Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = locomotion of bio-inspired soft robots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7235 KB  
Article
Data-Driven Tracing and Directional Control Strategy for a Simulated Continuum Robot Within Anguilliform Locomotion
by Mostafa Sayahkarajy and Hartmut Witte
Appl. Sci. 2025, 15(18), 10045; https://doi.org/10.3390/app151810045 - 14 Sep 2025
Viewed by 755
Abstract
Biorobotics leverages the principles of natural locomotion to enhance the mobility of bioinspired aquatic robots. Among various swimming modes, anguilliform locomotion is particularly recognized as an energy-efficient mode incorporating complex multiphysics. Due to whole-body undulation, the determination of the anguilliform swimmer’s direction is [...] Read more.
Biorobotics leverages the principles of natural locomotion to enhance the mobility of bioinspired aquatic robots. Among various swimming modes, anguilliform locomotion is particularly recognized as an energy-efficient mode incorporating complex multiphysics. Due to whole-body undulation, the determination of the anguilliform swimmer’s direction is not trivial. Furthermore, the neuromuscular mechanism that controls straight swimming is not fully understood. This study investigates the challenge of predicting and controling the gross motion trajectory of a soft robot that utilizes anguilliform swimming. The robot consists of a six-segment continuous body, where each segment is actuated with pneumatic artificial muscles. A mode extraction technique based on dynamic mode decomposition (DMD) is proposed to identify the robot’s future state. Using the complex-variable delay embedding (CDE) technique, the CDE DMD algorithm is developed to predict the robot trajectory trend. To vary the robot direction, a hypothesis that asymmetric sidewise actuation results in slightly different fluid velocities between the left and right sides of the robot was investigated using COMSOL Multiphysics® 6.2. The simulation results demonstrate the CDE DMD’s ability to predict gross motion across various scenarios. Furthermore, integrating the prediction model with the asymmetric actuation rule provides a control strategy for directional stability of the robot. Simulations of the closed-loop system with non-zero initial pose (step response) indicate the performance in maintaining straight-line swimming with approximately a 60s settling time. Full article
(This article belongs to the Special Issue Application of Computer Science in Mobile Robots II)
Show Figures

Figure 1

15 pages, 9602 KB  
Article
Photothermal and Magnetic Actuation of Multimodal PNIPAM Hydrogel-Based Soft Robots
by Xiangyu Teng, Zhizheng Gao, Xuehao Feng, Shuliang Zhu and Wenguang Yang
Gels 2025, 11(9), 692; https://doi.org/10.3390/gels11090692 - 1 Sep 2025
Viewed by 1307
Abstract
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating [...] Read more.
Soft robot motion performance has long been a core focus in scientific research. This study investigates the motion capabilities of soft robots constructed using poly(N-isopropylacrylamide) (PNIPAM) hydrogels, with key innovations in material design and functional enhancement. By optimizing the hydrogel formulation and incorporating molybdenum disulfide (MoS2) to endow it with photothermal response properties, the material achieves muscle-like controllable contraction and expansion deformation—a critical breakthrough in mimicking biological motion mechanics. Building on this material advancement, the research team developed a series of soft robotic prototypes to systematically explore the hydrogel’s motion characteristics. A flytrap-inspired soft robot demonstrates rapid opening–closing movements, replicating the swift responsiveness of natural carnivorous plants. For terrestrial locomotion, a hexapod crawling robot utilizes the photo-induced stretch-recovery mechanism of both horizontally configured and pre-bent feet to achieve stable directional propulsion. Most notably, a magnetically driven rolling robot integrates magnetic units to realize versatile multimodal movement: it achieves a stable rolling speed of 1.8 cm/s across flat surfaces and can surmount obstacles up to 1.5 times its own body size. This work not only validates the strong potential of PNIPAM hydrogel-based soft robots in executing complex motion tasks but also provides valuable new insights for the development of multimodal soft robotic systems, paving the way for future innovations in adaptive and bio-inspired robotics. Full article
(This article belongs to the Special Issue Functional Hydrogels for Soft Electronics and Robotic Applications)
Show Figures

Figure 1

19 pages, 7661 KB  
Article
Bioinspired Kirigami Structure for Efficient Anchoring of Soft Robots via Optimization Analysis
by Muhammad Niaz Khan, Ye Huo, Zhufeng Shao, Ming Yao and Umair Javaid
Appl. Sci. 2025, 15(14), 7897; https://doi.org/10.3390/app15147897 - 15 Jul 2025
Cited by 2 | Viewed by 1214
Abstract
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the [...] Read more.
Kirigami-inspired geometries offer a lightweight, bioinspired strategy for friction enhancement and anchoring in soft robotics. This study presents a bioinspired kirigami structure designed to enhance the anchoring performance of soft robotic systems through systematic geometric and actuation parameter optimization. Drawing inspiration from the anisotropic friction mechanisms observed in reptilian scales, we integrated linear, triangular, trapezoidal, and hybrid kirigami cuts onto flexible plastic sheets. A compact 12 V linear actuator enabled cyclic actuation via a custom firmware loop, generating controlled buckling and directional friction for effective locomotion. Through experimental trials, we quantified anchoring efficiency using crawling distance and stride metrics across multiple cut densities and actuation conditions. Among the tested configurations, the triangular kirigami with a 4 × 20 unit density on 100 µm PET exhibited the most effective performance, achieving a stride efficiency of approximately 63% and an average crawling speed of ~47 cm/min under optimized autonomous operation. A theoretical framework combining buckling mechanics and directional friction validated the observed trends. This study establishes a compact, tunable anchoring mechanism for soft robotics, offering strong potential for autonomous exploration in constrained environments. Full article
(This article belongs to the Special Issue Advances in Robotics and Autonomous Systems)
Show Figures

Figure 1

15 pages, 33163 KB  
Article
An Optimised Spider-Inspired Soft Actuator for Extraterrestrial Exploration
by Jonah Mack, Maks Gepner, Francesco Giorgio-Serchi and Adam A. Stokes
Biomimetics 2025, 10(7), 455; https://doi.org/10.3390/biomimetics10070455 - 11 Jul 2025
Cited by 1 | Viewed by 1651
Abstract
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an [...] Read more.
Extraterrestrial exploration presents unique challenges for robotic systems, as traditional rigid rovers face limitations in stowage volume, traction on unpredictable terrain, and susceptibility to damage. Soft robotics offers promising solutions through bio-inspired designs that can mimic natural locomotion mechanisms. Here, we present an optimised, spider-inspired soft jumping robot for extraterrestrial exploration that addresses key challenges in soft robotics: actuation efficiency, controllability, and deployment. Drawing inspiration from spider physiology—particularly their hydraulic extension mechanism—we develop a lightweight limb capable of multi-modal behaviour with significantly reduced energy requirements. Our 3D-printed soft actuator leverages pressure-driven collapse for efficient retraction and pressure-enhanced rapid extension, achieving a power-to-weight ratio of 249 W/kg. The integration of a non-backdriveable clutch mechanism enables the system to hold positions with zero energy expenditure—a critical feature for space applications. Experimental characterisation and a subsequent optimisation methodology across various materials, dimensions, and pressures reveal that the robot can achieve jumping heights of up to 1.86 times its body length. The collapsible nature of the soft limb enables efficient stowage during spacecraft transit, while the integrated pumping system facilitates self-deployment upon arrival. This work demonstrates how biologically inspired design principles can be effectively applied to develop versatile robotic systems optimised for the unique constraints of extraterrestrial exploration. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Graphical abstract

22 pages, 3369 KB  
Article
A Bio-Inspired Data-Driven Locomotion Optimization Framework for Adaptive Soft Inchworm Robots
by Mahtab Behzadfar, Arsalan Karimpourfard and Yue Feng
Biomimetics 2025, 10(5), 325; https://doi.org/10.3390/biomimetics10050325 - 16 May 2025
Viewed by 1637
Abstract
This paper presents a data-driven framework for optimizing energy-efficient locomotion in a bio-inspired soft inchworm robot. Leveraging a feedforward neural network, the proposed approach accurately models the nonlinear relationships between actuation parameters (pressure, frequency) and environmental conditions (surface friction). The neural network achieves [...] Read more.
This paper presents a data-driven framework for optimizing energy-efficient locomotion in a bio-inspired soft inchworm robot. Leveraging a feedforward neural network, the proposed approach accurately models the nonlinear relationships between actuation parameters (pressure, frequency) and environmental conditions (surface friction). The neural network achieves superior velocity prediction performance, with a coefficient of determination (R2) of 0.9362 and a root mean squared error (RMSE) of 0.3898, surpassing previously reported models, including linear regression, LASSO, decision trees, and random forests. Particle Swarm Optimization (PSO) is integrated to maximize locomotion efficiency by optimizing the velocity-to-pressure ratio and adaptively minimizing input pressure for target velocities across diverse terrains. Experimental results demonstrate that the framework achieves an average 9.88% reduction in required pressure for efficient movement and a 6.45% reduction for stable locomotion, with the neural network enabling robust adaptation to varying surfaces. This dual optimization strategy ensures both energy savings and adaptive performance, advancing the deployment of soft robots in diverse environments. Full article
Show Figures

Figure 1

19 pages, 9585 KB  
Article
Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique
by Mostafa Sayahkarajy and Hartmut Witte
Biomimetics 2025, 10(1), 60; https://doi.org/10.3390/biomimetics10010060 - 16 Jan 2025
Cited by 3 | Viewed by 1510
Abstract
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid–body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers’ dynamics without implicitly measuring the hydrodynamic variables. This work proposes [...] Read more.
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid–body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers’ dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot. The robot comprises six serially connected segments that can individually bend with the segmental pneumatic artificial muscles. Kinematic equations and relations are proposed to measure the desired actuation to mimic anguilliform locomotion kinematics. The robot was tested experimentally and the position and velocities of spatially digitized points were collected using QualiSys® Tracking Manager (QTM) 1.6.0.1. The collected data were analyzed offline, proposing a new complex variable delay-embedding dynamic mode decomposition (CDE DMD) algorithm that combines complex state filtering and time embedding to extract a linear approximate model. While the experimental results exhibited exotic curves in phase plane and time series, the analysis results showed that the proposed algorithm extracts linear and chaotic modes contributing to the data. It is concluded that the robot dynamics can be described by the linearized model interrupted by chaotic modes. The technique successfully extracts coherent modes from limited measurements and linearizes the system dynamics. Full article
(This article belongs to the Special Issue Bio-Inspired Approaches—a Leverage for Robotics)
Show Figures

Figure 1

15 pages, 8087 KB  
Article
A Novel Caterpillar-Inspired Vascular Interventional Robot Navigated by Magnetic Sinusoidal Mechanism
by Xinping Zhu, Hanwei Zhou, Xiaoxiao Zhu and Kundong Wang
Actuators 2024, 13(10), 412; https://doi.org/10.3390/act13100412 - 13 Oct 2024
Cited by 3 | Viewed by 4941
Abstract
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can [...] Read more.
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can safely adapt to complex vessel structures. Existing commercial MSCRs primarily employ a magnetic-pull strategy, which suffers from insufficient driving force and a single actuation strategy, limiting their clinical applicability. Inspired by the inchworm crawling locomotion gait, we herein present a novel MSCR that integrates a magnetic sinusoidal actuation mechanism with adjustable frequency and kirigami structures. The developed MSCRs consist of two permanent magnets connected by a micro-spring, which is coated with a silicone membrane featuring a specific notch array. This design enables bio-inspired crawling with controllable velocity and active maneuverability. An analytical model of the magnetic torque and finite element analysis (FEA) simulations of the MSCRs has been constructed. Additionally, the prototype has been validated through two-dimensional in-vitro tracking experiments with actuation frequencies ranging from 1 to 10 Hz. Its stride efficiency has also been verified in a three-dimensional (3D) coronary artery phantom. Diametrically magnetized spherical chain tip enhances active steerability. Kirigami skin is coated over the novel guidewire and catheter, not only providing proximal anchorage for improved stride efficiency but also serving similar function as a cutting balloon. Under the actuation of an external magnetic field, the proposed MSCRs demonstrate the ability to traverse bifurcations and tortuous paths, indicating their potential for dexterous flexibility in pathological vessels. Full article
(This article belongs to the Special Issue Design of Smart Endorobots: Actuators, Sensors and Control Strategies)
Show Figures

Figure 1

20 pages, 11106 KB  
Article
Analysis of Robot–Environment Interaction Modes in Anguilliform Locomotion of a New Soft Eel Robot
by Mostafa Sayahkarajy and Hartmut Witte
Actuators 2024, 13(10), 406; https://doi.org/10.3390/act13100406 - 7 Oct 2024
Cited by 5 | Viewed by 2436
Abstract
Bio-inspired robots with elongated anatomy, like eels, are studied to discover anguilliform swimming principles and improve the robots’ locomotion accordingly. Soft continuum robots replicate animal–environment physics better than noncompliant, rigid, multi-body eel robots. In this study, a slender soft robot was designed and [...] Read more.
Bio-inspired robots with elongated anatomy, like eels, are studied to discover anguilliform swimming principles and improve the robots’ locomotion accordingly. Soft continuum robots replicate animal–environment physics better than noncompliant, rigid, multi-body eel robots. In this study, a slender soft robot was designed and tested in an actual swimming experiment in a still-water tank. The robot employs soft pneumatic muscles laterally connected to a flexible backbone and activated with a rhythmic input. The position of seven markers mounted on the robot’s backbone was recorded using QualiSys® Tracking Manager (QTM) 1.6.0.1. The system was modeled as a fully coupled fluid–solid interaction (FSI) system using COMSOL Multiphysics® 6.1. Further data postprocessing and analysis were conducted, proposing a new mode decomposition algorithm using simulation data. Experiments show the success of swimming with a velocity of 28 mm/s and at a frequency of 0.9 Hz. The mode analysis allowed the modeling and explanation of the fluctuation. Results disclose the presence of traveling waves related to anguilliform waves obtained by the superposition of two main modes. The similarities of the results with natural anguilliform locomotion are discussed. It is concluded that soft robot undulation is ruled by dynamic modes induced by robot–environment interaction. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics)
Show Figures

Figure 1

17 pages, 5367 KB  
Article
An Untethered Soft Robotic Dog Standing and Fast Trotting with Jointless and Resilient Soft Legs
by Yunquan Li, Yujia Li, Tao Ren, Jiutian Xia, Hao Liu, Changchun Wu, Senyuan Lin and Yonghua Chen
Biomimetics 2023, 8(8), 596; https://doi.org/10.3390/biomimetics8080596 - 8 Dec 2023
Cited by 14 | Viewed by 4573
Abstract
Soft robots are compliant, impact resistant, and relatively safe in comparison to hard robots. However, the development of untethered soft robots is still a major challenge because soft legs cannot effectively support the power and control systems. Most untethered soft robots apply a [...] Read more.
Soft robots are compliant, impact resistant, and relatively safe in comparison to hard robots. However, the development of untethered soft robots is still a major challenge because soft legs cannot effectively support the power and control systems. Most untethered soft robots apply a crawling or walking gait, which limits their locomotion speed and mobility. This paper presents an untethered soft robot that can move with a bioinspired dynamic trotting gait. The robot is driven by inflatable soft legs designed on the basis of the pre-charged pneumatic (PCP) actuation principle. Experimental results demonstrate that the developed robot can trot stably with the fastest speed of 23 cm/s (0.97 body length per second) and can trot over different terrains (slope, step, rough terrain, and natural terrains). The robotic dog can hold up to a 5.5 kg load in the static state and can carry up to 1.5 kg in the trotting state. Without any rigid components inside the legs, the developed robotic dog exhibits resistance to large impacts, i.e., after withstanding a 73 kg adult (46 times its body mass), the robotic dog can stand up and continue its trotting gait. This innovative robotic system has great potential in equipment inspection, field exploration, and disaster rescue. Full article
(This article belongs to the Special Issue Bioinspired Cross-Medium Aquatic Robots)
Show Figures

Figure 1

15 pages, 24734 KB  
Article
Soft Robot for Inspection Tasks Inspired on Annelids to Obtain Peristaltic Locomotion
by Diego E. Martinez-Sanchez, X. Yamile Sandoval-Castro, Nicolas Cruz-Santos, Eduardo Castillo-Castaneda, Maximiano F. Ruiz-Torres and Med Amine Laribi
Machines 2023, 11(8), 779; https://doi.org/10.3390/machines11080779 - 27 Jul 2023
Cited by 9 | Viewed by 3295
Abstract
Soft robotics is a rapidly advancing field that leverages the mechanical properties of flexible materials for applications necessitating safe interaction and exceptional adaptability within the environment. This paper focuses on developing a pneumatic soft robot bio-inspired in annelids or segmented worms. Segmentation, also [...] Read more.
Soft robotics is a rapidly advancing field that leverages the mechanical properties of flexible materials for applications necessitating safe interaction and exceptional adaptability within the environment. This paper focuses on developing a pneumatic soft robot bio-inspired in annelids or segmented worms. Segmentation, also called metamerism, increases the efficiency in body movement by allowing the effect of muscle contraction to generate peristaltic locomotion. The robot was built using elastomers by the casting technique. A sequence of locomotion based on two stages, relaxation and contraction, was proposed; the contraction stage is actuated by a vacuum pump. The locomotion performances are compared using different elastomers, such as Ecoflex 00-30, Dragon Skin 20, Mold Star 15 Slow, and Mold Star 30. Experimental tests were carried out inside a plexiglass pipe, 1 inch in diameter; a wide range of frequencies was tested for relaxation and contraction stages to evaluate the effect on the speed of the robot. Full article
(This article belongs to the Special Issue Intelligent Bio-Inspired Robots: New Trends and Future Perspectives)
Show Figures

Figure 1

13 pages, 11628 KB  
Article
Design and Modeling of a Bio-Inspired Flexible Joint Actuator
by Ming Xu, Cheng Rong and Long He
Actuators 2021, 10(5), 95; https://doi.org/10.3390/act10050095 - 30 Apr 2021
Cited by 8 | Viewed by 4961
Abstract
Spiders rely on a hydraulic system to stretch their legs but use muscles to make their legs flex. The compound drive of hydraulics and muscle makes an integrate dexterous structure with powerful locomotion abilities, which perfectly meets the primary requirements of advanced robots. [...] Read more.
Spiders rely on a hydraulic system to stretch their legs but use muscles to make their legs flex. The compound drive of hydraulics and muscle makes an integrate dexterous structure with powerful locomotion abilities, which perfectly meets the primary requirements of advanced robots. Inspired by this hydraulics-muscle co-drive joint, a novel flexible joint actuator was proposed and its driving characteristics were preliminarily explored. The bio-inspired flexible joint manifested as a double-constrained balloon actuator, which was fabricated by the composite process of 3D printing and casting. To evaluate its performance, the mathematical model was deduced, as well as the finite element analysis (FEA) model. A series of experiments on the rotation angles, driving forces, and efficiencies of the flexible joint were carried out and compared with the mathematical calculations and FEA simulations. The results show that the accuracy of the two theoretical models can be used to assess the joint actuator. The locomotion test of a soft arthropod robot with two flexible joints was also implemented, where the moving speed reached 22 mm/s and the feasibility of the proposed flexible joint applied to a soft robot was demonstrated. Full article
Show Figures

Figure 1

17 pages, 4715 KB  
Article
A Bio-Inspired Compliance Planning and Implementation Method for Hydraulically Actuated Quadruped Robots with Consideration of Ground Stiffness
by Xiaoxing Zhang, Haoyuan Yi, Junjun Liu, Qi Li and Xin Luo
Sensors 2021, 21(8), 2838; https://doi.org/10.3390/s21082838 - 17 Apr 2021
Cited by 3 | Viewed by 4027
Abstract
There has been a rising interest in compliant legged locomotion to improve the adaptability and energy efficiency of robots. However, few approaches can be generalized to soft ground due to the lack of consideration of the ground surface. When a robot locomotes on [...] Read more.
There has been a rising interest in compliant legged locomotion to improve the adaptability and energy efficiency of robots. However, few approaches can be generalized to soft ground due to the lack of consideration of the ground surface. When a robot locomotes on soft ground, the elastic robot legs and compressible ground surface are connected in series. The combined compliance of the leg and surface determines the natural dynamics of the whole system and affects the stability and efficiency of the robot. This paper proposes a bio-inspired leg compliance planning and implementation method with consideration of the ground surface. The ground stiffness is estimated based on analysis of ground reaction forces in the frequency domain, and the leg compliance is actively regulated during locomotion, adapting them to achieve harmonic oscillation. The leg compliance is planned on the condition of resonant movement which agrees with natural dynamics and facilitates rhythmicity and efficiency. The proposed method has been implemented on a hydraulic quadruped robot. The simulations and experimental results verified the effectiveness of our method. Full article
Show Figures

Figure 1

Back to TopTop