Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = low-temperature catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3282 KiB  
Article
First-Principles Study on Periodic Pt2Fe Alloy Surface Models for Highly Efficient CO Poisoning Resistance
by Junmei Wang, Qingkun Tian, Harry E. Ruda, Li Chen, Maoyou Yang and Yujun Song
Nanomaterials 2025, 15(15), 1185; https://doi.org/10.3390/nano15151185 (registering DOI) - 1 Aug 2025
Abstract
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in [...] Read more.
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in Pt-Fe alloys across varying Pt/Fe ratios. Our simulations reveal a strong tendency for Pt atoms to segregate to the surface layer while Fe atoms enrich the sub-surface region. Crucially, the calculations predict the stability of a periodic Pt2Fe alloy surface model, characterized by specific defect structures, at low platinum content and low annealing temperatures. Electronic structure analysis indicates that forming this Pt2Fe surface alloy lowers the d-band center of Pt atoms, weakening CO adsorption and thereby enhancing resistance to CO poisoning. Although defect-induced strains can modulate the d-band center, crystal orbital Hamilton population (COHP) analysis confirms that such strains generally strengthen Pt-CO interactions. Therefore, the theoretical design of Pt2Fe alloy surfaces and controlling defect density are predicted to be effective strategies for enhancing catalyst resistance to CO poisoning. This work highlights the advantages of periodic Pt2Fe surface models for anti-CO poisoning and provides computational guidance for designing efficient Pt-based electrocatalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

17 pages, 3269 KiB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Viewed by 305
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

20 pages, 4894 KiB  
Article
Ag-Cu Synergism-Driven Oxygen Structure Modulation Promotes Low-Temperature NOx and CO Abatement
by Ruoxin Li, Jiuhong Wei, Bin Jia, Jun Liu, Xiaoqing Liu, Ying Wang, Yuqiong Zhao, Guoqiang Li and Guojie Zhang
Catalysts 2025, 15(7), 674; https://doi.org/10.3390/catal15070674 - 11 Jul 2025
Viewed by 352
Abstract
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance [...] Read more.
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance the performance of CuSmTi catalysts through silver modification, yielding a bifunctional system capable of oxygen structure regulation and demonstrating superior activity for the combined NH3-SCR and CO oxidation reactions under low-temperature, oxygen-rich conditions. The modified AgCuSmTi catalyst achieves complete NO conversion at 150 °C, representing a 50 °C reduction compared to the unmodified CuSmTi catalyst (T100% = 200 °C). Moreover, the catalyst exhibits over 90% N2 selectivity across a broad temperature range of 150–300 °C, while achieving full CO oxidation at 175 °C. A series of characterization techniques, including XRD, Raman spectroscopy, N2 adsorption, XPS, and O2-TPD, were employed to elucidate the Ag-Cu interaction. These modifications effectively optimize the surface physical structure, modulate the distribution of acid sites, increase the proportion of Lewis acid sites, and enhance the activity of lattice oxygen species. As a result, they effectively promote the adsorption and activation of reactants, as well as electron transfer between active species, thereby significantly enhancing the low-temperature performance of the catalyst. Furthermore, in situ DRIFTS investigations reveal the reaction mechanisms involved in NH3-SCR and CO oxidation over the Ag-modified CuSmTi catalyst. The NH3-SCR process predominantly follows the L-H mechanism, with partial contribution from the E-R mechanism, whereas CO oxidation proceeds via the MvK mechanism. This work demonstrates that Ag modification is an effective approach for enhancing the low-temperature performance of CuSmTi-based catalysts, offering a promising technical solution for the simultaneous control of NOx and CO emissions in industrial flue gases. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

13 pages, 3815 KiB  
Article
Optimizing Crystalline MoS2 Growth on Technologically Relevant Platinum Substrates Using Ionized Jet Deposition: Interface Interactions and Structural Insights
by Cristian Tomasi Cebotari, Christos Gatsios, Andrea Pedrielli, Lucia Nasi, Francesca Rossi, Andrea Chiappini, Riccardo Ceccato, Roberto Verucchi, Marco V. Nardi and Melanie Timpel
Surfaces 2025, 8(2), 38; https://doi.org/10.3390/surfaces8020038 - 6 Jun 2025
Viewed by 460
Abstract
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This [...] Read more.
Transition metal dichalcogenides, especially molybdenum disulfide (MoS2), exhibit exceptional properties that make them suitable for a wide range of applications. However, the interaction between MoS2 and technologically relevant substrates, such as platinum (Pt) electrodes, can significantly influence its properties. This study investigates the growth and properties of MoS2 thin films on Pt substrates using ionized jet deposition, a versatile, low-cost vacuum deposition technique. We explore the effects of the roughness of Pt substrates and self-heating during deposition on the chemical composition, structure, and strain of MoS2 films. By optimizing the deposition system to achieve crystalline MoS2 at room temperature, we compare as-deposited and annealed films. The results reveal that as-deposited MoS2 films are initially amorphous and conform to the Pt substrate roughness, but crystalline growth is reached when the sample holder is sufficiently heated by the plasma. Further post-annealing at 270 °C enhances crystallinity and reduces sulfur-related defects. We also identify a change in the MoS2–Pt interface properties, with a reduction in Pt–S interactions after annealing. Our findings contribute to the understanding of MoS2 growth on Pt and provide insights for optimizing MoS2-based devices in catalysis and electronics. Full article
Show Figures

Figure 1

17 pages, 4311 KiB  
Article
Hyperthermophilic L-Asparaginase from Thermococcus sibiricus and Its Double Mutant with Increased Activity: Insights into Substrate Specificity and Structure
by Maria V. Dumina, Dmitry D. Zhdanov, Alexander V. Veselovsky, Marina V. Pokrovskaya, Svetlana S. Aleksandrova, Mikhail E. Minyaev, Larisa A. Varfolomeeva, Ilya O. Matyuta, Konstantin M. Boyko and Alexander A. Zhgun
Int. J. Mol. Sci. 2025, 26(12), 5437; https://doi.org/10.3390/ijms26125437 - 6 Jun 2025
Viewed by 460
Abstract
L-asparaginase (L-ASNase) is a key industrial enzyme significant for cancer therapy and the food industry for reducing dietary acrylamide. The hyperthermophilic L-ASNase from Thermococcus sibiricus (TsAI) was previously shown to exhibit high activity and thermostability and is promising for biotechnology. To gain insights [...] Read more.
L-asparaginase (L-ASNase) is a key industrial enzyme significant for cancer therapy and the food industry for reducing dietary acrylamide. The hyperthermophilic L-ASNase from Thermococcus sibiricus (TsAI) was previously shown to exhibit high activity and thermostability and is promising for biotechnology. To gain insights into structure-functional relationships of TsAI, determination of the substrate specificity, kinetic parameters, structural characterization, and molecular docking were performed. TsAI characteristics were compared with the TsAID54G/T56Q mutant, which exhibited increased activity after a double mutation in the substrate-binding region. TsAI and TsAID54G/T56Q were found to display high activity towards D-asparagine—62% and 21% of L-asparaginase activity, respectively—and low L-glutaminase coactivity of ~5%. Restoring the mesophilic-like triad GSQ in the mutant resulted in a two-fold increase in activity towards L-asparagine compared with TsAI. Crystal structures of TsAI forms solved at 1.9 Å resolution revealed that double mesophilic-like mutation increased the flexibility of the loop M51-L57, located in close proximity to the active site. Structural superposition and mutational analysis indicate that mobility of this loop is essential for the activity of thermo-ASNases. Molecular docking, without taking into account the temperature factor, showed that, in contrast to L-asparagine interaction, D-asparagine orientation in the TsAI and TsAID54G/T56Q active sites is similar and not optimal for catalysis. Under real conditions, high temperatures can induce structural changes that reduce L-ASNase discrimination towards D-asparagine. Overall, the obtained structural and biochemical data provide a basis for a more detailed understanding of thermo-ASNase functioning and possibilities to engineer improved variants for future biotechnological application. Full article
(This article belongs to the Special Issue Mechanism of Enzyme Catalysis: When Structure Meets Function)
Show Figures

Figure 1

9 pages, 584 KiB  
Communication
Green Synthesis of Trifluoromethanesulfonyl Fluoride as an Eco-Friendly Alternative to SF6 Gas Insulation and Analysis of Its Acute Inhalation Toxicity
by Shile Wang, Li Dong, Ruichao Peng and Hongding Tang
Molecules 2025, 30(10), 2241; https://doi.org/10.3390/molecules30102241 - 21 May 2025
Viewed by 525
Abstract
This study demonstrates an eco-friendly synthesis of trifluoromethanesulfonyl fluoride (TFSF) as a sustainable SF6 alternative. Optimized halogen exchange reactions using CF3SO2Cl/KF (3:1 ratio) with crown ether catalysis at low temperatures achieved 65% TFSF yield (97.9% purity). Scale-up trials [...] Read more.
This study demonstrates an eco-friendly synthesis of trifluoromethanesulfonyl fluoride (TFSF) as a sustainable SF6 alternative. Optimized halogen exchange reactions using CF3SO2Cl/KF (3:1 ratio) with crown ether catalysis at low temperatures achieved 65% TFSF yield (97.9% purity). Scale-up trials in pressurized reactors showed >50% conversion and >90% selectivity. Acute inhalation tests (OECD standards) on Sprague-Dawley rats revealed transient toxicity at 20,000 ppm (4 h exposure), with survival rates >66% and LC50 exceeding 22,600 ppm—significantly safer than SF6. These findings confirm TFSF’s technical viability and low toxicity, positioning it as a practical insulating medium to curb SF6 emissions. The methodology highlights precision halogen exchange control and systematic safety validation, offering actionable solutions for industrial adoption. Full article
(This article belongs to the Special Issue 5th Anniversary of Applied Chemistry Section)
Show Figures

Figure 1

19 pages, 7720 KiB  
Article
A Novel Fe(III)-Complex with 1,10-Phenanthroline and Succinate Ligands: Structure, Intermolecular Interactions, and Spectroscopic and Thermal Properties for Engineering Applications
by Danilo Gualberto Zavarize, João G. de Oliveira Neto, Kamila Rodrigues Abreu, Alejandro Pedro Ayala, Francisco Ferreira de Sousa and Adenilson Oliveira dos Santos
Processes 2025, 13(5), 1267; https://doi.org/10.3390/pr13051267 - 22 Apr 2025
Viewed by 711
Abstract
A new complex, tetrakis(1,10-phenanthroline)-bis(succinate)-(µ₂-oxo)-bis(iron(III)) nonahydrate, [Fe2(Phen)4(Succinate)2(μ-O)](H2O)9, was synthesized using the slow evaporation method. This study provides a comprehensive characterization of this coordination compound, focusing on its structural, spectroscopic, and thermal properties, which are [...] Read more.
A new complex, tetrakis(1,10-phenanthroline)-bis(succinate)-(µ₂-oxo)-bis(iron(III)) nonahydrate, [Fe2(Phen)4(Succinate)2(μ-O)](H2O)9, was synthesized using the slow evaporation method. This study provides a comprehensive characterization of this coordination compound, focusing on its structural, spectroscopic, and thermal properties, which are relevant for applications in catalysis, material science, and chemical engineering processes. Single-crystal X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy, and thermoanalytical analyses were employed to investigate the material properties. Intermolecular interactions were further explored through Hirshfeld surface analysis. XRD results revealed a monoclinic crystal system with the C2/c space group, lattice parameters: a = 12.7772(10) Å, b = 23.0786(15) Å, c = 18.9982(13) Å, β = 93.047(2)°, V = 5594.27(7) Å3, and four formulas per unit cell (Z = 4). The crystal packing is stabilized by C–H⋯O, C–O⋯H, C–H⋯π, and π⋯π intermolecular interactions, as confirmed by vibrational spectroscopy. The heteroleptic coordination environment, combining weak- and strong-field ligands, results in a low-spin state with an estimated crystal field stabilization energy of −4.73 eV. Electronic properties indicate direct allowed transitions (γ = 2) with a maximum optical band gap of 2.66 eV, suggesting potential applications in optoelectronics and photochemical processes. Thermal analysis demonstrated good stability within the 25–136 °C range, with three main stages of thermal decomposition, highlighting its potential for use in high-temperature processes. These findings contribute to the understanding of Fe(III)-based complexes and their prospects in advanced material design, catalytic systems, and process optimization. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Graphical abstract

34 pages, 7374 KiB  
Review
The Application of 2D Graphitic Carbon Nitride (g-C3N4) and Hexagonal Boron Nitride (h-BN) in Low-Temperature Fuel Cells: Catalyst Supports, ORR Catalysts, and Membrane Fillers
by Ermete Antolini
Molecules 2025, 30(8), 1852; https://doi.org/10.3390/molecules30081852 - 20 Apr 2025
Cited by 1 | Viewed by 835
Abstract
In recent years, two-dimensional (2D) graphitic carbon nitride (g-C3N4) and hexagonal boron nitride (h-BN) have gained remarkable attention due to their resemblance to graphene. These materials have a wide range of applications in energy and other sustainable fields, including [...] Read more.
In recent years, two-dimensional (2D) graphitic carbon nitride (g-C3N4) and hexagonal boron nitride (h-BN) have gained remarkable attention due to their resemblance to graphene. These materials have a wide range of applications in energy and other sustainable fields, including heterogeneous catalysis and photocatalysis. g-C3N4 and h-BN can play different roles in low-temperature fuel cells. They can be used as catalyst supports, catalysts for oxygen reduction, and membrane fillers. In this work, the application of pure and doped g-C3N4 and h-BN, alone or as composite materials, in low-temperature fuel cells is overviewed. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

14 pages, 4212 KiB  
Article
Influence of Gelation Temperature on Structural, Thermal, and Mechanical Properties of Monolithic Silica Gels with Mono- and Bimodal Pore Structure
by Kai Müller, Christian Scherdel, Stephan Vidi, Gudrun Reichenauer, Moritz Boxheimer, Frank Dehn and Dirk Enke
Gels 2025, 11(3), 196; https://doi.org/10.3390/gels11030196 - 12 Mar 2025
Viewed by 814
Abstract
This study explores the impact of pore volume distribution on the structural, thermal, and mechanical properties of spinodal phase-separated silica gels synthesized with poly(ethylene oxide) as a phase-separating agent. By systematically varying gelation temperatures between 20 and 60 °C, we investigate how reaction [...] Read more.
This study explores the impact of pore volume distribution on the structural, thermal, and mechanical properties of spinodal phase-separated silica gels synthesized with poly(ethylene oxide) as a phase-separating agent. By systematically varying gelation temperatures between 20 and 60 °C, we investigate how reaction kinetics influence the resulting pore architecture, thermal conductivity, and elasticity. Nitrogen sorption, mercury intrusion porosimetry, and SEM analysis reveal a transformation from a bimodal pore structure at low temperatures, featuring interconnected macropores, to a predominantly mesoporous network with loss of bimodality. This shift in the diameter of the macropores significantly impacts the thermal insulation properties of the gels as thermal conductivity decreases from 68 to 27 mW (m·K)−1 due to reduced macroporosity, enhanced mesoporosity, and the Knudsen effect. Mechanical testing revealed a substantial decline in Young’s modulus with increasing gelation temperature. These changes are attributed to the interplay of mesoscale structural differences and density variations, driven by increasing gelation temperatures. While higher temperatures lead to reduced strut thickness and the loss of interconnected macropores, the substantial decline in Young’s modulus highlights the critical role of mesoscale structural integrity in maintaining mechanical stability. The findings underscore the importance of an optimized pore volume distribution in tailoring pore structure and performance characteristics, providing a pathway for optimizing silica gels for applications in thermal insulation, filtration, and catalysis. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 6354 KiB  
Article
From Cellulose to Highly Aromatic Hydrochar: Catalytic Carbonization and Catalytic Aromatization Mechanism of Lanthanide (III) Ions
by Shuaijie Han, Mingshu Chi, Xiuling Xu, Li Bai, Junquan Wu and Yizhuo Guo
Catalysts 2025, 15(3), 245; https://doi.org/10.3390/catal15030245 - 5 Mar 2025
Viewed by 843
Abstract
Hydrothermal carbonization (HTC) is an efficient method for converting lignocellulosic biomass into biofuels. However, traditional Brønsted acid-catalyzed HTC processes face challenges such as high costs and limited catalytic efficiency. In this study, the catalytic carbonization mechanism was investigated within the temperature range of [...] Read more.
Hydrothermal carbonization (HTC) is an efficient method for converting lignocellulosic biomass into biofuels. However, traditional Brønsted acid-catalyzed HTC processes face challenges such as high costs and limited catalytic efficiency. In this study, the catalytic carbonization mechanism was investigated within the temperature range of 180–220 °C by analyzing the evolution of functional groups in hydrochar under lanthanide (III)-catalyzed and non-catalyzed conditions. The results indicate that compared to acid catalysis, lanthanide (III) exhibits superior catalytic performance during the low-temperature HTC of cellulose. At 200 °C, lanthanide (III) accelerates the conversion of cellulose into char microparticles, while at 220 °C, it promotes the complete hydrolysis of cellulose into char microparticles enriched with furan structures. Characterization analyses revealed that lanthanide (III) enhances the formation of HMF (5-hydroxymethylfurfural), suppresses its conversion to LA (levulinic acid), promotes the polymerization of HMF into char microparticles, and indirectly accelerates the hydrolysis of cellulose into oligosaccharides. Full article
Show Figures

Figure 1

17 pages, 1876 KiB  
Review
Advancements in the Esterification of Phytosterols Catalyzed by Immobilized Lipase
by Yuyang Zhang, Yan Yan, Zhiyuan Lin, Fanzhuo Kong, Xing Ni, Xue Zhang, Yani Zhao, Qiongya Lu and Bin Zou
Catalysts 2025, 15(3), 225; https://doi.org/10.3390/catal15030225 - 27 Feb 2025
Cited by 2 | Viewed by 1185
Abstract
Phytosterol exhibits cholesterol-lowering, cardiovascular-protecting, anti-inflammatory, and anticancer efficacies but has low bioavailability due to its high melting point and poor solubility. Esterification with fatty acids enhances liposolubility, improving absorption and utilization fivefold. Industrial production of phytosterol esters mainly relies on chemical synthesis, which [...] Read more.
Phytosterol exhibits cholesterol-lowering, cardiovascular-protecting, anti-inflammatory, and anticancer efficacies but has low bioavailability due to its high melting point and poor solubility. Esterification with fatty acids enhances liposolubility, improving absorption and utilization fivefold. Industrial production of phytosterol esters mainly relies on chemical synthesis, which faces challenges in separation, purification, and quality assurance due to side reactions. Enzymatic synthesis, featuring mild conditions, environmental friendliness, and high selectivity, has gained attention from academia and industry. Candida rugosa lipase (CRL) is widely utilized due to its high efficiency in catalyzing the esterification of phytosterol. Natural lipases are highly sensitive to changes in temperature and pH and are difficult to reuse in continuous cycles; however, certain immobilization techniques can improve their catalytic activity and stability. Furthermore, the application of immobilized lipases in the synthesis of phytosterol esters can be combined with ultrasonic treatment to enhance the efficiency of enzymatic catalysis. This paper reviews the research progress on the catalytic esterification of phytosterol by immobilized lipases, highlighting the current challenges and future research directions, thereby fostering further advancements in the field of preparing phytosterol esters through immobilized lipase catalysis. Full article
Show Figures

Graphical abstract

12 pages, 6098 KiB  
Article
In Situ Observation of Redox Dynamics and Surface Restructuring on Pt/CeO2 Catalysts
by Yuye Li, Jianyu Cao, Zhongshi Zhang, Jing Xia and Xiangmin Meng
Crystals 2025, 15(3), 215; https://doi.org/10.3390/cryst15030215 - 24 Feb 2025
Viewed by 621
Abstract
Heterogeneous catalysis has significant applications in energy conversion, chemical production, and environmental treatment. Among them, the supported catalyst Pt/CeO2 has attracted much attention due to its high catalytic activity and stability. While the particle size of the catalyst strongly influences its performance, [...] Read more.
Heterogeneous catalysis has significant applications in energy conversion, chemical production, and environmental treatment. Among them, the supported catalyst Pt/CeO2 has attracted much attention due to its high catalytic activity and stability. While the particle size of the catalyst strongly influences its performance, the dynamic behavior and the underlying mechanism of the particle size effect under realistic reactions have not been fully clarified. Using in situ transmission electron microscopy and mass spectrometry, we systematically investigated the size-dependent surface restructuring of Pt nanoparticles supported on CeO2 in high-temperature redox environments. Larger Pt nanoparticles exhibited significant surface fluctuations during oxidation, which could be reconstructed under reducing conditions, with a slight rotation after the reaction cycle. In contrast, smaller Pt particles demonstrated greater stability, maintaining a constant size after the reaction while their surface structures continuously restructured into low-index crystal planes during oxidation. Mass spectrometry revealed water production during the catalytic process, highlighting a correlation between surface restructuring and reactivity. These findings advance the understanding of redox dynamics in noble metal catalysts and provide a theoretical basis for the design of more efficient and stable catalytic systems. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 2952 KiB  
Article
Tailoring Metal–Oxide Interfaces via Selectively CeO2-Decorated Pd Nanocatalysts with Enhanced Catalytic Performance
by Ziwen Liu, Guizhen Zhang, Lijuan Niu, Zaicheng Sun, Zhenguo Li and Hong He
Nanomaterials 2025, 15(3), 197; https://doi.org/10.3390/nano15030197 - 27 Jan 2025
Cited by 1 | Viewed by 937
Abstract
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2 [...] Read more.
Metal–oxide interfaces play a prominent role in heterogeneous catalysis. Tailoring the metal–oxide interfaces effectively enhance the catalytic activities and thermal stability of noble metal catalysts. In this work, polyvinyl alcohol-protected reduction and L-arginine induction methods are adopted to prepare Pd catalysts (Pd/Al2O3-xCeO2) that are selectively decorated by CeO2, which form core–shell-like structures and generate more Pd-CeO2 interfacial sites, so that the three-way catalytic activity of Pd/Al2O3-xCeO2 catalysts is obviously significantly enhanced due to more adsorption oxygen at the interface of Pd-CeO2 and good low-temperature reducibility. At the moment, the Pd/Al2O3-xCeO2 catalysts exhibit excellent thermal stability after being calcined at 900 °C for 5 h, owing to the Pd species being highly redispersed on CeO2 and part of the Pd species being incorporated into the lattice of CeO2. This is a major reason for the Pd/Al2O3-xCeO2 catalysts to maintain high catalytic activity after aging at high temperatures. It is concluded that the metal–oxide interfaces and the interaction between Pd NPs and CeO2 are responsible for the excellent catalytic performance and stability of Pd/Al2O3-xCeO2 catalysts in three-way reactions. Full article
Show Figures

Figure 1

22 pages, 6576 KiB  
Article
Mining and Characterization of Amylosucrase from Calidithermus terrae for Synthesis of α-Arbutin Using Sucrose
by Anqi Li, Yamei He, Wenxuan Chen, Huimei Tao, Huawei Wu and Shaobin Li
Int. J. Mol. Sci. 2024, 25(24), 13359; https://doi.org/10.3390/ijms252413359 - 12 Dec 2024
Viewed by 1129
Abstract
α-Arbutin is the fourth generation whitening factor in the field of cosmetics, which can block the synthesis of melanin in epidermal cells and has the advantages of good stability and less toxic side effects. Moreover, α-arbutin has potential application value in food, medicine, [...] Read more.
α-Arbutin is the fourth generation whitening factor in the field of cosmetics, which can block the synthesis of melanin in epidermal cells and has the advantages of good stability and less toxic side effects. Moreover, α-arbutin has potential application value in food, medicine, and other fields. However, the extraction yield from plant tissues is relatively low, which restricts its application value. Currently, enzymatic catalysis is universally deemed the safest and most efficient method for α-arbutin synthesis. Amylosucrase (ASase), one of the most frequently employed glycosyltransferases, has been extensively reported for α-arbutin synthesis. To discover new resources of amylosucrase (ASase), this study synthesized α-arbutin using low-cost sucrose as a glycosyl donor. Probe sequences were used to identify homologous sequences from different microbial strains in protein databases as candidate ASases. Recombinant plasmids were constructed, and the enzymes were successfully expressed in Escherichia coli, followed by the enzymatic synthesis of α-arbutin. One ASase from Calidithermus terrae, named CtAs, was selected for its effective α-arbutin synthesis. The expression conditions for CtAs were optimized, its enzymatic properties were analyzed, and the conditions for the enzymatic synthesis of α-arbutin were further refined to improve its molar yield. The optimal induction conditions for CtA expression were achieved by adding IPTG at a final concentration of 0.5 mmol/L to LB medium when OD600 reached 1.0, followed by an incubation at 20 °C and 200 r/min for 18 h. The optimal temperature and pH for CtAs were found to be 42 °C and 9.5, respectively, with good stability across the pH range of 5.0–12.0. CtAs was activated by Na+, K+, Mg2+, EDTA, methanol, and ethanol, but inhibited by Ca2+, Zn2+, Ba2+, and Ni2+. The kinetic parameters were Vmax = 6.94 μmol/min/mL, Km = 89.39 mmol/L, Kcat = 5183.97 min−1, and Kcat/Km = 57.99 L/(mmol·min). At 42 °C and pH 9.5, the hydrolysis/polymerization/isomerization reaction ratios were 23.27:32.96:43.77 with low sucrose concentrations and 38.50:37.12:24.38 with high sucrose concentrations. The optimal conditions for the enzymatic synthesis were determined to be at 25 °C and pH 5.0 using sucrose at a final concentration of 42 mmol/L and hydroquinone at 6 mmol/L (donor-to-acceptor ratio of 7:1), with the addition of 200 μL (0.2 mg/mL) of purified enzyme and 0.10 mmol/L ascorbic acid, under dark conditions for 6 h. The final molar yield of α-arbutin was 62.78%, with a molar conversion rate of hydroquinone of 74.60%, nearly doubling the yield compared to pre-optimization. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 3818 KiB  
Article
Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity
by Hengxu Cheng, Haojie Sun, Meizhen Dai, Yucai Li, Jian Wang, Shiwei Song, Dong Zhang and Depeng Zhao
Molecules 2024, 29(23), 5721; https://doi.org/10.3390/molecules29235721 - 4 Dec 2024
Cited by 1 | Viewed by 943
Abstract
Developing low-cost, efficient alternatives to catalysts for bifunctional oxygen electrode catalysis in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for advancing the practical applications of alkaline fuel cells. In this study, Co particles and single atoms co-loaded on [...] Read more.
Developing low-cost, efficient alternatives to catalysts for bifunctional oxygen electrode catalysis in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for advancing the practical applications of alkaline fuel cells. In this study, Co particles and single atoms co-loaded on nitrogen-doped carbon (CoNC) were synthesized via pyrolysis of a C3N4 and cobalt nitrate mixture at varying temperatures (900, 950, and 1000 °C). The pyrolysis temperature and precursor ratios were found to significantly influence the ORR/OER performance of the resulting catalysts. The optimized CoNC-950 catalyst demonstrated exceptional ORR (E1/2 = 0.85 V) and OER (Ej10 = 320 mV) activities, surpassing commercial Pt/C + RuO2-based devices when used in a rechargeable zinc–air battery. This work presents an effective strategy for designing high-performance non-precious metal bifunctional electrocatalysts for alkaline environments. Full article
Show Figures

Figure 1

Back to TopTop