Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,497)

Search Parameters:
Keywords = low-cost experiments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2149 KB  
Article
A New Variable Frequency Modulation Method For a Grid-Tied Inverter with Current Distortion Constraint and MOSFET’s Loss Optimization
by Hengmen Liu, Wei Chen, Fang Chen, Zhong Liu and Panbao Wang
Energies 2026, 19(2), 503; https://doi.org/10.3390/en19020503 (registering DOI) - 19 Jan 2026
Abstract
Variable switching frequency modulation (VSFM) is an easy-to-implement and low-cost method to reduce electromagnetic interference (EMI) of power electronics, yet changes in loss and harmonic behavior make it hard to decide the parameters of the filter and the switching frequency (SF) variation range. [...] Read more.
Variable switching frequency modulation (VSFM) is an easy-to-implement and low-cost method to reduce electromagnetic interference (EMI) of power electronics, yet changes in loss and harmonic behavior make it hard to decide the parameters of the filter and the switching frequency (SF) variation range. In this article, a new VSFM method characterized by evenly distributed SF is proposed, and it is easy to implement. In order to handle the induced variation in loss and current total harmonic distortion (THD) behavior, current dynamics of a full-bridge grid-tied inverter under constant SF modulation (CSFM) are analyzed through multidimensional Fourier decomposition (MFD), and then the results are extended to VSFM. Based on these dynamics, loss of MOSFETs and THD of grid-connected current are estimated through the trapezoidal integral rule, and the analytical expressions of these indexes can be derived. After this, parameters needed for VSFM can be determined while meeting the minimum MOSFET loss and fixed current THD constraint. The performance of EMI, loss, and current harmonic is revealed through simulations and experiments and compared with the CSFM and classical VSFM methods. Full article
25 pages, 20798 KB  
Article
Hierarchical Path Planning for Automatic Parking in Constrained Scenarios via Entry-Point Guidance
by Liang Chen, Lizhi Huang, Chaoyi Chen, Guangwei Wang, Yougang Bian, Mengchi Cai, Qingwen Meng, Qing Xu, Jianqiang Wang and Keqiang Li
Machines 2026, 14(1), 112; https://doi.org/10.3390/machines14010112 - 18 Jan 2026
Abstract
Automatic parking in constrained environments, such as dead-end roads and narrow parallel spaces, remains a challenge due to the low success rate and poor real-time performance of conventional planning algorithms. The paper proposes an entry-point guided path planning method that integrates heuristic search [...] Read more.
Automatic parking in constrained environments, such as dead-end roads and narrow parallel spaces, remains a challenge due to the low success rate and poor real-time performance of conventional planning algorithms. The paper proposes an entry-point guided path planning method that integrates heuristic search with hybrid A* and reeds-shepp curve to address the above limitations. By rapidly identifying the optimal initial parking pose, the proposed method ensures the kinematic feasibility and smoothness of the resulting trajectories. To further improve efficiency and safety in tight spaces, a hybrid collision detection mechanism is developed by combining a rectangular envelope with multi-circle fitting. The hierarchical geometric modeling approach significantly reduces computational cost while maintaining high detection accuracy. The method is validated through both simulations and real-vehicle experiments in vertical and parallel parking scenarios. Results demonstrate that in typical constrained scenarios, the average planning time is only 0.543 s, and the number of direction changes is maintained between 1 and 6, demonstrating superior computational efficiency and improved trajectory smoothness. These attributes make the algorithm highly suitable for practical deployment in advanced driver assistance systems and autonomous vehicles. Full article
25 pages, 12600 KB  
Article
Underwater Object Recovery Using a Hybrid-Controlled ROV with Deep Learning-Based Perception
by Inés Pérez-Edo, Salvador López-Barajas, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2026, 14(2), 198; https://doi.org/10.3390/jmse14020198 - 18 Jan 2026
Abstract
The deployment of large remotely operated vehicles (ROVs) or autonomous underwater vehicles (AUVs) typically requires support vessels, crane systems, and specialized personnel, resulting in increased logistical complexity and operational costs. In this context, lightweight and modular underwater robots have emerged as a cost-effective [...] Read more.
The deployment of large remotely operated vehicles (ROVs) or autonomous underwater vehicles (AUVs) typically requires support vessels, crane systems, and specialized personnel, resulting in increased logistical complexity and operational costs. In this context, lightweight and modular underwater robots have emerged as a cost-effective alternative, capable of reaching significant depths and performing tasks traditionally associated with larger platforms. This article presents a system architecture for recovering a known object using a hybrid-controlled ROV, integrating autonomous perception, high-level interaction, and low-level control. The proposed architecture includes a perception module that estimates the object pose using a Perspective-n-Point (PnP) algorithm, combining object segmentation from a YOLOv11-seg network with 2D keypoints obtained from a YOLOv11-pose model. In addition, a Natural Language ROS Agent is incorporated to enable high-level command interaction between the operator and the robot. These modules interact with low-level controllers that regulate the vehicle degrees of freedom and with autonomous behaviors such as target approach and grasping. The proposed system is evaluated through simulation and experimental tank trials, including object recovery experiments conducted in a 12 × 8 × 5 m test tank at CIRTESU, as well as perception validation in simulated, tank, and harbor scenarios. The results demonstrate successful recovery of a black box using a BlueROV2 platform, showing that architectures of this type can effectively support operators in underwater intervention tasks, reducing operational risk, deployment complexity, and mission costs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 1142 KB  
Article
Entropy and Normalization in MCDA: A Data-Driven Perspective on Ranking Stability
by Ewa Roszkowska
Entropy 2026, 28(1), 114; https://doi.org/10.3390/e28010114 - 18 Jan 2026
Abstract
Normalization is a critical step in Multiple-Criteria Decision Analysis (MCDA) because it transforms heterogeneous criterion values into comparable information. This study examines normalization techniques through the lens of entropy, highlighting how criterion data structure shapes normalization behavior and ranking stability within TOPSIS (Technique [...] Read more.
Normalization is a critical step in Multiple-Criteria Decision Analysis (MCDA) because it transforms heterogeneous criterion values into comparable information. This study examines normalization techniques through the lens of entropy, highlighting how criterion data structure shapes normalization behavior and ranking stability within TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). Seven widely used normalization procedures are analyzed regarding mathematical properties, sensitivity to extreme values, treatment of benefit and cost criteria, and rank reversal. Normalization is treated as a source of uncertainty in MCDA outcomes, as different schemes can produce divergent rankings under identical decision settings. Shannon entropy is employed as a descriptive measure of information dispersion and structural uncertainty, capturing the heterogeneity and discriminatory potential of criteria rather than serving as a weighting mechanism. An illustrative experiment with ten alternatives and four criteria (two high-entropy, two low-entropy) demonstrates how entropy mediates normalization effects. Seven normalization schemes are examined, including vector, max, linear Sum, and max–min procedures. For vector, max, and linear sum, cost-type criteria are treated using either linear inversion or reciprocal transformation, whereas max–min is implemented as a single method. This design separates the choice of normalization form from the choice of cost-criteria transformation, allowing a cleaner identification of their respective contributions to ranking variability. The analysis shows that normalization choice alone can cause substantial differences in preference values and rankings. High-entropy criteria tend to yield stable rankings, whereas low-entropy criteria amplify sensitivity, especially with extreme or cost-type data. These findings position entropy as a key mediator linking data structure with normalization-induced ranking variability and highlight the need to consider entropy explicitly when selecting normalization procedures. Finally, a practical entropy-based method for choosing normalization techniques is introduced to enhance methodological transparency and ranking robustness in MCDA. Full article
(This article belongs to the Special Issue Entropy Method for Decision Making with Uncertainty)
19 pages, 2955 KB  
Article
Interspecific Plant Interactions Drive Rhizosphere Microbiome Assembly to Alter Nutrient Cycling in Ilex asprella and Grona styracifolia
by Ding Lu, Jixia Guo, Xin Yan, Quan Yang and Xilong Zheng
Microbiol. Res. 2026, 17(1), 24; https://doi.org/10.3390/microbiolres17010024 - 18 Jan 2026
Abstract
To address the challenges of low land use efficiency, soil degradation, and high management costs in Ilex asprella cultivation, this study established an I. asprellaGrona styracifolia intercropping system and systematically evaluated its effects on soil nutrient cycling, microbial communities, and crop [...] Read more.
To address the challenges of low land use efficiency, soil degradation, and high management costs in Ilex asprella cultivation, this study established an I. asprellaGrona styracifolia intercropping system and systematically evaluated its effects on soil nutrient cycling, microbial communities, and crop growth. Field experiments were conducted in Yunfu City, Guangdong Province, with monoculture (LCK for I. asprella, DCK for G. styracifolia) and three intercropping densities (HDT, LDT, MDT). Combining 16S rRNA sequencing and metagenomics, we analyzed the functional profile of the rhizosphere microbiome. The results showed that intercropping significantly increased the biomass of G. styracifolia, with the medium-density (MDT) treatment increasing plant length and fresh weight by 41.2% and 2.4 times, respectively, compared to monoculture. However, high-density intercropping suppressed the accumulation of medicinal compounds. In terms of soil properties, intercropping significantly enhanced soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and available nitrogen (AN) in the rhizosphere of both plants. Specifically, AN in the I. asprella rhizosphere increased by 18.9%. Soil urease and acid phosphatase activities were also elevated, while pH decreased. Microbial analysis revealed that intercropping reshaped the rhizosphere microbial community structure, significantly increased the Shannon diversity index of bacteria in the G. styracifolia rhizosphere, and enhanced the complexity of the microbial co-occurrence network. Metagenomic analysis further confirmed that intercropping enriched functional genes related to carbon fixation, nitrogen cycling (nitrogen fixation, assimilatory nitrate reduction), and organic phosphorus mineralization (the phoD gene), thereby driving the transformation and availability of soil nutrients. These findings demonstrate that the I. asprellaG. styracifolia intercropping system, particularly at medium density, effectively improves soil fertility and land use efficiency by regulating rhizosphere microbial functions, providing a theoretical basis for the sustainable ecological cultivation of I. asprella. Full article
Show Figures

Graphical abstract

21 pages, 14300 KB  
Article
A Lightweight Embedded PPG-Based Authentication System for Wearable Devices via Hyperdimensional Computing
by Ruijin Zhuang, Haiming Chen, Daoyong Chen and Xinyan Zhou
Algorithms 2026, 19(1), 83; https://doi.org/10.3390/a19010083 (registering DOI) - 18 Jan 2026
Abstract
In the realm of wearable technology, achieving robust continuous authentication requires balancing high security with the strict resource constraints of embedded platforms. Conventional machine learning approaches and deep learning-based biometrics often incur high computational costs, making them unsuitable for low-power edge devices. To [...] Read more.
In the realm of wearable technology, achieving robust continuous authentication requires balancing high security with the strict resource constraints of embedded platforms. Conventional machine learning approaches and deep learning-based biometrics often incur high computational costs, making them unsuitable for low-power edge devices. To address this challenge, we propose H-PPG, a lightweight authentication system that integrates photoplethysmography (PPG) and inertial measurement unit (IMU) signals for continuous user verification. Using Hyperdimensional Computing (HDC), a lightweight classification framework inspired by brain-like computing, H-PPG encodes user physiological and motion data into high-dimensional hypervectors that comprehensively represent individual identity, enabling robust, efficient and lightweight authentication. An adaptive learning process is employed to iteratively refine the user’s hypervector, allowing it to progressively capture discriminative information from physiological and behavioral samples. To further enhance identity representation, a dimension regeneration mechanism is introduced to maximize the information capacity of each dimension within the hypervector, ensuring that authentication accuracy is maintained under lightweight conditions. In addition, a user-defined security level scheme and an adaptive update strategy are proposed to ensure sustained authentication performance over prolonged usage. A wrist-worn prototype was developed to evaluate the effectiveness of the proposed approach and extensive experiments involving 15 participants were conducted under real-world conditions. The experimental results demonstrate that H-PPG achieves an average authentication accuracy of 93.5%. Compared to existing methods, H-PPG offers a lightweight and hardware-efficient solution suitable for resource-constrained wearable devices, highlighting its strong potential for integration into future smart wearable ecosystems. Full article
Show Figures

Figure 1

18 pages, 607 KB  
Article
Direct Production of Na2WO4-Based Salt by Scheelite Smelting
by Baojun Zhao
Minerals 2026, 16(1), 90; https://doi.org/10.3390/min16010090 (registering DOI) - 17 Jan 2026
Viewed by 46
Abstract
Tungsten is one of the critical materials with important applications in many areas. Electrolysis of Na2WO4-based salt is a short and green process for the production of tungsten metal and alloys. The conventional process for producing Na2WO [...] Read more.
Tungsten is one of the critical materials with important applications in many areas. Electrolysis of Na2WO4-based salt is a short and green process for the production of tungsten metal and alloys. The conventional process for producing Na2WO4 is expensive and time-consuming. Scheelite (CaWO4) is becoming the most important resource for the extraction of tungsten. Based on thermodynamic calculations and phase equilibrium studies, a novel process is proposed to prepare Na2WO4-based salt directly from scheelite through a high-temperature process. By reacting with silica and sodium oxide, immiscible layers of liquid salt and slag are formed from scheelite between 1200 and 1300 °C. High-density salt containing Na2WO4 is separated from the silicate slag, which is composed of impurities and fluxes. The effects of fluxing agents, smelting temperature, and reaction time on the direct yield of WO3 and purity of sodium tungsten are investigated in combination with thermodynamic calculations and high-temperature experiments. The salt containing up to 99% Na2WO4 is obtained directly in a single process, which can be used for the production of other tungsten chemicals. This study provides a novel research method and detailed information to produce low-cost sodium tungstate directly from scheelite. Full article
25 pages, 32460 KB  
Article
Physically Consistent Radar High-Resolution Range Profile Generation via Spectral-Aware Diffusion for Robust Automatic Target Recognition Under Data Scarcity
by Shuai Li, Yu Wang, Jingyang Xie and Biao Tian
Remote Sens. 2026, 18(2), 316; https://doi.org/10.3390/rs18020316 - 16 Jan 2026
Viewed by 85
Abstract
High-Resolution Range Profile (HRRP) represents the electromagnetic backscattering distribution of targets and plays a pivotal role in remote-sensing-based Automatic Target Recognition (RATR). However, in non-cooperative sensing scenarios, acquiring sufficient measured data is severely constrained by operational costs and physical limitations, leading to data [...] Read more.
High-Resolution Range Profile (HRRP) represents the electromagnetic backscattering distribution of targets and plays a pivotal role in remote-sensing-based Automatic Target Recognition (RATR). However, in non-cooperative sensing scenarios, acquiring sufficient measured data is severely constrained by operational costs and physical limitations, leading to data scarcity that hampers model robustness. To overcome this, we propose SpecM-DDPM, a spectral-aware Denoising Diffusion Probabilistic Models (DDPM) tailored for generating high-fidelity HRRPs that preserve physical scattering properties. Unlike generic generative models, SpecM-DDPM incorporates radar signal physics into the diffusion process. Specifically, a parallel multi-scale block is designed to adaptively capture both local scattering centers and global target resonance structures. To ensure spectral fidelity, a spectral gating mechanism serves as a physics-constrained filter to calibrate the energy distribution in the frequency domain. Furthermore, a Frequency-Aware Curriculum Learning (FACL) strategy is introduced to guide the progressive reconstruction from low-frequency structural components to high-frequency scattering details. Experiments on measured aircraft data demonstrate that SpecM-DDPM generates samples with high physical consistency, significantly enhancing the generalization performance of radar recognition systems in data-limited environments. Full article
20 pages, 9549 KB  
Article
Micro-Expression Recognition via LoRA-Enhanced DinoV2 and Interactive Spatio-Temporal Modeling
by Meng Wang, Xueping Tang, Bing Wang and Jing Ren
Sensors 2026, 26(2), 625; https://doi.org/10.3390/s26020625 - 16 Jan 2026
Viewed by 151
Abstract
Micro-expression recognition (MER) is challenged by a brief duration, low intensity, and heterogeneous spatial frequency patterns. This study introduces a novel MER architecture that reduces computational cost by fine-tuning a large feature extraction model with LoRA, while integrating frequency-domain transformation and graph-based temporal [...] Read more.
Micro-expression recognition (MER) is challenged by a brief duration, low intensity, and heterogeneous spatial frequency patterns. This study introduces a novel MER architecture that reduces computational cost by fine-tuning a large feature extraction model with LoRA, while integrating frequency-domain transformation and graph-based temporal modeling to minimize preprocessing requirements. A Spatial Frequency Adaptive (SFA) module decomposes high- and low-frequency information with dynamic weighting to enhance sensitivity to subtle facial texture variations. A Dynamic Graph Attention Temporal (DGAT) network models video frames as a graph, combining Graph Attention Networks and LSTM with frequency-guided attention for temporal feature fusion. Experiments on the SAMM, CASME II, and SMIC datasets demonstrate superior performance over existing methods. On the SAMM 5-class setting, the proposed approach achieves an unweighted F1 score (UF1) of 81.16% and an unweighted average recall (UAR) of 85.37%, outperforming the next best method by 0.96% and 2.27%, respectively. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 16288 KB  
Article
End-Edge-Cloud Collaborative Monitoring System with an Intelligent Multi-Parameter Sensor for Impact Anomaly Detection in GIL Pipelines
by Qi Li, Kun Zeng, Yaojun Zhou, Xiongyao Xie and Genji Tang
Sensors 2026, 26(2), 606; https://doi.org/10.3390/s26020606 - 16 Jan 2026
Viewed by 71
Abstract
Gas-insulated transmission lines (GILs) are increasingly deployed in dense urban power networks, where complex construction activities may introduce external mechanical impacts and pose risks to pipeline structural integrity. However, existing GIL monitoring approaches mainly emphasize electrical and gas-state parameters, while lightweight solutions capable [...] Read more.
Gas-insulated transmission lines (GILs) are increasingly deployed in dense urban power networks, where complex construction activities may introduce external mechanical impacts and pose risks to pipeline structural integrity. However, existing GIL monitoring approaches mainly emphasize electrical and gas-state parameters, while lightweight solutions capable of rapidly detecting and localizing impact-induced structural anomalies remain limited. To address this gap, this paper proposes an intelligent end-edge-cloud monitoring system for impact anomaly detection in GIL pipelines. Numerical simulations are first conducted to analyze the dynamic response characteristics of the pipeline under impacts of varying magnitudes, orientations, and locations, revealing the relationship between impact scenarios and vibration mode evolution. An end-tier multi-parameter intelligent sensor is then developed, integrating triaxial acceleration and angular velocity measurement with embedded lightweight computing. Laboratory impact experiments are performed to acquire sensor data, which are used to train and validate a multi-class extreme gradient boosting (XGBoost) model deployed at the edge tier for accurate impact-location identification. Results show that, even with a single sensor positioned at the pipeline midpoint, fusing acceleration and angular velocity features enables reliable discrimination of impact regions. Finally, a lightweight cloud platform is implemented for visualizing structural responses and environmental parameters with downsampled edge-side data. The proposed system achieves rapid sensor-level anomaly detection, precise edge-level localization, and unified cloud-level monitoring, offering a low-cost and easily deployable solution for GIL structural health assessment. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

13 pages, 1383 KB  
Article
Adaptive Software-Defined Honeypot Strategy Using Stackelberg Game and Deep Reinforcement Learning with DPU Acceleration
by Mingxuan Zhang, Yituan Yu, Shengkun Li, Yan Liu, Yingshuai Zhang, Rui Zhang and Sujie Shao
Modelling 2026, 7(1), 23; https://doi.org/10.3390/modelling7010023 - 16 Jan 2026
Viewed by 53
Abstract
Software-defined (SD) honeypots, as dynamic cybersecurity technologies, enhance defense efficiency through flexible resource allocation. However, traditional SD honeypots face latency and jitter issues under network fluctuations, while balancing adjustment costs with defense benefits remains challenging. This paper proposes a DPU-accelerated SD honeypot security [...] Read more.
Software-defined (SD) honeypots, as dynamic cybersecurity technologies, enhance defense efficiency through flexible resource allocation. However, traditional SD honeypots face latency and jitter issues under network fluctuations, while balancing adjustment costs with defense benefits remains challenging. This paper proposes a DPU-accelerated SD honeypot security service deployment method, leveraging DPU hardware acceleration to optimize network traffic processing and protocol parsing, thereby significantly improving honeypot environment construction efficiency and response real-time performance. For dynamic attack–defense scenarios, we design an adaptive adjustment strategy combining Stackelberg game theory with deep reinforcement learning (AASGRL). By calculating the expected defense benefits and adjustment costs of optimal honeypot deployment strategies, the approach dynamically determines the timing and scope of honeypot adjustments. Simulation experiments demonstrate that the mechanism requires no adjustments in 80% of interaction rounds, while achieving enhanced defense benefits in 20% of rounds with controlled adjustment costs. Compared to traditional methods, the AASGRL mechanism maintains stable defense benefits in long-term interactions, verifying its effectiveness in balancing low costs and high benefits against dynamic attacks. This work provides critical technical support for building adaptive proactive network defense systems. Full article
Show Figures

Figure 1

22 pages, 2873 KB  
Article
Resource-Constrained Edge AI Solution for Real-Time Pest and Disease Detection in Chili Pepper Fields
by Hoyoung Chung, Jin-Hwi Kim, Junseong Ahn, Yoona Chung, Eunchan Kim and Wookjae Heo
Agriculture 2026, 16(2), 223; https://doi.org/10.3390/agriculture16020223 - 15 Jan 2026
Viewed by 124
Abstract
This paper presents a low-cost, fully on-premise Edge Artificial Intelligence (AI) system designed to support real-time pest and disease detection in open-field chili pepper cultivation. The proposed architecture integrates AI-Thinker ESP32-CAM module (ESP32-CAM) image acquisition nodes (“Sticks”) with a Raspberry Pi 5–based edge [...] Read more.
This paper presents a low-cost, fully on-premise Edge Artificial Intelligence (AI) system designed to support real-time pest and disease detection in open-field chili pepper cultivation. The proposed architecture integrates AI-Thinker ESP32-CAM module (ESP32-CAM) image acquisition nodes (“Sticks”) with a Raspberry Pi 5–based edge server (“Module”), forming a plug-and-play Internet of Things (IoT) pipeline that enables autonomous operation upon simple power-up, making it suitable for aging farmers and resource-limited environments. A Leaf-First 2-Stage vision model was developed by combining YOLOv8n-based leaf detection with a lightweight ResNet-18 classifier to improve the diagnostic accuracy for small lesions commonly occurring in dense pepper foliage. To address network instability, which is a major challenge in open-field agriculture, the system adopted a dual-protocol communication design using Hyper Text Transfer Protocol (HTTP) for Joint Photographic Experts Group (JPEG) transmission and Message Queuing Telemetry Transport (MQTT) for event-driven feedback, enhanced by Redis-based asynchronous buffering and state recovery. Deployment-oriented experiments under controlled conditions demonstrated an average end-to-end latency of 0.86 s from image capture to Light Emitting Diode (LED) alert, validating the system’s suitability for real-time decision support in crop management. Compared to heavier models (e.g., YOLOv11 and ResNet-50), the lightweight architecture reduced the computational cost by more than 60%, with minimal loss in detection accuracy. This study highlights the practical feasibility of resource-constrained Edge AI systems for open-field smart farming by emphasizing system-level integration, robustness, and real-time operability, and provides a deployment-oriented framework for future extension to other crops. Full article
(This article belongs to the Special Issue Smart Sensor-Based Systems for Crop Monitoring)
Show Figures

Figure 1

26 pages, 3626 KB  
Article
A Lightweight Frozen Multi-Convolution Dual-Branch Network for Efficient sEMG-Based Gesture Recognition
by Shengbiao Wu, Zhezhe Lv, Yuehong Li, Chengmin Fang, Tao You and Jiazheng Gui
Sensors 2026, 26(2), 580; https://doi.org/10.3390/s26020580 - 15 Jan 2026
Viewed by 128
Abstract
Gesture recognition is important for rehabilitation assistance and intelligent prosthetic control. However, surface electromyography (sEMG) signals exhibit strong non-stationarity, and conventional deep-learning models require long training time and high computational cost, limiting their use on resource-constrained devices. This study proposes a Frozen Multi-Convolution [...] Read more.
Gesture recognition is important for rehabilitation assistance and intelligent prosthetic control. However, surface electromyography (sEMG) signals exhibit strong non-stationarity, and conventional deep-learning models require long training time and high computational cost, limiting their use on resource-constrained devices. This study proposes a Frozen Multi-Convolution Dual-Branch Network (FMC-DBNet) to address these challenges. The model employs randomly initialized and fixed convolutional kernels for training-free multi-scale feature extraction, substantially reducing computational overhead. A dual-branch architecture is adopted to capture complementary temporal and physiological patterns from raw sEMG signals and intrinsic mode functions (IMFs) obtained through variational mode decomposition (VMD). In addition, positive-proportion (PPV) and global-average-pooling (GAP) statistics enhance lightweight multi-resolution representation. Experiments on the Ninapro DB1 dataset show that FMC-DBNet achieves an average accuracy of 96.4% ± 1.9% across 27 subjects and reduces training time by approximately 90% compared with a conventional trainable CNN baseline. These results demonstrate that frozen random-convolution structures provide an efficient and robust alternative to fully trained deep networks, offering a promising solution for low-power and computationally efficient sEMG gesture recognition. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 3704 KB  
Article
Accurate Position and Orientation Estimation for UWB-Only Systems Using a Single Dual-Antenna Module
by Che Zhang, Yan Li and Peng Han
Electronics 2026, 15(2), 369; https://doi.org/10.3390/electronics15020369 - 14 Jan 2026
Viewed by 133
Abstract
This paper proposes a complete cascade pipeline for accurate position and orientation estimation using a single dual-antenna UWB module. First, an extended Kalman filter (EKF) fuses distance measurements from multiple anchors to estimate the agent’s position. The estimated position is then used to [...] Read more.
This paper proposes a complete cascade pipeline for accurate position and orientation estimation using a single dual-antenna UWB module. First, an extended Kalman filter (EKF) fuses distance measurements from multiple anchors to estimate the agent’s position. The estimated position is then used to derive orientation. To overcome the critical challenge of front–back ambiguity in orientation estimation, we introduce a novel method that integrates a multi-hypothesis testing (MHT) framework with a circular likelihood metric (CLM). This method enumerates all feasible angle of arrival (AoA) hypotheses via MHT and assesses their consistency using the CLM, thereby selecting the most probable hypothesis to resolve ambiguity. Comparative simulations demonstrate that this “position-first, orientation-later” cascade enhances robustness over joint optimization by preventing the propagation of AoA noise to the position estimates. Extensive evaluations, including high-precision rotary table experiment and real-world field trials, validate the system’s efficacy in providing precise location and heading information. This work delivers a complete, low-cost, and robust solution for autonomous navigation in challenging environments. Full article
(This article belongs to the Special Issue Advanced Indoor Localization Technologies: From Theory to Application)
Show Figures

Figure 1

18 pages, 11774 KB  
Article
Retrieval Augment: Robust Path Planning for Fruit-Picking Robot Based on Real-Time Policy Reconstruction
by Binhao Chen, Shuo Zhang, Zichuan He and Liang Gong
Sustainability 2026, 18(2), 829; https://doi.org/10.3390/su18020829 - 14 Jan 2026
Viewed by 92
Abstract
The working environment of fruit-picking robots is highly complex, involving numerous obstacles such as branches. Sampling-based algorithms like Rapidly Exploring Random Trees (RRTs) are faster but suffer from low success rates and poor path quality. Deep reinforcement learning (DRL) has excelled in high-degree-of-freedom [...] Read more.
The working environment of fruit-picking robots is highly complex, involving numerous obstacles such as branches. Sampling-based algorithms like Rapidly Exploring Random Trees (RRTs) are faster but suffer from low success rates and poor path quality. Deep reinforcement learning (DRL) has excelled in high-degree-of-freedom (DOF) robot path planning, but typically requires substantial computational resources and long training cycles, which limits its applicability in resource-constrained and large-scale agricultural deployments. However, picking robot agents trained by DRL underperform because of the complexity and dynamics of the picking scenes. We propose a real-time policy reconstruction method based on experience retrieval to augment an agent trained by DRL. The key idea is to optimize the agent’s policy during inference rather than retraining, thereby reducing training cost, energy consumption, and data requirements, which are critical factors for sustainable agricultural robotics. We first use Soft Actor–Critic (SAC) to train the agent with simple picking tasks and less episodes. When faced with complex picking tasks, instead of retraining the agent, we reconstruct its policy by retrieving experience from similar tasks and revising action in real time, which is implemented specifically by real-time action evaluation and rejection sampling. Overall, the agent evolves into an augment agent through policy reconstruction, enabling it to perform much better in complex tasks with narrow passages and dense obstacles than the original agent. We test our method both in simulation and in the real world. Results show that the augment agent outperforms the original agent and sampling-based algorithms such as BIT* and AIT* in terms of success rate (+133.3%) and path quality (+60.4%), demonstrating its potential to support reliable, scalable, and sustainable fruit-picking automation. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop