Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (734)

Search Parameters:
Keywords = long-term homogeneity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2339 KB  
Article
An Operational Ground-Based Vicarious Radiometric Calibration Method for Thermal Infrared Sensors: A Case Study of GF-5A WTI
by Jingwei Bai, Yunfei Bao, Guangyao Zhou, Shuyan Zhang, Hong Guan, Mingmin Zhang, Yongchao Zhao and Kang Jiang
Remote Sens. 2026, 18(2), 302; https://doi.org/10.3390/rs18020302 - 16 Jan 2026
Viewed by 39
Abstract
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors [...] Read more.
High-resolution TIR missions require sustained and well-characterized radiometric accuracy to support applications such as land surface temperature retrieval, drought monitoring, and surface energy budget analysis. To address this need, we develop an operational and automated ground-based vicarious radiometric calibration framework for TIR sensors and demonstrate its performance using the Wide-swath Thermal Infrared Imager (WTI) onboard Gaofen-5 01A (GF-5A). Three arid Gobi calibration sites were selected by integrating Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products, Shuttle Radar Topography Mission (SRTM)-derived topography, and WTI-based radiometric uniformity metrics to ensure low cloud cover, flat terrain, and high spatial homogeneity. Automated ground stations deployed at Golmud, Dachaidan, and Dunhuang have continuously recorded 1 min contact surface temperature since October 2023. Field-measured emissivity spectra, Integrated Global Radiosonde Archive (IGRA) radiosonde profiles, and MODTRAN (MODerate resolution atmospheric TRANsmission) v5.2 simulations were combined to compute top-of-atmosphere (TOA) radiances, which were subsequently collocated with WTI imagery. After data screening and gain-stratified regression, linear calibration coefficients were derived for each TIR band. Based on 189 scenes from February–July 2024, all four bands exhibit strong linearity (R-squared greater than 0.979). Validation using 45 independent scenes yields a mean brightness–temperature root-mean-square error (RMSE) of 0.67 K. A full radiometric-chain uncertainty budget—including contact temperature, emissivity, atmospheric profiles, and radiative transfer modeling—results in a combined standard uncertainty of 1.41 K. The proposed framework provides a low-maintenance, traceable, and high-frequency solution for the long-term on-orbit radiometric calibration of GF-5A WTI and establishes a reproducible pathway for future TIR missions requiring sustained calibration stability. Full article
(This article belongs to the Special Issue Radiometric Calibration of Satellite Sensors Used in Remote Sensing)
Show Figures

Figure 1

31 pages, 4147 KB  
Article
Effects of Management and Climatic Variability on Indicator Species and Biomass Production in Carpathian Mountain Grasslands
by Ioana Ghețe, Borlea Mihaela, Claudiu Șerban and Alexandru Ghețe
Plants 2026, 15(2), 269; https://doi.org/10.3390/plants15020269 - 15 Jan 2026
Viewed by 84
Abstract
Carpathian mountain grasslands are increasingly affected by management intensification and climatic variability, with consequences for species composition and ecosystem functioning. This study assessed the long-term effects of a mineral fertilization gradient and interannual climatic variability on indicator species dynamics and biomass production in [...] Read more.
Carpathian mountain grasslands are increasingly affected by management intensification and climatic variability, with consequences for species composition and ecosystem functioning. This study assessed the long-term effects of a mineral fertilization gradient and interannual climatic variability on indicator species dynamics and biomass production in a semi-natural high-nature-value (HNV) grassland in the Apuseni Mountains, based on a 17-year field experiment. Increasing fertilization intensity promoted a clear shift from species-rich oligotrophic communities toward simplified mesotrophic and eutrophic grassland types, accompanied by a decline in indicator species richness and the increasing dominance of competitive grasses. Biomass production increased consistently along the fertilization gradient. Climate-driven effects were assessed using unfertilized control plots, allowing management effects to be disentangled from interannual climatic variability. Variations in temperature and precipitation influenced floristic composition and productivity across the years, highlighting the sensitivity of mountain grasslands to short-term climatic fluctuations. Multivariate analyses revealed increasing vegetation homogenization under high fertilization and distinct year-to-year shifts in species composition under unfertilized conditions. These results emphasize the vulnerability of Carpathian HNV grasslands to both nutrient enrichment and climatic variability, and underline the need for climate-adaptive, biodiversity-oriented management strategies. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

26 pages, 5542 KB  
Article
Diversity, Growth Parameters, and Ecosystem Services of Urban Trees Under Climate-Change Conditions: A Case Study of Topčider Park
by Nevenka Galečić, Djurdja Petrov, Dejan Skočajić, Jelena Čukanović, Radenka Kolarov, Sara Đorđević and Mirjana Ocokoljić
Forests 2026, 17(1), 114; https://doi.org/10.3390/f17010114 - 14 Jan 2026
Viewed by 194
Abstract
Urban tree planting is widely promoted for its benefits, but the long-term condition of trees is poorly documented, especially as changing and often incompatible conditions, intensified by climate change, affect their ability to deliver those benefits. A case study in Topčider Park (since [...] Read more.
Urban tree planting is widely promoted for its benefits, but the long-term condition of trees is poorly documented, especially as changing and often incompatible conditions, intensified by climate change, affect their ability to deliver those benefits. A case study in Topčider Park (since 1836) was conducted during 2025 through the evaluation of diversity, growth parameters, ornamental value, vitality, and total fresh biomass and the identification of tree taxa with high carbon-sequestration potential in Belgrade (Serbia). The data were statistically processed using descriptive statistics, the Shannon diversity and the Pielou evenness index, PCA, Spearman rank and Chi-square tests. The results indicated a wide distribution and high homogeneity of taxa, greater stability within Angiospermae and moderate stability within Gymnospermae, with PCA showing no correlations between growth parameters, vitality, and ornamental value, confirming the close proximity of all taxa. At the taxon level, London plane, English oak, Ginkgo and Bald cypress stood out in growth parameters, while the assessment of total fresh biomass for all 51 taxa highlighted London plane, Scots pine and Bald cypress as particularly productive and adaptive. Carbon sequestration and CO2 reduction varied with total fresh biomass. The study offers evidence-based recommendations for selecting urban tree taxa to enhance ecosystem services and support climate-adaptation efforts in urban planning. Full article
Show Figures

Figure 1

12 pages, 1121 KB  
Article
Mechanism of Hydrate Decomposition Influenced by Reservoir Structural Characteristics Around Hydrate Wells
by Jianhang Jiang, Zhandong Li, Yipeng Liang, Jiawen Zhu and Bo Han
Energies 2026, 19(2), 404; https://doi.org/10.3390/en19020404 - 14 Jan 2026
Viewed by 63
Abstract
As a future abundant and environmentally friendly clean energy source, the decomposition process of natural gas hydrates is significantly regulated by reservoir structural characteristics. Improper extraction can easily trigger geological hazards, yet current research on the coupling mechanism between wellbore microstructure and decomposition [...] Read more.
As a future abundant and environmentally friendly clean energy source, the decomposition process of natural gas hydrates is significantly regulated by reservoir structural characteristics. Improper extraction can easily trigger geological hazards, yet current research on the coupling mechanism between wellbore microstructure and decomposition remains incomplete. To elucidate the regulatory role of reservoir structural characteristics, this study employed a self-developed physical simulation system to conduct triaxial creep experiments. It compared the mechanical response and decomposition dynamics of sediments under layered and homogeneous hydrate distribution patterns, while simultaneously monitoring gas production and formation displacement parameters. Results indicate that layered distribution significantly influences overall sediment creep behavior and failure patterns: low-saturation sublayers dominate the creep softening–hardening mechanism, while strain evolution at different timescales and long-term bearing capacity are controlled by low- and high-saturation sublayers, respectively. Creep cohesion and internal friction angle exhibit distinct differences between the two distribution patterns, with the influence mechanisms of relevant mechanical indicators closely related to the roles of sublayers with varying saturations. The study also uncovers the intrinsic link between gas production and stratigraphic subsidence during hydrate decomposition, clarifying the core mechanism by which reservoir structures influence decomposition stability through regulating mechanical responses. The methodologies and conclusions of this research provide scientific support for predicting the long-term stability of natural gas hydrate reservoirs and enabling safe, efficient extraction, while laying the groundwork for the systematic development of comprehensive hydrate technologies. Full article
Show Figures

Figure 1

18 pages, 1527 KB  
Article
Optimization of Biodiesel Production from Waste Cooking Oil Using a Construction Industry Waste Cement as a Heterogeneous and Reusable Catalyst
by Jing Sun, Hongwei Chen, Hongjian Shen, Xiang Luo, Zezhou Lin and Honglei Zhang
Nanomaterials 2026, 16(2), 108; https://doi.org/10.3390/nano16020108 - 14 Jan 2026
Viewed by 109
Abstract
Biodiesel, which is a blend of fatty acid methyl esters (FAME), has garnered significant attention as a promising alternative to petroleum-based diesel fuel. Nevertheless, the commercial production of biodiesel faces challenges due to the high costs associated with feedstock and the non-recyclable homogeneous [...] Read more.
Biodiesel, which is a blend of fatty acid methyl esters (FAME), has garnered significant attention as a promising alternative to petroleum-based diesel fuel. Nevertheless, the commercial production of biodiesel faces challenges due to the high costs associated with feedstock and the non-recyclable homogeneous catalyst system. To address these issues, a solid catalyst derived from construction industry waste cement was synthesized and utilized for biodiesel production from waste cooking oil (WCO). The catalyst’s surface and physical characteristics were analyzed through various techniques, including Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FTIR). The waste-cement catalyst demonstrated remarkable catalytic performance and reusability in the transesterification of WCO with methanol for biodiesel synthesis. A maximum biodiesel yield of 98.1% was obtained under the optimal reaction conditions of reaction temperature 65 °C; methanol/WCO molar ratio 16:1; calcined cement dosage 3 g; and reaction time 8 h. The apparent activation energy (Ea) from the reaction kinetic study is 35.78 KJ·mol−1, suggesting that the transesterification reaction is governed by kinetic control rather than diffusion. The biodiesel produced exhibited high-quality properties and can be utilized in existing diesel engines without any modifications. This research presents a scalable, environmentally benign pathway for WCO transesterification, thereby contributing significantly to the economic viability and long-term sustainability of the global biodiesel industry. Full article
Show Figures

Figure 1

18 pages, 3879 KB  
Article
Asphalt as a Plasticizer for Natural Rubber in Accelerated Production of Rubber-Modified Asphalt
by Bahruddin Ibrahim, Zuchra Helwani, Jahrizal, Nasruddin, Arya Wiranata, Edi Kurniawan and Anjar Siti Mashitoh
Constr. Mater. 2026, 6(1), 4; https://doi.org/10.3390/constrmater6010004 - 9 Jan 2026
Viewed by 164
Abstract
One of the main obstacles to producing natural rubber-modified asphalt is the difficulty of mixing Technical Specification Natural Rubber (TSNR) or its compounds with asphalt, leading to long mixing times and high costs. This study aims to evaluate the use of 60/70 penetration [...] Read more.
One of the main obstacles to producing natural rubber-modified asphalt is the difficulty of mixing Technical Specification Natural Rubber (TSNR) or its compounds with asphalt, leading to long mixing times and high costs. This study aims to evaluate the use of 60/70 penetration asphalt as a plasticizer to accelerate the mixing process and improve the rheological properties of modified asphalt using Technical Specification Natural Rubber (TSNR). The production process for technical specification natural rubber-modified asphalt involves two stages: the production of the technical specification natural rubber compound (CTSNR) and the production of CTSNR-based modified asphalt (CTSNRMA). The CTSNR production process begins with mastication of technical specification natural rubber (TSNR), followed by the addition of activators (zinc oxide, stearic acid), accelerators (Mercaptobenzothiazole sulfenamide (MBTS)), antioxidants (2,2,4-Trimethyl-1,2-dihydroquinoline (TMQ)), and 60/70 penetration asphalt as a plasticizer (at concentrations of 30%, 40%, and 50%). After homogeneous mixing for 30–60 min, the CTSNR is diluted 5–10 mm for the next mixing stage with hot asphalt at 160–170 °C. The best results of this study showed that CTSNR-modified asphalt with 4% rubber content and 50% plasticizer (CTSNRM-450) successfully reduced the mixing time to 16 min, making it more efficient than the traditional method, which takes up to 180 min. The addition of asphalt plasticizer decreased penetration to 35.6 dmm and increased the softening point to 55.4 °C. The CTSNRMA-440 formula, with 4% rubber content and 40% plasticizer, produced the best results in terms of storage stability, meeting the ASTM D5892 standard with a softening-point difference of 0.95 °C, which is well below the threshold of 2.2 °C. The CTSNRMA-440 sample achieved a Performance Grade (PG) of 76, suitable for hot-climate conditions, with a significant reduction in mixing time, greater stability, and increased resistance to high temperatures. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
Show Figures

Figure 1

18 pages, 2480 KB  
Article
Polysaccharides Extraction from Opuntia milpa alta and Their Protective Effect on Alcohol-Induced Neuro 2a Cell Damage via Ferroptosis
by Congyue Xu, Lin Chen, Qin Ru and Yuxiang Wu
Foods 2026, 15(2), 249; https://doi.org/10.3390/foods15020249 - 9 Jan 2026
Viewed by 230
Abstract
Alcohol enters the brain through the blood–brain barrier and causes neuronal damage in various ways, additionally long-term and heavy drinking also leads to both structural and functional changes in the central nervous system. Currently, there is a lack of specific therapeutic approaches for [...] Read more.
Alcohol enters the brain through the blood–brain barrier and causes neuronal damage in various ways, additionally long-term and heavy drinking also leads to both structural and functional changes in the central nervous system. Currently, there is a lack of specific therapeutic approaches for alcohol-induced nerve injury. Opuntia milpa alta polysaccharides (MAPs) have various physiological activities such as antioxidant, anti-inflammatory, and neuroprotective effects, but it is not clear how they protect against alcohol-induced nerve injury. In this study, firstly, we structurally characterized homemade MAPs and analyzed the relevance of MAPs in protecting against alcoholic neuronal cell injury and ferroptosis. The results showed that MAPs consisted of nine different monosaccharides and uronic acids. High performance gel permeation chromatography analysis showed that MAPs were homogeneous heteropolysaccharides with an average molecular weight of 8.79 × 106 Da. Fourier infrared spectroscopy showed that they had sulfated pyranopolysaccharides with uronic acids and both α-glycosidic and β-glycosidic bonds were present. Specific signals of these sugars were observed in 1H and 13C NMR spectra. Favorable thermal stability was manifested up to 256 °C. The MAPs had a three-stranded helical structure and a low overall crystallinity. Iron staining showed that alcohol caused significant brown deposition in cells. MAPs significantly ameliorated alcohol-induced cellular damage, reduced iron deposition, and orchestrated the expression of proteins associated with ferroptosis. These results suggest that MAPs protect against alcohol-induced neurological damage, possibly by impeding the onset of cellular ferroptosis. Full article
Show Figures

Figure 1

17 pages, 2421 KB  
Article
SEM-Based Evaluation and Quantitative Validation of ICON Resin Infiltration in Sound Enamel: A Microinvasive Preventive Strategy in Orthodontics
by Alexandra Ecaterina Saveanu, Catalina Iulia Saveanu, Oana Dragos, Maria Sophia Saveanu and Daniela Anistoroaei
Prosthesis 2026, 8(1), 8; https://doi.org/10.3390/prosthesis8010008 - 9 Jan 2026
Viewed by 125
Abstract
Background: Resin infiltration has emerged as a micro-invasive strategy for managing enamel porosities, offering both therapeutic and aesthetic benefits. ICON® (DMG, Hamburg, Germany) is the most widely used system; however, evidence on its penetration behavior in sound enamel remains limited. Objectives: This [...] Read more.
Background: Resin infiltration has emerged as a micro-invasive strategy for managing enamel porosities, offering both therapeutic and aesthetic benefits. ICON® (DMG, Hamburg, Germany) is the most widely used system; however, evidence on its penetration behavior in sound enamel remains limited. Objectives: This in vitro study aimed to evaluate the penetration depth and morphological pattern of ICON resin infiltration in sound human enamel, using quantitative morphometric analysis and scanning electron microscopy (SEM). Methods: Fourteen freshly extracted, caries-free anterior teeth were sectioned longitudinally. ICON® resin infiltrate was applied to the buccal enamel surfaces according to the manufacturer’s protocol, while the lingual/palatal surfaces served as internal controls. Penetration depth was measured quantitatively on both mesial (surface A) and distal (surface B) halves, and SEM was used to assess resin–enamel interface morphology. Statistical analysis included the Shapiro–Wilk test, paired t-test, Pearson correlation, and percentage difference calculation. Results: The mean difference in penetration depth between surfaces A and B was −21.29 µm (p = 0.525), indicating no statistically significant variation. A strong positive correlation was observed between surfaces (r = 0.783, p = 0.001). The mean percentage difference was −3.57% (SD = 18.61%), suggesting minimal directional bias. SEM images confirmed continuous and homogeneous resin infiltration within enamel prisms. Post-hoc power analysis indicated 15.2% power, reflecting the impact of the limited sample size typical for SEM-based exploratory studies. Conclusions: Within the limitations of this in vitro investigation, ICON resin infiltration demonstrated uniform and consistent penetration in sound enamel, supported by both quantitative and SEM analyses. These findings validate its potential as a reliable preventive and micro-invasive biomaterial in dental practice, particularly for protecting enamel surfaces prior to orthodontic bracket bonding. Further clinical research with larger cohorts is recommended to confirm its long-term stability and prophylactic performance. Full article
Show Figures

Figure 1

12 pages, 4196 KB  
Article
Aging-Dependent Repair Performance and Interfacial Durability of New–Aged Waterproof Membrane Systems
by Chao Zhang, Xian Li, Xiaopeng Li, Longjiang Yang, Guojun Sun and Xingpeng Ma
Polymers 2026, 18(2), 163; https://doi.org/10.3390/polym18020163 - 7 Jan 2026
Viewed by 181
Abstract
Waterproofing systems frequently experience performance degradation during long-term service due to material aging and structural deformation, thereby necessitating localized repair interventions. The bonding interface between newly applied and existing membrane materials is a critical determinant of repair effectiveness. In this study, the aging-dependent [...] Read more.
Waterproofing systems frequently experience performance degradation during long-term service due to material aging and structural deformation, thereby necessitating localized repair interventions. The bonding interface between newly applied and existing membrane materials is a critical determinant of repair effectiveness. In this study, the aging-dependent repair performance of three representative waterproof membrane systems was systematically investigated using peel strength testing, low-temperature flexibility assessment, and interfacial morphology analysis under thermal–oxidative aging for 2, 5, 14, and 28 days. The results demonstrate that the homogeneous repair system based on ultra-thin reinforced self-adhesive polymer-modified bituminous membranes exhibits superior overall performance, maintaining the highest peel strength with only minor degradation even after 28 days of accelerated aging. In contrast, the polymeric butyl self-adhesive membrane subjected to homogeneous repair exhibited rapid adhesion degradation after 14 days, whereas the heterogeneous repair system showed improved stability during intermediate aging stages. Low-temperature flexibility testing further revealed that root-resistant bituminous membranes exhibited a slower aging rate, with a cracking temperature increase of 7 °C after 28 days, compared to a 10 °C increase observed for ultra-thin self-adhesive membranes. These quantitative findings provide clear guidance for the selection of appropriate repair membrane systems under varying aging conditions in waterproofing engineering, particularly for maintenance and rehabilitation applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

22 pages, 31354 KB  
Article
Heritage Conservation and Management of Traditional Anhui Dwellings Using 3D Digitization: A Case Study of the Architectural Heritage Clusters in Huangshan City
by Jianfu Chen, Jie Zhong, Qingqian Ning, Zhengjia Xu and Hiroatsu Fukuda
Buildings 2026, 16(1), 211; https://doi.org/10.3390/buildings16010211 - 2 Jan 2026
Viewed by 476
Abstract
Traditional villages stand as irreplaceable treasures of global cultural heritage, embodying profound historical, cultural, and esthetic values. However, the accelerating pace of urbanization has exposed them to unprecedented threats, including structural degradation, loss of intangible cultural practices, and the homogenization of rural landscapes. [...] Read more.
Traditional villages stand as irreplaceable treasures of global cultural heritage, embodying profound historical, cultural, and esthetic values. However, the accelerating pace of urbanization has exposed them to unprecedented threats, including structural degradation, loss of intangible cultural practices, and the homogenization of rural landscapes. In recent years, three-dimensional (3D) laser scanning, unmanned aerial vehicles (UAVs), and other advanced geospatial technologies have been increasingly applied in the conservation and restoration of architectural heritage. The digital documentation of traditional dwellings not only ensures the accuracy and efficiency of conservation efforts but also minimizes physical intervention, thereby safeguarding the authenticity and integrity of heritage sites. This study examines the architectural characteristics and conservation challenges of traditional Huizhou dwellings in Huangshan City, Anhui Province, by integrating oblique photogrammetry, terrestrial laser scanning (TLS), and 3D modeling. Close-range photogrammetry, combined with image matching algorithms and computer vision techniques, was used to produce highly detailed 3D models of historical structures. UAV-based data acquisition was further employed to generate Heritage Building Information Modeling (HBIM) from point cloud datasets, which were subsequently pre-processed and denoised for restoration simulations. In addition, HBIM was utilized to conduct quantitative analyses of architectural components, providing critical support for heritage management and decision-making in conservation planning. The findings demonstrate that 3D digitization offers a sustainable and replicable model for the protection, revitalization, and adaptive reuse of traditional villages, contributing to the long-term preservation of their cultural and architectural legacy. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

28 pages, 2206 KB  
Article
A Look Back and a Leap Forward: Towards Sustainable Household Segregated Waste Management at Civic Amenity Sites in Białostocki County, a Predominantly Rural Region in Poland
by Aurelia Blazejczyk, Łukasz Wodzyński, Dorota Kula, Agata Kocia, Agnieszka Bęś, Łukasz Sikorski, Wojciech Truszkowski, Alicja Słupska and Maja Radziemska
Sustainability 2026, 18(1), 231; https://doi.org/10.3390/su18010231 - 25 Dec 2025
Viewed by 391
Abstract
Effective municipal waste management is fundamental to environmental sustainability and the circular economy. This case study assesses the operational effectiveness of the Recycling/Civic Amenity Site (CAS) network in Białostocki county, Poland, during the 2014–2018 national waste management transition. A multi-criteria assessment was employed, [...] Read more.
Effective municipal waste management is fundamental to environmental sustainability and the circular economy. This case study assesses the operational effectiveness of the Recycling/Civic Amenity Site (CAS) network in Białostocki county, Poland, during the 2014–2018 national waste management transition. A multi-criteria assessment was employed, integrating compliance audits, infrastructure checks, and spatial analysis of waste type distributions to evaluate CAS operations. The findings reveal a socio-economic divergence between more urbanised (town-and-village) and purely rural (village) municipalities, which is directly reflected in their distinct waste composition patterns. The town-and-village areas produced homogeneous, high-quality packaging waste streams that support recycling goals. Conversely, the village municipalities generated more commingled, heterogeneous streams that challenge recycling efforts. An optimised CAS model was proposed for the county to enhance sustainability by adaptively differentiating CAS services to local needs. However, a direct stock-take of all 16 CASs revealed significant infrastructural disparities, limiting the model’s potential. The study concludes that overcoming both the qualitative waste stream divergence and quantitative infrastructure disparities through tailored strategies is essential for meeting national recycling targets and achieving long-term sustainability. The methodology provides a replicable framework for pinpointing the root causes of inefficient operations, offering local authorities evidence-based tools to optimise CAS design and ensure infrastructure investments directly support overarching sustainability goals. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

28 pages, 6693 KB  
Article
Optimization of Microfluidizer-Produced PLGA Nano-Micelles for Enhanced Stability and Antioxidant Efficacy: A Quality by Design Approach
by Esma Nur Develi Arslanhan, Fatemeh Bahadori, Zahra Eskandari, Muhammed Zahid Kasapoglu and Erkan Mankan
Pharmaceutics 2026, 18(1), 25; https://doi.org/10.3390/pharmaceutics18010025 - 25 Dec 2025
Viewed by 361
Abstract
Introduction: In this study, we aimed to optimize the microfluidizer-based preparation of poly(lactic-co-glycolic acid) nano-micelles (PLGANM), increasingly used for parenteral delivery of poorly water-soluble drugs but typically exhibiting poor physical stability when produced by conventional methods. Method: By systematically tuning microfluidization (MFZ) parameters, [...] Read more.
Introduction: In this study, we aimed to optimize the microfluidizer-based preparation of poly(lactic-co-glycolic acid) nano-micelles (PLGANM), increasingly used for parenteral delivery of poorly water-soluble drugs but typically exhibiting poor physical stability when produced by conventional methods. Method: By systematically tuning microfluidization (MFZ) parameters, we demonstrate an efficient strategy to enhance PLGANM stability and ensure robust, scalable manufacturing, relevant for long-term storage and clinical translation applications. The influence of several key factors designed by Central Composite Design (CCD), including the amount of PLGA and Tween 80, homogenization pressure, and number of passes of MFZ on the size, polydispersity (measured by DLS), and hence stability of the PLGANM, was analyzed for 60 days. 60 PLGANMs produced by the MFZ method (PMFZ) were compared with the PLGANM consisting of equivalent amounts of PLGA and T80 produced using the traditional oil-in-water method (POW). Desired limits were set to minimize standard deviations for Z-average, Zeta Potential, and PDI. Results: Coded variables for optimized PMFZ (OPMFZ) were found to be 82.96 mg PLGA, 6.78 mL 5% T80, 11,000 psi pressure, and 1 pass. Conclusions: This study demonstrates that microfluidization, when guided by a QbD framework, offers precise control over particle attributes and enables reproducible production of stable PLGANM. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

22 pages, 6315 KB  
Article
Intensification of SUHI During Extreme Heat Events: An Eight-Year Summer Analysis for Lecce (2018–2025)
by Antonio Esposito, Riccardo Buccolieri, Jose Luis Santiago and Gianluca Pappaccogli
Climate 2026, 14(1), 2; https://doi.org/10.3390/cli14010002 - 22 Dec 2025
Viewed by 628
Abstract
The effects of extreme heat events on Surface Urban Heat Island Intensity (SUHII) were investigated in Lecce (southern Italy) during the summer months (June–August) from 2018 to 2025. The analysis began with the identification of heatwave frequency, duration, and intensity using the Warm [...] Read more.
The effects of extreme heat events on Surface Urban Heat Island Intensity (SUHII) were investigated in Lecce (southern Italy) during the summer months (June–August) from 2018 to 2025. The analysis began with the identification of heatwave frequency, duration, and intensity using the Warm Spell Duration Index (WSDI), based on a homogenized long-term temperature record, which indicated a progressive increase in persistent extreme events in recent years. High-resolution ECOSTRESS land surface temperature (LST) data were then processed and combined with CORINE Land Cover (CLC) information to examine the thermal response of different urban fabrics, compact residential areas, continuous/discontinuous urban fabric, and industrial–commercial zones. SUHII was derived from each ECOSTRESS acquisition and evaluated across multiple diurnal intervals to assess temporal variability under both normal and WSDI conditions. The results show a consistent diurnal asymmetry: daytime SUHII becomes more negative during WSDI periods, reflecting enhanced rural warming under dry and highly irradiated conditions, despite overall higher absolute LST during heatwaves, whereas nighttime SUHII intensifies, particularly in dense urban areas where higher thermal inertia promotes persistent heat retention. Statistical analyses confirm significant differences between normal and extreme conditions across all classes and time intervals. These findings demonstrate that extreme heat events alter the urban–rural thermal contrast by amplifying nighttime heat accumulation and reinforcing daytime negative SUHII values. The integration of WSDI-derived heatwave characterization with multi-year ECOSTRESS observations highlights the increasing thermal vulnerability of compact urban environments under intensifying summer extremes. Full article
(This article belongs to the Section Sustainable Urban Futures in a Changing Climate)
Show Figures

Figure 1

19 pages, 3233 KB  
Article
Engineering Human 3D Cardiac Tissues for Predictive Functional Drug Screening
by Ester Sapir Baruch, Daniel Rosner, Elisabeth Riska, Moran Yadid, Assaf Shapira and Tal Dvir
Pharmaceutics 2026, 18(1), 18; https://doi.org/10.3390/pharmaceutics18010018 - 22 Dec 2025
Viewed by 500
Abstract
Background/Objectives: Cardiotoxicity remains a leading cause of drug withdrawal. Conventional preclinical models, such as two-dimensional (2D) cell cultures and animal studies, often fail to accurately predict human cardiac responses. While 2D cultures lack the complex architecture and dynamic functionality of native myocardium, [...] Read more.
Background/Objectives: Cardiotoxicity remains a leading cause of drug withdrawal. Conventional preclinical models, such as two-dimensional (2D) cell cultures and animal studies, often fail to accurately predict human cardiac responses. While 2D cultures lack the complex architecture and dynamic functionality of native myocardium, interspecies differences limit the translational relevance of animal models. The objective of this study was to develop a human-relevant, in vitro platform that enables predictive and functional assessment of drug-induced cardiotoxicity. Methods: Here, we present a high-throughput in vitro platform for cardiotoxicity screening using three-dimensional (3D) cardiac tissues derived from human induced pluripotent stem cells (hiPSCs) within a thermoresponsive extracellular matrix-derived hydrogel. The hydrogel enables homogeneous encapsulation, differentiation in 3D, and long-term assembly into a functional cardiac tissue. Maturation was validated by immunostaining for cardiac-specific markers, and calcium imaging was employed to monitor electrical signal propagation. Contractile performance, defined by beat rate and contraction amplitude, was quantified using video-based motion analysis. The platform was applied to evaluate the dose-dependent effects of various cardioactive compounds, including β-adrenergic agonists ((-) epinephrine and dopamine), a cardiotoxic chemotherapeutic (doxorubicin), a sinus node inhibitor (ivabradine), a calcium channel blocker (verapamil), and a β-adrenergic antagonist (metoprolol). Results: The engineered cardiac tissues exhibited functional maturation and stable contractile behavior. Drug testing demonstrated compound-specific, dose-dependent functional responses. For each compound, the system faithfully reproduced the expected physiological responses. Conclusions: This human-relevant, scalable platform enables sensitive, multiparametric functional assessment of cardiac tissues, offering a cost-effective and predictive tool for preclinical drug safety testing. By bridging the gap between in vitro assays and human physiology, it holds promise to enhance translational accuracy while reducing reliance on animal models. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

14 pages, 3391 KB  
Article
Synthesis and Lithium Storage Properties of Spinel (Al0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 High-Entropy Oxide
by Changqing Jin, Mingyu Yuan, Dengyu Tian, Jiaying Jian, Yongxing Wei, Ruihua Nan, Zhong Yang and Qingping Ding
Inorganics 2026, 14(1), 1; https://doi.org/10.3390/inorganics14010001 - 19 Dec 2025
Viewed by 303
Abstract
High-entropy oxides (HEOs) have garnered significant interest as next-generation anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and excellent structural stability. This study successfully synthesized spinel-structured (Al0.2Mn0.2Co0.2Ni0.2Zn0.2)3 [...] Read more.
High-entropy oxides (HEOs) have garnered significant interest as next-generation anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and excellent structural stability. This study successfully synthesized spinel-structured (Al0.2Mn0.2Co0.2Ni0.2Zn0.2)3O4 HEO via a sol–gel method. The material was characterized by XRD, Raman and TEM, confirming a homogeneous single-phase spinel structure, with uniformly distributed elements-a hallmark of HEOs. Electrochemical tests demonstrated a stable cycling performance (438 mAh g−1 at 100 mA g−1 after 100 cycles and 350 mAh g−1 at 1 A g−1 after 1000 cycles) and rate capacity of 159 mAh g−1 at 2 A g−1, The remarkable long-term cyclability and good rate capability highlight the potential of this HEO for practical applications in durable, high-power lithium-ion batteries. This work underscores the advantage of incorporating structurally stabilizing elements in HEOs for advanced energy storage. Full article
Show Figures

Graphical abstract

Back to TopTop