishing operations combined with carbon layer deposition using graphite-impregnated abrasive films is introduced as a novel method. This process combines surface refinement and the forming of wear-resistant carbon coatings into one single operation, resulting in increased wear resistance and reduced forces of friction. Further stabilization of the conditions for microfinishing is achieved by immersing the processing zone in a fluid medium due to increased lubrication, improvement in heat dissipation, and the optimization of surface properties. It is particularly suitable for high-precision applications and a maintenance-free environment such as military, vacuum, and low-temperature systems. The experimental results show the effectiveness of the proposed methodologies, underscoring their ability to create remarkably smooth surfaces and very robust carbon textures simultaneously. Full article
Show Figures

Figure 1

23 pages, 3482 KiB  
Article
Comparative Study of Squalane Products as Sustainable Alternative to Polyalphaolefin: Oxidation Degradation Products and Impact on Physicochemical Properties
by Jessica Pichler, Adam Agocs, Lucia Pisarova, Ichiro Minami, Marcella Frauscher and Nicole Dörr
Lubricants 2025, 13(2), 48; https://doi.org/10.3390/lubricants13020048 - 24 Jan 2025
Cited by 1 | Viewed by 2179
Abstract
The growing demand for sustainable lubricant solutions is driving the exploration of bio-based materials that deliver comparable performance to conventional, primarily fossil-based lubricant chemistries. This study focuses on squalane as a sustainable base oil, which can be derived from different renewable sources. A [...] Read more.
The growing demand for sustainable lubricant solutions is driving the exploration of bio-based materials that deliver comparable performance to conventional, primarily fossil-based lubricant chemistries. This study focuses on squalane as a sustainable base oil, which can be derived from different renewable sources. A total of two squalane products were evaluated for thermal-oxidative stability and benchmarked against a polyalphaolefin, PAO 4, of the same total carbon number. Oils artificially altered in a closed reactor were sampled and subjected to conventional lubricant analyses, including infrared spectroscopy, to determine the changes due to autoxidation over time. For in-depth information, direct-infusion high-resolution mass spectrometry and gas chromatography coupled with triple quadrupole mass spectrometry were employed to identify degradation products from thermo-oxidative stress. The results revealed substantial variability in the stability of squalane products, suggesting that differences in raw materials and production processes have a major impact on their performance, including rheological properties. The degradation products of polyalphaolefin and squalane, identified through detailed mass spectrometry, were analyzed to understand their impact on conventional physicochemical properties. While polyalphaolefin predominantly generated carboxylic acids with short to medium chain lengths as degradation products, squalane oxidation produced carboxylic acids with medium to long chain lengths as well as several alcohols and ketones. Despite these differences, squalane demonstrates its potential as a non-fossil hydrocarbon base oil, as squalane products matched and even exceeded PAO 4 stability. Full article
(This article belongs to the Special Issue Progress and Challenges in Lubrication: Green Tribology)
Show Figures

Graphical abstract

17 pages, 5317 KiB  
Article
Tribological Investigation of the Surface Protective Layer-Forming Effect of a Nano-Sized Yttria–Silica Mixture as a Lubricating Oil Additive
by Ádám István Szabó, Attila Csík, Tamás Fodor, Kálmán Vad, Márk Marsicki and Álmos Dávid Tóth
Lubricants 2025, 13(1), 28; https://doi.org/10.3390/lubricants13010028 - 10 Jan 2025
Cited by 1 | Viewed by 2784
Abstract
Nanoparticles exhibit diverse effects when added as additives to oily medium, enhancing tribological properties and surface characteristics. Studies have shown that many oxide ceramic nanoparticles improve friction and wear, while mixtures also demonstrate favorable tribological properties. This study explores the tribological effect of [...] Read more.
Nanoparticles exhibit diverse effects when added as additives to oily medium, enhancing tribological properties and surface characteristics. Studies have shown that many oxide ceramic nanoparticles improve friction and wear, while mixtures also demonstrate favorable tribological properties. This study explores the tribological effect of an yttria–silica (Y2O3, SiO2) nanoparticle mixture in a Group III base oil medium. The results reveal that the yttria–silica mixture significantly reduces friction (−8–17%), mean wear scar diameter (−32%), and wear volume (−94%), while increasing load-bearing capacity (+114%) by creating a durable boundary layer. Observations from scanning electron microscopy revealed the original surface is protected. EDX analyses highlight the boundary layer’s elemental composition, which is high in yttrium, silicon, and oxygen and found in higher areas. XRD analysis could not detect the yttria nanoparticle additive within the boundary layer, suggesting that it fragmented due to sliding stress, resulting in an amorphous structure for the new boundary layer. TEM imaging confirmed that the boundary layer thickness is 40–45 nm. These findings demonstrate significant potential for industrial applications in developing advanced, high-performance lubricants for demanding mechanical systems. Full article
Show Figures

Figure 1

Back to TopTop