Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = low-cost projector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10517 KiB  
Article
Beyond the Light Meter: A Case-Study on HDR-Derived Illuminance Calculations Using a Proxy-Lambertian Surface
by Jackson Hanus, Arpan Guha and Abdourahim Barry
Buildings 2025, 15(12), 2131; https://doi.org/10.3390/buildings15122131 - 19 Jun 2025
Viewed by 381
Abstract
Accurate illuminance measurements are critical in assessing lighting quality during post-occupancy evaluations, and traditional methods are labor-intensive and time-consuming. This pilot study demonstrates an alternative that combines high dynamic range (HDR) imaging with a low-cost proxy-Lambertian surface to transform image luminance into spatial [...] Read more.
Accurate illuminance measurements are critical in assessing lighting quality during post-occupancy evaluations, and traditional methods are labor-intensive and time-consuming. This pilot study demonstrates an alternative that combines high dynamic range (HDR) imaging with a low-cost proxy-Lambertian surface to transform image luminance into spatial illuminance. Seven readily available materials were screened for luminance uniformity; the specimen with minimal deviation from Lambertian behavior (≈2%) was adopted as the pseudo-Lambertian surface. Calibrated HDR images of a fluorescent-lit university classroom were acquired with a digital single-lens reflex (DSLR) camera and processed in Photosphere, after which pixel luminance was converted to illuminance via Lambertian approximation. Predicted illuminance values were benchmarked against spectral illuminance meter readings at 42 locations on horizontal work planes, vertical presentation surfaces, and the circulation floor. The average errors were 5.20% for desks and 6.40% for the whiteboard—well below the 10% acceptance threshold for design validation—while the projector-screen and floor measurements exhibited slightly higher discrepancies of 9.90% and 14.40%, respectively. The proposed workflow significantly reduces the cost, complexity, and duration of lighting assessments, presenting a promising tool for streamlined, accurate post-occupancy evaluations. Future work may focus on refining this approach for diverse lighting conditions and complex material interactions. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

25 pages, 9555 KiB  
Article
A Novel Integrated Electronic Lighting Driver Circuit for Supplying an LED Projection Lamp with High Power Factor and Soft Switching Characteristics
by Chun-An Cheng, Ching-Min Lee, En-Chih Chang, Sheng-Hong Hou, Long-Fu Lan and Cheng-Kuan Lin
Electronics 2023, 12(22), 4642; https://doi.org/10.3390/electronics12224642 - 14 Nov 2023
Cited by 5 | Viewed by 1771
Abstract
The traditional light source of projection lamps adopts a halogen lamp, which has the advantages of high brightness, but its luminous efficiency is not good and consumes energy. A light-emitting diode (LED) has the characteristics of high luminous efficiency and energy savings and [...] Read more.
The traditional light source of projection lamps adopts a halogen lamp, which has the advantages of high brightness, but its luminous efficiency is not good and consumes energy. A light-emitting diode (LED) has the characteristics of high luminous efficiency and energy savings and can be used as a new light source for projection lamps. The conventional two-stage electronic lighting driver circuit for supplying an LED projection lamp is composed of an AC-DC converter with power factor correction (PFC) as the first stage and a DC-DC converter for providing rated lamp voltage and current as the second stage. The conventional LED projection lamp driver circuit has more circuit components, a higher cost and limited efficiency. Therefore, this paper proposes a novel electronic lighting driver circuit for supplying an LED projection lamp with PFC function, which integrates a modified stacked dual boost converter and a half-bridge LLC resonant converter into a single-stage power-conversion circuit. The inductor inside the modified stacked boost converter is designed to operate at discontinuous conduction mode (DCM) for the driver circuit achieving PFC. Wide bandgap semiconductor devices silicon carbide (SiC)-based Schottky diodes are utilized to reduce power diode losses, and soft switching is implemented in the proposed LED projector lamp driver circuit to reduce the switching losses of the power switches and thus improve circuit efficiency. This paper has completed a single-stage prototype driver circuit for an LED projection lamp with PFC function, and the prototype circuit has a high power factor (PF > 0.98), low input current total-harmonic-distortion (THD < 6%) and high efficiency (>89%) in the case of an AC input power supply with an RMS value of 110 volts, and both power switches have the characteristics of soft switching. Full article
(This article belongs to the Special Issue Innovative Technologies in Power Converters, 2nd Edition)
Show Figures

Figure 1

28 pages, 25748 KiB  
Article
Technology Modules Providing Solutions for Agile Manufacturing
by Miha Deniša, Aleš Ude, Mihael Simonič, Tero Kaarlela, Tomi Pitkäaho, Sakari Pieskä, Janis Arents, Janis Judvaitis, Kaspars Ozols, Levente Raj, András Czmerk, Morteza Dianatfar, Jyrki Latokartano, Patrick Alexander Schmidt, Anton Mauersberger, Adrian Singer, Halldor Arnarson, Beibei Shu, Dimosthenis Dimosthenopoulos, Panagiotis Karagiannis, Teemu-Pekka Ahonen, Veikko Valjus and Minna Lanzadd Show full author list remove Hide full author list
Machines 2023, 11(9), 877; https://doi.org/10.3390/machines11090877 - 1 Sep 2023
Cited by 7 | Viewed by 3961
Abstract
In this paper, we address the most pressing challenges faced by the manufacturing sector, particularly the manufacturing of small and medium-sized enterprises (SMEs), where the transition towards high-mix low-volume production and the availability of cost-effective solutions are crucial. To overcome these challenges, this [...] Read more.
In this paper, we address the most pressing challenges faced by the manufacturing sector, particularly the manufacturing of small and medium-sized enterprises (SMEs), where the transition towards high-mix low-volume production and the availability of cost-effective solutions are crucial. To overcome these challenges, this paper presents 14 innovative solutions that can be utilized to support the introduction of agile manufacturing processes in SMEs. These solutions encompass a wide range of key technologies, including reconfigurable fixtures, low-cost automation for printed circuit board (PCB) assembly, computer-vision-based control, wireless sensor networks (WSNs) simulations, predictive maintenance based on Internet of Things (IoT), virtualization for operator training, intuitive robot programming using virtual reality (VR), autonomous trajectory generation, programming by demonstration for force-based tasks, on-line task allocation in human–robot collaboration (HRC), projector-based graphical user interface (GUI) for HRC, human safety in collaborative work cells, and integration of automated ground vehicles for intralogistics. All of these solutions were designed with the purpose of increasing agility in the manufacturing sector. They are designed to enable flexible and modular manufacturing systems that are easy to integrate and use while remaining cost-effective for SMEs. As such, they have a high potential to be implemented in the manufacturing industry. They can be used as standalone modules or combined to solve a more complicated task, and contribute to enhancing the agility, efficiency, and competitiveness of manufacturing companies. With their application tested in industrially relevant environments, the proposed solutions strive to ensure practical implementation and real-world impact. While this paper presents these solutions and gives an overview of their methodologies and evaluations, it does not go into their details. It provides summaries of comprehensive and multifaceted solutions to tackle the evolving needs and demands of the manufacturing sector, empowering SMEs to thrive in a dynamic and competitive market landscape. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

12 pages, 4257 KiB  
Article
Affordable Projector-Based AR Experimental Platform with Fitting Simulation Asset for Exploring Thermal Management
by Xingming Long, Yujie Chen and Jing Zhou
Appl. Sci. 2022, 12(16), 8019; https://doi.org/10.3390/app12168019 - 10 Aug 2022
Cited by 2 | Viewed by 2137
Abstract
Augmented reality (AR) applied in education provides learners a possible way for better understanding and thorough learning. Although the traditional projector is used to integrate the augmented information with real objects without wearing AR glasses, the projector-based AR system is unlikely to be [...] Read more.
Augmented reality (AR) applied in education provides learners a possible way for better understanding and thorough learning. Although the traditional projector is used to integrate the augmented information with real objects without wearing AR glasses, the projector-based AR system is unlikely to be adopted widely in education due to the cost, heavy weight, and space issues. In this paper, an alternative projector-camera AR platform, utilizing a digital light processing (DLP) module matched with a Beaglebone Black (BB) controller, is proposed for AR physical experiments. After describing the DLP-based AR learning design method, the algorithm of pre-deforming projection content with simulation-based poly fitting is presented to keep the virtual asset consistent with the user action; and then a prototype with the content regarding the thermal management of power devices is illustrated to validate the performance of the AR experimental platform. The result shows that the DLP-based AR platform is an accurate and interactive AR system with a response time of 1 s, and a registration deviation of 3 mm. It is also an affordable AR learning design tool with a bill of materials of about $200, and thus casts light on creating AR-based physical experiments to explore more physical phenomena. Full article
(This article belongs to the Topic Extended Reality (XR): AR, VR, MR and Beyond)
Show Figures

Figure 1

13 pages, 24677 KiB  
Article
Effect of Printing Parameters on Dimensional Error, Surface Roughness and Porosity of FFF Printed Parts with Grid Structure
by Irene Buj-Corral, Ali Bagheri and Maurici Sivatte-Adroer
Polymers 2021, 13(8), 1213; https://doi.org/10.3390/polym13081213 - 9 Apr 2021
Cited by 73 | Viewed by 4563
Abstract
Extrusion printing processes allow for manufacturing complex shapes in a relatively cheap way with low-cost machines. The present study analyzes the effect of printing parameters on dimensional error, roughness, and porosity of printed PLA parts obtained with grid structure. Parts are obtained by [...] Read more.
Extrusion printing processes allow for manufacturing complex shapes in a relatively cheap way with low-cost machines. The present study analyzes the effect of printing parameters on dimensional error, roughness, and porosity of printed PLA parts obtained with grid structure. Parts are obtained by means of the fused filament fabrication (FFF) process. Four variables are chosen: Layer height, temperature, speed, and flow rate. A two-level full factorial design with a central point is used to define the experimental tests. Dimensional error and porosity are measured with a profile projector, while roughness is measured with a contact roughness meter. Mathematical regression models are found for each response, and multi-objective optimization is carried out by means of the desirability function. Dimensional error and roughness depend mainly on layer height and flow rate, while porosity depends on layer height and printing speed. Multi-objective optimization shows that recommended values for the variables are layer height 0.05 mm, temperature 195 ºC, speed 50 mm/min, and flow rate 0.93, when dimensional error and roughness are to be minimized, and porosity requires a target value of 60%. The present study will help to select appropriate printing parameters for printing porous structures such as those found in prostheses, by means of extrusion processes. Full article
(This article belongs to the Special Issue Porous Polymer Scaffolds and Their Applications)
Show Figures

Graphical abstract

15 pages, 4608 KiB  
Article
Fabrication and Compressive Behavior of a Micro-Lattice Composite by High Resolution DLP Stereolithography
by Chow Shing Shin and Yu Chia Chang
Polymers 2021, 13(5), 785; https://doi.org/10.3390/polym13050785 - 4 Mar 2021
Cited by 12 | Viewed by 3250
Abstract
Lattice structures are superior to stochastic foams in mechanical properties and are finding increasing applications. Their properties can be tailored in a wide range through adjusting the design and dimensions of the unit cell, changing the constituent materials as well as forming into [...] Read more.
Lattice structures are superior to stochastic foams in mechanical properties and are finding increasing applications. Their properties can be tailored in a wide range through adjusting the design and dimensions of the unit cell, changing the constituent materials as well as forming into hierarchical structures. In order to achieve more levels of hierarchy, the dimensions of the fundamental lattice have to be small enough. Although lattice size of several microns can be fabricated using the two-photon polymerization technique, sophisticated and costly equipment is required. To balance cost and performance, a low-cost high resolution micro-stereolithographic system has been developed in this work based on a commercial digital light processing (DLP) projector. Unit cell lengths as small as 100 μm have been successfully fabricated. Decreasing the unit cell size from 150 to 100 μm increased the compressive stiffness by 26%. Different pretreatments to facilitate the electroless plating of nickel on the lattice structure have been attempted. A pretreatment of dip coating in a graphene suspension is the most successful and increased the strength and stiffness by 5.3 and 3.6 times, respectively. Even a very light and incomplete nickel plating in the interior has increase the structural stiffness and strength by more than twofold. Full article
Show Figures

Figure 1

16 pages, 3195 KiB  
Article
Underwater High-Precision 3D Reconstruction System Based on Rotating Scanning
by Qingsheng Xue, Qian Sun, Fupeng Wang, Haoxuan Bai, Bai Yang and Qian Li
Sensors 2021, 21(4), 1402; https://doi.org/10.3390/s21041402 - 17 Feb 2021
Cited by 28 | Viewed by 5393
Abstract
This paper presents an underwater high-precision line laser three-dimensional (3D) scanning (LLS) system with rotary scanning mode, which is composed of a low illumination underwater camera and a green line laser projector. The underwater 3D data acquisition can be realized in the range [...] Read more.
This paper presents an underwater high-precision line laser three-dimensional (3D) scanning (LLS) system with rotary scanning mode, which is composed of a low illumination underwater camera and a green line laser projector. The underwater 3D data acquisition can be realized in the range of field of view of 50° (vertical) × 360° (horizontal). We compensate the refraction of the 3D reconstruction system to reduce the angle error caused by the refraction of light on different media surfaces and reduce the impact of refraction on the image quality. In order to verify the reconstruction effect of the 3D reconstruction system and the effectiveness of the refraction compensation algorithm, we conducted error experiments on a standard sphere. The results show that the system’s underwater reconstruction error is less than 0.6 mm within the working distance of 140 mm~2500 mm, which meets the design requirements. It can provide reference for the development of low-cost underwater 3D laser scanning system. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 20331 KiB  
Article
Evaluating Feature Extraction Methods with Synthetic Noise Patterns for Image-Based Modelling of Texture-Less Objects
by Jahanzeb Hafeez, Jaehyun Lee, Soonchul Kwon, Sungjae Ha, Gitaek Hur and Seunghyun Lee
Remote Sens. 2020, 12(23), 3886; https://doi.org/10.3390/rs12233886 - 27 Nov 2020
Cited by 30 | Viewed by 4189
Abstract
Image-based three-dimensional (3D) reconstruction is a process of extracting 3D information from an object or entire scene while using low-cost vision sensors. A structure-from-motion coupled with multi-view stereo (SFM-MVS) pipeline is a widely used technique that allows 3D reconstruction from a collection of [...] Read more.
Image-based three-dimensional (3D) reconstruction is a process of extracting 3D information from an object or entire scene while using low-cost vision sensors. A structure-from-motion coupled with multi-view stereo (SFM-MVS) pipeline is a widely used technique that allows 3D reconstruction from a collection of unordered images. The SFM-MVS pipeline typically comprises different processing steps, including feature extraction and feature matching, which provide the basis for automatic 3D reconstruction. However, surfaces with poor visual texture (repetitive, monotone, etc.) challenge the feature extraction and matching stage and affect the quality of reconstruction. The projection of image patterns while using a video projector during the image acquisition process is a well-known technique that has been shown to be successful for such surfaces. In this study, we evaluate the performance of different feature extraction methods on texture-less surfaces with the application of synthetically generated noise patterns (images). Seven state-of-the-art feature extraction methods (HARRIS, Shi-Tomasi, MSER, SIFT, SURF, KAZE, and BRISK) are evaluated on problematic surfaces in two experimental phases. In the first phase, the 3D reconstruction of real and virtual planar surfaces evaluates image patterns while using all feature extraction methods, where the patterns with uniform histograms have the most suitable morphological features. The best performing pattern from Phase One is used in Phase Two experiments in order to recreate a polygonal model of a 3D printed object using all of the feature extraction methods. The KAZE algorithm achieved the lowest standard deviation and mean distance values of 0.0635 mm and −0.00921 mm, respectively. Full article
(This article belongs to the Special Issue 3D Virtual Reconstruction for Cultural Heritage)
Show Figures

Figure 1

14 pages, 8428 KiB  
Article
Improve Temporal Fourier Transform Profilometry for Complex Dynamic Three-Dimensional Shape Measurement
by Yihang Liu, Qican Zhang, Haihua Zhang, Zhoujie Wu and Wenjing Chen
Sensors 2020, 20(7), 1808; https://doi.org/10.3390/s20071808 - 25 Mar 2020
Cited by 24 | Viewed by 4517
Abstract
The high-speed three-dimensional (3-D) shape measurement technique has become more and more popular recently, because of the strong demand for dynamic scene measurement. The single-shot nature of Fourier Transform Profilometry (FTP) makes it highly suitable for the 3-D shape measurement of dynamic scenes. [...] Read more.
The high-speed three-dimensional (3-D) shape measurement technique has become more and more popular recently, because of the strong demand for dynamic scene measurement. The single-shot nature of Fourier Transform Profilometry (FTP) makes it highly suitable for the 3-D shape measurement of dynamic scenes. However, due to the band-pass filter, FTP method has limitations for measuring objects with sharp edges, abrupt change or non-uniform reflectivity. In this paper, an improved Temporal Fourier Transform Profilometry (TFTP) algorithm combined with the 3-D phase unwrapping algorithm based on a reference plane is presented, and the measurement of one deformed fringe pattern producing a new 3-D shape of an isolated abrupt objects has been achieved. Improved TFTP method avoids band-pass filter in spatial domain and unwraps 3-D phase distribution along the temporal axis based on the reference plane. The high-frequency information of the measured object can be well preserved, and each pixel is processed separately. Experiments verify that our method can be well applied to a dynamic 3-D shape measurement with isolated, sharp edges or abrupt change. A high-speed and low-cost structured light pattern sequence projection has also been presented, it is capable of projection frequencies in the kHz level. Using the proposed 3-D shape measurement algorithm with the self-made mechanical projector, we demonstrated dynamic 3-D reconstruction with a rate of 297 Hz, which is mainly limited by the speed of the camera. Full article
(This article belongs to the Special Issue Optical and Photonic Sensors)
Show Figures

Figure 1

9 pages, 4616 KiB  
Communication
Printing 3D Hydrogel Structures Employing Low-Cost Stereolithography Technology
by Leila Samara S. M. Magalhães, Francisco Eroni Paz Santos, Conceição de Maria Vaz Elias, Samson Afewerki, Gustavo F. Sousa, Andre S. A. Furtado, Fernanda Roberta Marciano and Anderson Oliveira Lobo
J. Funct. Biomater. 2020, 11(1), 12; https://doi.org/10.3390/jfb11010012 - 22 Feb 2020
Cited by 29 | Viewed by 7879
Abstract
Stereolithography technology associated with the employment of photocrosslinkable, biocompatible, and bioactive hydrogels have been widely used. This method enables 3D microfabrication from images created by computer programs and allows researchers to design various complex models for tissue engineering applications. This study presents a [...] Read more.
Stereolithography technology associated with the employment of photocrosslinkable, biocompatible, and bioactive hydrogels have been widely used. This method enables 3D microfabrication from images created by computer programs and allows researchers to design various complex models for tissue engineering applications. This study presents a simple and fast home-made stereolithography system developed to print layer-by-layer structures. Polyethylene glycol diacrylate (PEGDA) and gelatin methacryloyl (GelMA) hydrogels were employed as the photocrosslinkable polymers in various concentrations. Three-dimensional (3D) constructions were obtained by using the stereolithography technique assembled from a commercial projector, which emphasizes the low cost and efficiency of the technique. Lithium phenyl-2,4,6-trimethylbenzoyl phosphonate (LAP) was used as a photoinitiator, and a 404 nm laser source was used to promote the crosslinking. Three-dimensional and vascularized structures with more than 5 layers and resolutions between 42 and 83 µm were printed. The 3D printed complex structures highlight the potential of this low-cost stereolithography technique as a great tool in tissue engineering studies, as an alternative to bioprint miniaturized models, simulate vital and pathological functions, and even for analyzing the actions of drugs in the human body. Full article
Show Figures

Figure 1

23 pages, 10090 KiB  
Article
A Range-Independent Disparity-Based Calibration Model for Structured Light Pattern-Based RGBD Sensor
by Wenbin Li, Yaxin Li, Walid Darwish, Shengjun Tang, Yuling Hu and Wu Chen
Sensors 2020, 20(3), 639; https://doi.org/10.3390/s20030639 - 23 Jan 2020
Cited by 4 | Viewed by 3691
Abstract
Consumer-grade RGBD sensors that provide both colour and depth information have many potential applications, such as robotics control, localization, and mapping, due to their low cost and simple operation. However, the depth measurement provided by consumer-grade RGBD sensors is still inadequate for many [...] Read more.
Consumer-grade RGBD sensors that provide both colour and depth information have many potential applications, such as robotics control, localization, and mapping, due to their low cost and simple operation. However, the depth measurement provided by consumer-grade RGBD sensors is still inadequate for many high-precision applications, such as rich 3D reconstruction, accurate object recognition and precise localization, due to the fact that the systematic errors of RGB sensors increase exponentially with the ranging distance. Most existing calibration models for depth measurement must be carried out with different distances. In this paper, we reveal the mechanism of how an infrared (IR) camera and IR projector contribute to the overall non-centrosymmetric distortion of a structured light pattern-based RGBD sensor. Then, a new two-step calibration method for RGBD sensors based on the disparity measurement is proposed, which is range-independent and has full frame coverage. Three independent calibration models are used for the calibration for the three main components of the RGBD sensor errors: the infrared camera distortion, the infrared projection distortion, and the infrared cone-caused bias. Experiments show the proposed calibration method can provide precise calibration results in full-range and full-frame coverage of depth measurement. The offset in the edge area of long-range depth (8 m) is reduced from 86 cm to 30 cm, and the relative error is reduced from 11% to 3% of the range distance. Overall, at far range the proposed calibration method can improve the depth accuracy by 70% in the central region of depth frame and 65% in the edge region. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

13 pages, 6278 KiB  
Article
High Speed 3D Shape Measurement with Temporal Fourier Transform Profilometry
by Haihua Zhang, Qican Zhang, Yong Li and Yihang Liu
Appl. Sci. 2019, 9(19), 4123; https://doi.org/10.3390/app9194123 - 2 Oct 2019
Cited by 35 | Viewed by 5306
Abstract
A novel high-speed 3D shape measurement technology called temporal Fourier transform profilometry (TFTP for short) is proposed by combining the merits of Fourier transform profilometry (FTP) and phase-measuring profilometry (PMP). Instead of using the digital light projector, a mechanical projector is employed to [...] Read more.
A novel high-speed 3D shape measurement technology called temporal Fourier transform profilometry (TFTP for short) is proposed by combining the merits of Fourier transform profilometry (FTP) and phase-measuring profilometry (PMP). Instead of using the digital light projector, a mechanical projector is employed to generate multi-period phase-shifting fringe patterns sequentially. During the reconstruction process, the phase value of each pixel is calculated independently along the temporal axis and no spectrum filtering operation is performed in a spatial domain. Therefore, high-frequency components containing the detailed information of the measured object effectively remain. The proposed method is suitable for measuring isolated dynamic objects. Only one frame of deformed fringe pattern is required to retrieve one 3D shape of the measured object, so it has the obvious advantage if measuring the dynamic scene at a high speed. A low-cost self-made mechanical projector with fast projection speed is developed to execute the principle-proof experiments, whose results demonstrate the feasibility of measuring isolated dynamic objects. Full article
(This article belongs to the Special Issue High-speed Optical 3D Shape and Deformation Measurement)
Show Figures

Figure 1

20 pages, 445 KiB  
Article
A New Generalized Projection and Its Application to Acceleration of Audio Declipping
by Pavel Rajmic, Pavel Záviška, Vítězslav Veselý and Ondřej Mokrý
Axioms 2019, 8(3), 105; https://doi.org/10.3390/axioms8030105 - 19 Sep 2019
Cited by 8 | Viewed by 3437
Abstract
In convex optimization, it is often inevitable to work with projectors onto convex sets composed with a linear operator. Such a need arises from both the theory and applications, with signal processing being a prominent and broad field where convex optimization has been [...] Read more.
In convex optimization, it is often inevitable to work with projectors onto convex sets composed with a linear operator. Such a need arises from both the theory and applications, with signal processing being a prominent and broad field where convex optimization has been used recently. In this article, a novel projector is presented, which generalizes previous results in that it admits to work with a broader family of linear transforms when compared with the state of the art but, on the other hand, it is limited to box-type convex sets in the transformed domain. The new projector is described by an explicit formula, which makes it simple to implement and requires a low computational cost. The projector is interpreted within the framework of the so-called proximal splitting theory. The convenience of the new projector is demonstrated on an example from signal processing, where it was possible to speed up the convergence of a signal declipping algorithm by a factor of more than two. Full article
(This article belongs to the Special Issue Harmonic Analysis and Applications)
Show Figures

Figure 1

12 pages, 4607 KiB  
Article
3D Face Profilometry Based on Galvanometer Scanner with Infrared Fringe Projection in High Speed
by Junpeng Xue, Qican Zhang, Chenghang Li, Wei Lang, Min Wang and Yanfei Hu
Appl. Sci. 2019, 9(7), 1458; https://doi.org/10.3390/app9071458 - 7 Apr 2019
Cited by 42 | Viewed by 6261
Abstract
Structured light 3D shape metrology has become a very important technique and one of the hot research topics in 3D face recognition. However, it is still very challenging to use the digital light projector (DLP) in a 3D scanner and achieve high-speed, low-cost, [...] Read more.
Structured light 3D shape metrology has become a very important technique and one of the hot research topics in 3D face recognition. However, it is still very challenging to use the digital light projector (DLP) in a 3D scanner and achieve high-speed, low-cost, small-size, and infrared-illuminated measurements. Instead of using a DLP, this paper proposes to use a galvanometer scanner to project phase-shifted fringes with a projection speed of infrared fringes up to 500 fps. Moreover, the measurement accuracy of multi-frequency (hierarchical) and multi-wavelength (heterodyne) temporal phase unwrapping approaches implemented in this system is analyzed. The measurement accuracy of the two methods is better than 0.2 mm. Comparisons are made between this method and the classical DLP approach. This method can achieve a similar accuracy and repeatability compared to the classical DLP method when a face mask is measured. The experiments on real human face indicate that this proposed method can improve the field of 3D scanning applications at a lower cost. Full article
(This article belongs to the Special Issue High-speed Optical 3D Shape and Deformation Measurement)
Show Figures

Graphical abstract

18 pages, 7696 KiB  
Article
A High Spatial Resolution Depth Sensing Method Based on Binocular Structured Light
by Huimin Yao, Chenyang Ge, Jianru Xue and Nanning Zheng
Sensors 2017, 17(4), 805; https://doi.org/10.3390/s17040805 - 8 Apr 2017
Cited by 20 | Viewed by 6371
Abstract
Depth information has been used in many fields because of its low cost and easy availability, since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show limited performance in certain applications and place high demands on accuracy and robustness [...] Read more.
Depth information has been used in many fields because of its low cost and easy availability, since the Microsoft Kinect was released. However, the Kinect and Kinect-like RGB-D sensors show limited performance in certain applications and place high demands on accuracy and robustness of depth information. In this paper, we propose a depth sensing system that contains a laser projector similar to that used in the Kinect, and two infrared cameras located on both sides of the laser projector, to obtain higher spatial resolution depth information. We apply the block-matching algorithm to estimate the disparity. To improve the spatial resolution, we reduce the size of matching blocks, but smaller matching blocks generate lower matching precision. To address this problem, we combine two matching modes (binocular mode and monocular mode) in the disparity estimation process. Experimental results show that our method can obtain higher spatial resolution depth without loss of the quality of the range image, compared with the Kinect. Furthermore, our algorithm is implemented on a low-cost hardware platform, and the system can support the resolution of 1280 × 960, and up to a speed of 60 frames per second, for depth image sequences. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop