Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (167)

Search Parameters:
Keywords = low-volume roads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 19197 KiB  
Article
Empirical Evaluation of TLS-Enhanced MQTT on IoT Devices for V2X Use Cases
by Nikolaos Orestis Gavriilidis, Spyros T. Halkidis and Sophia Petridou
Appl. Sci. 2025, 15(15), 8398; https://doi.org/10.3390/app15158398 - 29 Jul 2025
Viewed by 93
Abstract
The rapid growth of Internet of Things (IoT) deployment has led to an unprecedented volume of interconnected, resource-constrained devices. Securing their communication is essential, especially in vehicular environments, where sensitive data exchange requires robust authentication, integrity, and confidentiality guarantees. In this paper, we [...] Read more.
The rapid growth of Internet of Things (IoT) deployment has led to an unprecedented volume of interconnected, resource-constrained devices. Securing their communication is essential, especially in vehicular environments, where sensitive data exchange requires robust authentication, integrity, and confidentiality guarantees. In this paper, we present an empirical evaluation of TLS (Transport Layer Security)-enhanced MQTT (Message Queuing Telemetry Transport) on low-cost, quad-core Cortex-A72 ARMv8 boards, specifically the Raspberry Pi 4B, commonly used as prototyping platforms for On-Board Units (OBUs) and Road-Side Units (RSUs). Three MQTT entities, namely, the broker, the publisher, and the subscriber, are deployed, utilizing Elliptic Curve Cryptography (ECC) for key exchange and authentication and employing the AES_256_GCM and ChaCha20_Poly1305 ciphers for confidentiality via appropriately selected libraries. We quantify resource consumption in terms of CPU utilization, execution time, energy usage, memory footprint, and goodput across TLS phases, cipher suites, message packaging strategies, and both Ethernet and WiFi interfaces. Our results show that (i) TLS 1.3-enhanced MQTT is feasible on Raspberry Pi 4B devices, though it introduces non-negligible resource overheads; (ii) batching messages into fewer, larger packets reduces transmission cost and latency; and (iii) ChaCha20_Poly1305 outperforms AES_256_GCM, particularly in wireless scenarios, making it the preferred choice for resource- and latency-sensitive V2X applications. These findings provide actionable recommendations for deploying secure MQTT communication on an IoT platform. Full article
(This article belongs to the Special Issue Cryptography in Data Protection and Privacy-Enhancing Technologies)
Show Figures

Figure 1

18 pages, 6310 KiB  
Article
Physico-Mechanical Properties and Decay Susceptibility of Clay Bricks After the Addition of Volcanic Ash from La Palma (Canary Islands, Spain)
by María López Gómez and Giuseppe Cultrone
Sustainability 2025, 17(14), 6545; https://doi.org/10.3390/su17146545 - 17 Jul 2025
Viewed by 227
Abstract
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal [...] Read more.
During a volcanic eruption, a large volume of pyroclastic material can be deposited on the roads and roofs of the urban areas near volcanoes. The use of volcanic ash as an additive for the manufacture of bricks provides a solution to the disposal of part of this natural residue and reduces the depletion of a non-renewable natural resource, clayey soil, which brings some environmental and economic advantages. The pore system, compactness, uniaxial compression strength, thermal conductivity, color and durability of bricks without and with the addition of volcanic ash were evaluated through hydric tests, mercury intrusion porosimetry, ultrasound, uniaxial compression tests, IR thermography, spectrophotometry and salt crystallization tests. The purpose of this research is to determine the feasibility of adding 10, 20 and 30% by weight of volcanic ash from La Palma (Canary Islands, Spain) in two grain sizes to produce bricks fired at 800, 950 and 1100 °C. The novelty of this study is to use two sizes of volcanic ash and fire the samples at 1100 °C, which is close to the liquidus temperature of basaltic magmas and allows a high degree of interaction between the volcanic ash and the brick matrix. The addition of fine volcanic ash was found to decrease the porosity of the bricks, although the use of high percentages of coarse volcanic ash resulted in bricks with almost the same porosity as the control samples. The volcanic ash acted as a filler, reducing the number of small pores in the bricks. The presence of vesicles in the volcanic ash reduced the compressive strength and the compactness of the bricks with additives. This reduction was more evident in bricks manufactured with 30% of coarse volcanic ash and fired at 800 and 950 °C, although they still reached the minimum resistance required for their use in construction. No significant differences in thermal conductivity were noticed between the bricks with and without volcanic ash additives, which is crucial in terms of energy savings and the construction of sustainable buildings. At 1100 °C the volcanic ash changed in color from black to red. As a result, the additive blended in better with the matrix of bricks fired at 1100 °C than in those fired at 800 and 950 °C. The bricks with and without volcanic ash and fired at 1100 °C remained intact after the salt crystallization tests. Less salt crystallized in the bricks with volcanic ash and fired at 800 and 950 °C than in the samples without additives, although their low compressive strength made them susceptible to decay. Full article
(This article belongs to the Special Issue Innovating the Circular Future: Pathways to Sustainable Growth)
Show Figures

Figure 1

10 pages, 3982 KiB  
Case Report
From Amateur to Professional Cycling: A Case Study on the Training Characteristics of a Zwift Academy Winner
by Daniel Gotti, Roberto Codella, Luca Vergallito, Andrea Meloni, Tommaso Arrighi, Antonio La Torre and Luca Filipas
Sports 2025, 13(7), 234; https://doi.org/10.3390/sports13070234 - 16 Jul 2025
Viewed by 606
Abstract
This study aimed to describe the training leading to the Zwift Academy (ZA) Finals of a world-class road cyclist who earned a professional contract after winning the contest. Four years of daily power meter data were analyzed (male, 25 years old, 68 kg, [...] Read more.
This study aimed to describe the training leading to the Zwift Academy (ZA) Finals of a world-class road cyclist who earned a professional contract after winning the contest. Four years of daily power meter data were analyzed (male, 25 years old, 68 kg, VO2max: 85 mL·min−1·kg−1, and 20-min power: 6.37 W·kg−1), focusing on load, volume, intensity, and strategies. Early training alternated between long, moderate-intensity sessions and shorter high-intensity sessions, with easy days in between. Gradually, the structure was progressively modified by increasing the duration of moderate-intensity (MIT) and high-intensity (HIT) and, subsequently, moving them to “high-volume days”, creating a sort of “all-in days” with low-intensity (LIT), MIT, and HIT. Moderate use of indoor training and a few double low-volume, low-intensity sessions were noted. These data provide a deep view of a 4-year preparation period of ZA, providing suggestions for talent identification and training, thereby highlighting the importance of gradual progression in MIT and HIT. Full article
Show Figures

Figure 1

18 pages, 2154 KiB  
Article
Performance Limits of Hydraulic-Binder Stabilization for Dredged Sediments: Comparative Case Studies
by Abdeljalil Zri, Nor-Edine Abriak, Amine el Mahdi Safhi, Shima Pilehvar and Mahdi Kioumarsi
Buildings 2025, 15(14), 2484; https://doi.org/10.3390/buildings15142484 - 15 Jul 2025
Viewed by 355
Abstract
Maintenance dredging produces large volumes of fine sediments that are commonly discarded, despite increasing pressure for beneficial reuse. Lime–cement stabilization offers one pathway, yet field performance is highly variable. This study juxtaposes two French marine dredged sediments—DS-F (low plasticity, organic matter (OM) ≈ [...] Read more.
Maintenance dredging produces large volumes of fine sediments that are commonly discarded, despite increasing pressure for beneficial reuse. Lime–cement stabilization offers one pathway, yet field performance is highly variable. This study juxtaposes two French marine dredged sediments—DS-F (low plasticity, organic matter (OM) ≈ 2 wt.%) and DS-M (high plasticity, OM ≈ 18 wt.%)—treated with practical hydraulic road binder (HRB) dosages. This is the first French study that directly contrasts two different DS types under identical HRB treatment and proposes practical boundary thresholds. Physical indexes (particle size, methylene-blue value, Atterberg limits, OM) were measured; mixtures were compacted (Modified Proctor) and tested for immediate bearing index (IBI). IBI, unconfined compressive strength, indirect tensile strength, and elastic modulus were determined. DS-F reached IBI ≈ 90–125%, UCS ≈ 4.7–5.9 MPa, and ITS ≈ 0.40–0.47 MPa with only 6–8 wt.% HRB, satisfying LCPC-SETRA class S2–S3 requirements for road subgrades. DS-M never exceeded IBI ≈ 8%, despite 3 wt.% lime + 6 wt.% cement. A decision matrix distilled from these cases and recent literature shows that successful stabilization requires MBV < 3 g/100 g, plastic index < 25%, OM < 7 wt.%, and fine particles < 35%. These thresholds permit rapid screening of dredged lots before costly treatment. Highlighting both positive and negative evidence clarifies the realistic performance envelope of soil–cement reuse and supports circular-economy management of DS. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 342
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

23 pages, 25528 KiB  
Article
UGC-Net: Uncertainty-Guided Cost Volume Optimization with Contextual Features for Satellite Stereo Matching
by Wonje Jeong and Soon-Yong Park
Remote Sens. 2025, 17(10), 1772; https://doi.org/10.3390/rs17101772 - 19 May 2025
Viewed by 431
Abstract
Disparity estimation in satellite stereo images is a highly challenging task due to complex terrain, occlusions caused by tall buildings and structures, and texture-less regions such as roads, rivers, and building roofs. Recent deep learning-based satellite stereo disparity estimation methods have adopted cascade [...] Read more.
Disparity estimation in satellite stereo images is a highly challenging task due to complex terrain, occlusions caused by tall buildings and structures, and texture-less regions such as roads, rivers, and building roofs. Recent deep learning-based satellite stereo disparity estimation methods have adopted cascade multi-scale feature extraction techniques to address these challenges. However, the recent learning-based methods still struggle to effectively estimate disparity in the high ambiguity regions. This paper proposes a disparity estimation and refinement method that leverages variance uncertainty in the cost volume to overcome these limitations. The proposed method calculates variance uncertainty from the cost volume and generates uncertainty weights to adjust the cost volume based on this information. These weights are designed to emphasize geometric features in regions with low uncertainty while enhancing contextual features in regions with high uncertainty, such as occluded or texture-less areas. Furthermore, the proposed method introduces a pseudo volume, referred to as the 4D context volume, which extends the reference image’s features during the stereo-matching aggregation step. By integrating the 4D context volume into the aggregation layer of the geometric cost volume, our method effectively addresses challenges in disparity estimation, particularly in occluded and texture-less areas. For the evaluation of the proposed method, we use the Urban Semantic 3D dataset and the WHU-Stereo dataset. The evaluation results show that the proposed method achieves state-of-the-art performance, improving disparity accuracy in challenging regions. Full article
Show Figures

Figure 1

26 pages, 3160 KiB  
Article
Research on Pavement Performance of Steel Slag Asphalt Mastic and Mixtures
by Jianmin Guo, Jincheng Wei, Feiping Xu, Qinsheng Xu, Liang Kang, Wenjuan Wu, Wencheng Shi and Xiangpeng Yan
Coatings 2025, 15(5), 525; https://doi.org/10.3390/coatings15050525 - 28 Apr 2025
Viewed by 512
Abstract
In order to explore the influence of steel slag on the road performance of asphalt mastic and its mixtures, steel slag powder (SSP) and steel slag aggregate (SSA) were used to replace limestone mineral powder filler (MF) and natural limestone aggregate (LA) respectively [...] Read more.
In order to explore the influence of steel slag on the road performance of asphalt mastic and its mixtures, steel slag powder (SSP) and steel slag aggregate (SSA) were used to replace limestone mineral powder filler (MF) and natural limestone aggregate (LA) respectively to prepare asphalt mastic and mixture. A series of standardized tests including penetration, softening point, ductility, viscosity, pull-off strength, dynamic shear rheometer (DSR), and bending beam rheometer (BBR) were carried out to evaluate the performance of asphalt mastics with SSP. Meanwhile, high- and low-temperature performance, moisture stability, volumetric stability, and fatigue resistance were evaluated by wheel tracking, uniaxial penetration strength, Hamburg, three-point bending, freeze–thaw splitting, immersed Marshall stability, water immersion expansion, and two-point bending trapezoidal beam fatigue tests. The results show that compared to the asphalt mastic with MF, enhanced high-temperature deformation resistance and reduced low-temperature cracking resistance of asphalt mastic with SSP were observed, as well as superior aging resistance. The improvements in high-temperature stability, moisture resistance, and fatigue performance were confirmed for asphalt mixtures with SSP/SSA. Additionally, compromised volumetric stability and low-temperature crack resistance were found when SSP/SSA was used in mixtures. Although asphalt mixtures with SSA exhibited 257.79%–424.60% higher expansion rate after 21-day immersion than those with LA, the 3-day immersion expansion rates complied with specification limits (<1.5% per JTG F40-2004). Critical volume expansion control measures should be adopted for full-component applications of steel slag powder/aggregates due to the hydration potential of free lime (f-CaO) and magnesium oxide (MgO) in steel slag under moisture exposure. Full article
Show Figures

Figure 1

13 pages, 1066 KiB  
Review
Framework for Development of Best Practices for Low-Volume Road Asphalt Pavements—A Roadmap to Increase Recycling
by Mohit Chaudhary, Ayman Ali and Yusuf Mehta
Sustainability 2025, 17(8), 3519; https://doi.org/10.3390/su17083519 - 14 Apr 2025
Viewed by 546
Abstract
The overall goal of this study is to synthesize the existing literature on mix design approaches and to develop recommendations for the best practices for the design of asphalt mixtures specific to LVRs. The synthesis of best practices encompasses material characterization, performance evaluation [...] Read more.
The overall goal of this study is to synthesize the existing literature on mix design approaches and to develop recommendations for the best practices for the design of asphalt mixtures specific to LVRs. The synthesis of best practices encompasses material characterization, performance evaluation techniques, and recommendations for construction and maintenance practices. This review suggests the need for further laboratory and field testing to enhance performance measures, explore sustainable materials and construction practices, and develop standardized specifications for the diverse needs of low-volume road networks. The recommended changes (or guidelines) include, but are not limited to, updated recycled asphalt pavement (RAP) percentages as per current law requirements, the addition of performance tests (IDEAL-CT and IDEAL-RT), RAP content, design methodology, volumetrics, and design gyrations. The review suggests the need for further laboratory and field testing, including performance testing, long-term performance assessments in various conditions, and improved methodologies for evaluating testing parameters. These enhancements aim to ensure more reliable performance predictions and the better implementation of LVR technologies. Overall, this study will help agencies and the paving industry to understand the updates made to the current LVR specifications and evaluate the mix design considerations for low-volume roads. Full article
(This article belongs to the Special Issue Sustainable and Resilient Civil Engineering Structures)
Show Figures

Figure 1

23 pages, 9227 KiB  
Article
Achieving NOx Emissions with Zero-Impact on Air Quality from Diesel Light-Duty Commercial Vehicles
by Theodoros Kossioris, Robert Maurer, Stefan Sterlepper, Marco Günther and Stefan Pischinger
Energies 2025, 18(8), 1882; https://doi.org/10.3390/en18081882 - 8 Apr 2025
Viewed by 712
Abstract
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even [...] Read more.
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even zero-impact levels. In a novel, holistic powertrain design approach, this paper presents powertrain solutions to achieve zero-impact NOx emissions with an N1 class III diesel light commercial vehicle. The design is based on a compliance test matrix consisting of six real-world scenarios that are critical for emissions and air quality. As a design baseline, a vehicle concept meeting the emission requirements as set out in the European Commission’s 2022 Euro 7 regulation proposal is used. The baseline vehicle concept can achieve zero-impact NOx emissions in 67% of these scenarios. To achieve zero-impact NOx emissions in all scenarios, further advanced emission solutions are mandatory. In congested urban areas, the use of an exhaust gas aftertreatment system preheating device with at least 20 kW of power for 1 min is required. In high-traffic highway situations, an underfloor SCR unit with a minimum volume of 12 l or the restriction of the maximum vehicle speed at 130 km/h is required. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Graphical abstract

21 pages, 3679 KiB  
Article
Simulation Modeling of Energy Efficiency of Electric Dump Truck Use Depending on the Operating Cycle
by Aleksey F. Pryalukhin, Boris V. Malozyomov, Nikita V. Martyushev, Yuliia V. Daus, Vladimir Y. Konyukhov, Tatiana A. Oparina and Ruslan G. Dubrovin
World Electr. Veh. J. 2025, 16(4), 217; https://doi.org/10.3390/wevj16040217 - 5 Apr 2025
Cited by 4 | Viewed by 753
Abstract
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are [...] Read more.
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are preferable due to their environmental friendliness. Unlike dump trucks with thermal engines, which require fuel to be injected into them, electric trucks can be powered by various options of a power supply: centralized, autonomous, and combined. This paper highlights the advantages and disadvantages of different power supply systems depending on their schematic solutions and the quarry parameters for all the variants of the power supply of the dumper. Each quantitative indicator of each factor was changed under conditions consistent with the others. The steepness of the road elevation in the quarry and its length were the factors under study. The studies conducted show that the energy consumption for dump truck movement for all variants of a power supply practically does not change. Another group of factors consisted of electric energy sources, which were accumulator batteries and double electric layer capacitors. The analysis of energy efficiency and the regenerative braking system reveals low efficiency of regeneration when lifting the load from the quarry. In the process of lifting from the lower horizons of the quarry to the dump and back, kinetic energy is converted into heat, reducing the efficiency of regeneration considering the technological cycle of works. Taking these circumstances into account, removing the regenerative braking systems of open-pit electric dump trucks hauling soil or solid minerals from an open pit upwards seems to be economically feasible. Eliminating the regenerative braking system will simplify the design, reduce the cost of a dump truck, and free up usable volume effectively utilized to increase the capacity of the battery packs, allowing for longer run times without recharging and improving overall system efficiency. The problem of considering the length of the path for energy consumption per given gradient of the motion profile was solved. Full article
Show Figures

Figure 1

17 pages, 4405 KiB  
Article
Performance Evaluation of Asphalt-Pavement Crack-Repair Materials
by Congying Liu, Hongchang Wang, Song Liu, Dagang Yang and Yue Xiong
Materials 2025, 18(7), 1611; https://doi.org/10.3390/ma18071611 - 2 Apr 2025
Cited by 1 | Viewed by 508
Abstract
Based on the requirements for asphalt pavement crack repair materials, five representative materials were selected for testing: type-A crack sealant, type-B crack sealant, 70# hot asphalt, SBS-modified asphalt, and ambient-temperature water-based crack filler. A series of material performance and pavement performance experiments were [...] Read more.
Based on the requirements for asphalt pavement crack repair materials, five representative materials were selected for testing: type-A crack sealant, type-B crack sealant, 70# hot asphalt, SBS-modified asphalt, and ambient-temperature water-based crack filler. A series of material performance and pavement performance experiments were conducted on these materials. Additionally, numerical models were developed based on actual asphalt pavement crack repair structural conditions. Under the ambient temperatures of 0 °C, 20 °C, and 50 °C, considering two types of loads, namely static load and dynamic load, the shear stress, tensile stress, and compressive stress of the crack-repair structure were analyzed in detail. The stress state of the repaired structure was specifically examined under the most unfavorable load conditions. These analyses were validated by comparing with laboratory-measured stress data, providing important references for the application of asphalt pavement repair materials. The conclusion of the research indicates that the B-type grouting adhesive, as a special material for crack repair, has obvious advantages in shear and tensile strength, and its overall performance is the best. It is suitable for expressways, first-class roads, and urban expressways. Asphalt materials for heating construction have obvious economic advantages compared with special materials and are suitable for low-grade asphalt pavement with relatively small pressure and small traffic volume on highways, branch roads, and secondary roads. Normal-temperature construction is suitable for temporary repair under adverse conditions such as cracks and dampness after rain. Full article
Show Figures

Figure 1

14 pages, 3797 KiB  
Article
Investigation of Mechanical Properties and Microstructural Characteristics of Earth-Based Pavements Stabilised with Various Bio-Based Binders
by Nuriye Kabakuş and Yeşim Tarhan
Polymers 2025, 17(7), 864; https://doi.org/10.3390/polym17070864 - 24 Mar 2025
Viewed by 540
Abstract
For centuries, earthen materials have regained popularity because of the high carbon emissions caused by the construction sector. Although earth-based materials possess superior properties, such as recyclability, easy accessibility, affordability, and high thermal conductivity, they are not without drawbacks. They are, for instance, [...] Read more.
For centuries, earthen materials have regained popularity because of the high carbon emissions caused by the construction sector. Although earth-based materials possess superior properties, such as recyclability, easy accessibility, affordability, and high thermal conductivity, they are not without drawbacks. They are, for instance, relatively weak and sensitive to water, and their physical and chemical properties can vary considerably depending on the source from which they are obtained. Stabilisation is often used to overcome these drawbacks. In this study, natural earth-based materials were stabilised with biopolymers of organic origin, such as alginate, Arabic gum, xanthan gum, and locust bean gum, to preserve their natural properties. To produce the samples, the earth material used in the road sub-base layer was mixed with kaolin clay and silica sand, and the mixtures were prepared by substituting biopolymer materials with clay at a ratio of 0.1%. After determining the fresh unit volume weights, spreading diameters (flow table test), penetration depths (fall cone test), and air content of the mixtures, the flexural and compressive strengths of the cured specimens were measured. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were performed to determine the microstructural characteristics. According to the 28-day compressive strength results, the mix with xanthan gum was found to be almost twice as strong as the other mixes. It has been concluded that biopolymer-stabilised earth mixtures can be used as a fill material in buildings where high strength is not required, or as a paving material on low-traffic roads. Full article
Show Figures

Figure 1

19 pages, 7932 KiB  
Article
Theoretical Investigation and Parametric Sensitivity Analysis of Polypropylene–Polyester Fiber-Reinforced Recycled Brick Aggregate Concrete Pavement Humidity Warping Stress During the Service Life
by Fei Li, Shenghao Jin, Peifeng Cheng and Zehui Wang
Materials 2025, 18(5), 1093; https://doi.org/10.3390/ma18051093 - 28 Feb 2025
Viewed by 666
Abstract
Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model [...] Read more.
Pavement humidity warping is a critical factor limiting the application of PPRBAC on low-volume roads. A nonlinear wet-warping stress formula for PPRBAC slabs has been derived based on previous experimental results, and the finite element method was employed to develop a single-board model in order to verify the accuracy of the analytical solution. Subsequently, the finite difference method, in conjunction with the finite element method, was employed to investigate the calculation methodology for wet-warping stress in PPRBAC slabs during service. Finally, the Taguchi–GRA (gray relational analysis) method was selected to analyze the sensitivity of humidity warping factors affecting PPRBAC slabs. The findings indicate that compared to the traditional bending moment equivalent method, the wetness warping stress formula established in this study accounts for the nonlinearity of wetness warping stress and demonstrates higher accuracy. For PPRBAC pavements during the service period, assuming uniform initial humidity distribution along the height within the concrete does not align with practical observations. The calculated humidity warping stress and deformation using this assumption are 1.1 and 1.7 times those obtained from the comprehensive dry–wet calculation method. It is crucial to consider the wet stage’s impact on the dry stage in the calculations. The Taguchi–GRA method objectively determines the weight of factors affecting humidity warping in PPRBAC, with slab size, thickness, and flexural strength having the greatest influence. Full article
Show Figures

Figure 1

18 pages, 11211 KiB  
Article
Mix Design Optimization and Performance Evaluation of Ultra-Thin Wearing Courses Incorporating Ceramic Grains as Aggregate
by Hanjun Li, Ming Cheng, Xiaoguang Xie and Tianxu Zhang
Coatings 2025, 15(2), 249; https://doi.org/10.3390/coatings15020249 - 19 Feb 2025
Viewed by 803
Abstract
The impact of ice and snow in seasonally frozen regions has led to a significant decline in the flatness and skid resistance of highway pavements, creating severe traffic safety hazards. With economic development driving the transition from road construction to maintenance, this study [...] Read more.
The impact of ice and snow in seasonally frozen regions has led to a significant decline in the flatness and skid resistance of highway pavements, creating severe traffic safety hazards. With economic development driving the transition from road construction to maintenance, this study proposes enhancing Ultra-Thin Wearing Course (UTWC) maintenance materials with anti-icing performance and snow-melting properties. The study first employed the Marshall mix design method to develop gradations for two common types of UTWC asphalt mixtures: the dense-graded GT-8 and the open-graded NovaChip® Type-B. Using the volume substitution method, aggregates were replaced with equivalent volumes of ceramic grains. The optimal asphalt–aggregate ratios for the mixtures with varying ceramic grain contents were determined, and the influence of ceramic grains content on the asphalt–aggregate ratio was analyzed. The results indicate that the optimal asphalt–aggregate ratio increases with higher ceramic grains content. Subsequently, the high-temperature performance, low-temperature performance, and water stability of UTWC with varying ceramic grain contents were evaluated. Overall, NovaChip® gradation mixtures demonstrated superior road performance compared to GT-8 gradation mixtures. Moreover, an increase in ceramic grains content enhanced the high-temperature performance of UTWC but moderately reduced its low-temperature performance and water stability. Finally, the effects of different ceramic grain contents and snowmelt agent types on the anti-icing and snowmelt properties of UTWC were examined. The results revealed that higher ceramic grains content improved snowmelt effectiveness. Considering the road performance of the specimens, a ceramic grains content of 40% was recommended. Furthermore, calcium chloride (CaCl2) exhibited superior anti-icing performance compared to other snowmelt agents. Full article
Show Figures

Figure 1

23 pages, 10881 KiB  
Article
Sustainable Transportation Design: Examining the Application Effect of Auxiliary Lanes on Dual-Lane Exit Ramps on Chinese Freeways
by Yutong Liu, Zhipeng Fu, Yiyun Ma and Binghong Pan
Sustainability 2025, 17(4), 1533; https://doi.org/10.3390/su17041533 - 12 Feb 2025
Viewed by 883
Abstract
Numerous design cases of abandoning auxiliary lanes for freeway dual-lane ramps with low traffic volumes exist, adapting to complex engineering conditions and reducing construction costs, but the national specifications have not posed specific setup conditions for auxiliary lanes. Thus, this paper uses traffic [...] Read more.
Numerous design cases of abandoning auxiliary lanes for freeway dual-lane ramps with low traffic volumes exist, adapting to complex engineering conditions and reducing construction costs, but the national specifications have not posed specific setup conditions for auxiliary lanes. Thus, this paper uses traffic flow theory and simulation tools to study the critical traffic conditions applicable to auxiliary lanes on dual-lane exit ramps of freeways. Initially, the vehicle operation data in the UAV (unmanned aerial vehicle) aerial video were extracted using an object detection algorithm. Subsequently, the VISSIM simulation calibration procedure was developed based on traffic flow theory and the orthogonal experimental method. The impact of auxiliary lanes on the capacity of the freeway diverging area was analyzed through the simulation results based on traffic flow theory. Eventually, the critical traffic conditions applicable to auxiliary lanes were proposed. The results show that the maximum traffic volume applicable to non-auxiliary lane designs decreases with increasing diverging ratios. The research findings define the application conditions for auxiliary lanes on dual-lane ramp exits, contributing to the sustainable development of transportation design and operations. The VISSIM simulation calibration procedure based on data collection and traffic flow theory developed in this paper also provides an innovative and sustainable approach to road design issues. Full article
Show Figures

Figure 1

Back to TopTop