Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,264)

Search Parameters:
Keywords = local materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3150 KiB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

27 pages, 815 KiB  
Article
Material Flow Analysis for Demand Forecasting and Lifetime-Based Inflow in Indonesia’s Plastic Bag Supply Chain
by Erin Octaviani, Ilyas Masudin, Amelia Khoidir and Dian Palupi Restuputri
Logistics 2025, 9(3), 105; https://doi.org/10.3390/logistics9030105 - 5 Aug 2025
Abstract
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined [...] Read more.
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined framework of material flow analysis (MFA) and sustainable supply chain planning to improve demand forecasting and inflow management across the plastic bag lifecycle. Method: the research adopts a quantitative method using the XGBoost algorithm for forecasting and is supported by a polymer-based MFA framework that maps material flows from production to end-of-life stages. Result: the findings indicate that while production processes achieve high efficiency with a yield of 89%, more than 60% of plastic bag waste remains unmanaged after use. Moreover, scenario analysis demonstrates that single interventions are insufficient to achieve circularity targets, whereas integrated strategies (e.g., reducing export volumes, enhancing waste collection, and improving recycling performance) are more effective in increasing recycling rates beyond 35%. Additionally, the study reveals that increasing domestic recycling capacity and minimizing dependency on exports can significantly reduce environmental leakage and strengthen local waste management systems. Conclusions: the study’s novelty lies in demonstrating how machine learning and material flow data can be synergized to inform circular supply chain decisions and regulatory planning. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

17 pages, 4153 KiB  
Article
Spherical Indentation Behavior of DD6 Single-Crystal Nickel-Based Superalloy via Crystal Plasticity Finite Element Simulation
by Xin Hao, Peng Zhang, Hao Xing, Mengchun You, Erqiang Liu, Xuegang Xing, Gesheng Xiao and Yongxi Tian
Materials 2025, 18(15), 3662; https://doi.org/10.3390/ma18153662 - 4 Aug 2025
Abstract
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure [...] Read more.
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure evolution within the material. Combining nanoindentation experiments with the crystal plasticity finite element method (CPFEM), this study systematically investigates the effects of loading rate and crystal orientation on the elastoplastic deformation of DD6 alloy under spherical indenter loading. The results indicate that the maximum indentation depth increases and hardness decreases with prolonged loading time, exhibiting a significant strain rate strengthening effect. The CPFEM model incorporating dislocation density effectively simulates the nonlinear characteristics of the nanoindentation process and elucidates the evolution of dislocation density and slip system strength with indentation depth. At low loading rates, both dislocation density and slip system strength increase with loading time. Significant differences in mechanical behavior are observed across different crystal orientations, which correspond to the extent of lattice rotation during texture evolution. For the [111] orientation, crystal rotation is concentrated and highly regular, while the [001] orientation shows uniform texture evolution. This demonstrates that anisotropy governs the deformation mechanism through differential slip system activation and texture evolution. Full article
(This article belongs to the Special Issue Nanoindentation in Materials: Fundamentals and Applications)
Show Figures

Figure 1

17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

14 pages, 1282 KiB  
Systematic Review
Actinic Cheilitis: A Systematic Review and Meta-Analysis of Interventions, Treatment Outcomes, and Adverse Events
by Matthäus Al-Fartwsi, Anne Petzold, Theresa Steeb, Lina Amin Djawher, Anja Wessely, Anett Leppert, Carola Berking and Markus V. Heppt
Biomedicines 2025, 13(8), 1896; https://doi.org/10.3390/biomedicines13081896 - 4 Aug 2025
Abstract
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. [...] Read more.
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. Materials and Methods: A pre-defined protocol was registered in PROSPERO (CRD42021225182). Systematic searches in Medline, Embase, and Central, along with manual trial register searches, identified studies reporting participant clearance rates (PCR) or recurrence rates (PRR). Quality assessment for randomized controlled trials (RCTs) was conducted using the Cochrane Risk of Bias tool 2. Uncontrolled studies were evaluated using the tool developed by the National Heart, Lung, and Blood Institute. The generalized linear mixed model was used to pool proportions for uncontrolled studies. A pairwise meta-analysis for RCTs was applied, using the odds ratio (OR) as the effect estimate and the GRADE approach to evaluate the quality of the evidence. Adverse events were analyzed qualitatively. Results: A comprehensive inclusion of 36 studies facilitated an evaluation of 614 participants for PCR, and 430 patients for PRR. Diclofenac showed the lowest PCR (0.53, 95% confidence interval (CI) [0.41; 0.66]), while CO2 laser showed the highest PCR (0.97, 95% CI [0.90; 0.99]). For PRR, Er:YAG laser showed the highest rates (0.14, 95% CI [0.08; 0.21]), and imiquimod the lowest (0.00, 95% CI [0.00; 0.06]). In a pairwise meta-analysis, the OR indicated a lower recurrence rate for Er:YAG ablative fractional laser (AFL)-primed methyl-aminolevulinate photodynamic therapy (MAL-PDT) (Er:YAG AFL-PDT) compared to methyl-aminolevulinate photodynamic therapy (MAL-PDT) alone (OR = 0.22, 95% CI [0.06; 0.82]). The CO2 laser showed fewer local side effects than the Er:YAG laser, while PDTs caused more skin reactions. Due to qualitative data, comparability was limited, highlighting the need for individualized treatment. Conclusions: This study provides a complete and up-to-date evidence synthesis of practice-relevant interventions for AC, identifying the CO2 laser as the most effective treatment and regarding PCR and imiquimod as most effective concerning PRR. Full article
(This article belongs to the Special Issue Skin Diseases and Cell Therapy)
Show Figures

Figure 1

22 pages, 6962 KiB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

31 pages, 1737 KiB  
Article
Trajectory Optimization for Autonomous Highway Driving Using Quintic Splines
by Wael A. Farag and Morsi M. Mahmoud
World Electr. Veh. J. 2025, 16(8), 434; https://doi.org/10.3390/wevj16080434 - 3 Aug 2025
Viewed by 39
Abstract
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using [...] Read more.
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using quintic spline functions and a dynamic speed profile. Leveraging real-time data from the vehicle’s sensor fusion module, the LSPP algorithm accurately interprets the positions of surrounding vehicles and obstacles, creating a safe, dynamically feasible path that is relayed to the Model Predictive Control (MPC) track-following module for precise execution. The theoretical distinction of LSPP lies in its modular integration of: (1) a finite state machine (FSM)-based decision-making layer that selects maneuver-specific goal states (e.g., keep lane, change lane left/right); (2) quintic spline optimization to generate smooth, jerk-minimized, and kinematically consistent trajectories; (3) a multi-objective cost evaluation framework that ranks competing paths according to safety, comfort, and efficiency; and (4) a closed-loop MPC controller to ensure real-time trajectory execution with robustness. Extensive simulations conducted in diverse highway scenarios and traffic conditions demonstrate LSPP’s effectiveness in delivering smooth, safe, and computationally efficient trajectories. Results show consistent improvements in lane-keeping accuracy, collision avoidance, enhanced materials wear performance, and planning responsiveness compared to traditional path-planning methods. These findings confirm LSPP’s potential as a practical and high-performance solution for autonomous highway driving. Full article
(This article belongs to the Special Issue Motion Planning and Control of Autonomous Vehicles)
Show Figures

Figure 1

19 pages, 5733 KiB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 49
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

17 pages, 1097 KiB  
Article
Mapping Perfusion and Predicting Success: Infrared Thermography-Guided Perforator Flaps for Lower Limb Defects
by Abdalah Abu-Baker, Andrada-Elena Ţigăran, Teodora Timofan, Daniela-Elena Ion, Daniela-Elena Gheoca-Mutu, Adelaida Avino, Cristina-Nicoleta Marina, Adrian Daniel Tulin, Laura Raducu and Radu-Cristian Jecan
Medicina 2025, 61(8), 1410; https://doi.org/10.3390/medicina61081410 - 3 Aug 2025
Viewed by 49
Abstract
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography [...] Read more.
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography (IRT) in preoperative planning and postoperative monitoring of perforator-based flaps, assessing its accuracy in identifying perforators, predicting complications, and optimizing outcomes. Materials and Methods: A prospective observational study was conducted on 76 patients undergoing lower limb reconstruction with fascio-cutaneous perforator flaps between 2022 and 2024. Perforator mapping was performed concurrently with IRT and Doppler ultrasonography (D-US), with intraoperative confirmation. Flap design variables and systemic parameters were recorded. Postoperative monitoring employed thermal imaging on days 1 and 7. Outcomes were correlated with thermal, anatomical, and systemic factors using statistical analyses, including t-tests and Pearson correlation. Results: IRT showed high sensitivity (97.4%) and positive predictive value (96.8%) for perforator detection. A total of nine minor complications occurred, predominantly in patients with diabetes mellitus and/or elevated glycemia (p = 0.05). Larger flap-to-defect ratios (A/C and B/C) correlated with increased complications in propeller flaps, while smaller ratios posed risks for V-Y and Keystone flaps. Thermal analysis indicated significantly lower flap temperatures and greater temperature gradients in flaps with complications by postoperative day 7 (p < 0.05). CRP levels correlated with glycemia and white blood cell counts, highlighting systemic inflammation’s impact on outcomes. Conclusions: IRT proves to be a reliable, non-invasive method for perforator localization and flap monitoring, enhancing surgical planning and early complication detection. Combined with D-US, it improves perforator selection and perfusion assessment. Thermographic parameters, systemic factors, and flap design metrics collectively predict flap viability. Integration of IRT into surgical workflows offers a cost-effective tool for optimizing reconstructive outcomes in lower limb surgery. Full article
Show Figures

Figure 1

25 pages, 1529 KiB  
Article
Native Flora and Potential Natural Vegetation References for Effective Forest Restoration in Italian Urban Systems
by Carlo Blasi, Giulia Capotorti, Eva Del Vico, Sandro Bonacquisti and Laura Zavattero
Plants 2025, 14(15), 2396; https://doi.org/10.3390/plants14152396 - 2 Aug 2025
Viewed by 125
Abstract
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of [...] Read more.
The ongoing decade of UN restoration matches with the European goal of bringing nature back into our lives, including in urban systems, and Nature Restoration Regulation. Within such a framework, this work is aimed at highlighting the ecological rationale and strategic value of an NRRP measure devoted to forest restoration in Italian Metropolitan Cities, and at assessing respective preliminary results. Therefore, the measure’s overarching goal (not to create urban parks or gardens, but activate forest recovery), geographic extent and scope (over 4000 ha and more than 4 million planted trees and shrubs across the country), plantation model (mandatory use of native species consistent with local potential vegetation, density of 1000 seedlings per ha, use of at least four tree and four shrub species in each project, with a minimum proportion of 70% for trees, certified provenance for reproductive material), and compulsory management activities (maintenance and replacement of any dead plants for at least five years), are herein shown and explained under an ecological perspective. Current implementation outcomes were thus assessed in terms of coherence and expected biodiversity benefits, especially with respect to ecological and biogeographic consistency of planted forests, representativity in relation to national and European plant diversity, biogeographic interest and conservation concern of adopted plants, and potential contribution to the EU Habitats Directive. Compliance with international strategic goals and normative rules, along with recognizable advantages of the measure and limitations to be solved, are finally discussed. In conclusion, the forestation model proposed for the Italian Metropolitan Cities proved to be fully applicable in its ecological rationale, with expected benefits in terms of biodiversity support plainly met, and even exceeded, at the current stage of implementation, especially in terms of the contribution to protected habitats. These promising preliminary results allow the model to be recognized at the international level as a good practice that may help achieve protection targets and sustainable development goals within and beyond urban systems. Full article
Show Figures

Figure 1

18 pages, 7062 KiB  
Article
Multimodal Feature Inputs Enable Improved Automated Textile Identification
by Magken George Enow Gnoupa, Andy T. Augousti, Olga Duran, Olena Lanets and Solomiia Liaskovska
Textiles 2025, 5(3), 31; https://doi.org/10.3390/textiles5030031 - 2 Aug 2025
Viewed by 71
Abstract
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A [...] Read more.
This study presents an advanced framework for fabric texture classification by leveraging macro- and micro-texture extraction techniques integrated with deep learning architectures. Co-occurrence histograms, local binary patterns (LBPs), and albedo-dependent feature maps were employed to comprehensively capture the surface properties of fabrics. A late fusion approach was applied using four state-of-the-art convolutional neural networks (CNNs): InceptionV3, ResNet50_V2, DenseNet, and VGG-19. Excellent results were obtained, with the ResNet50_V2 achieving a precision of 0.929, recall of 0.914, and F1 score of 0.913. Notably, the integration of multimodal inputs allowed the models to effectively distinguish challenging fabric types, such as cotton–polyester and satin–silk pairs, which exhibit overlapping texture characteristics. This research not only enhances the accuracy of textile classification but also provides a robust methodology for material analysis, with significant implications for industrial applications in fashion, quality control, and robotics. Full article
31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 113
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

14 pages, 3905 KiB  
Article
Stability of Ultrafast Laser-Induced Stress in Fused Silica and Ultra-Low Expansion Glass
by Carolyn C. Hokin and Brandon D. Chalifoux
Photonics 2025, 12(8), 778; https://doi.org/10.3390/photonics12080778 (registering DOI) - 1 Aug 2025
Viewed by 139
Abstract
Stress fields imparted with an ultrafast laser can correct low spatial frequency surface figure error of mirrors through ultrafast laser stress figuring (ULSF): the formation of nanograting structures within the bulk substrate generates localized stress, creating bending moments that equilibrize via wafer deformation. [...] Read more.
Stress fields imparted with an ultrafast laser can correct low spatial frequency surface figure error of mirrors through ultrafast laser stress figuring (ULSF): the formation of nanograting structures within the bulk substrate generates localized stress, creating bending moments that equilibrize via wafer deformation. For ULSF to be used as an optical figuring process, the ultrafast laser generated stress must be effectively permanent or risk unwanted figure drift. Two isochronal annealing experiments were performed to measure ultrafast laser-generated stress stability in fused silica and Corning ultra-low expansion (ULE) wafers. The first experiment tracked changes to induced astigmatism up to 1000 °C on 25.4 mm-diameter wafers. Only small changes were measured after each thermal cycle up to 500 °C for both materials, but significant changes were observed at higher temperatures. The second experiment tracked stress changes in fused silica and ULE up to 500 °C but with 4 to 16× higher signal-to-noise ratio. Change in trefoil on 100 mm-diameter wafers was measured, and the induced stress in fused silica and ULE was found to be stable after thermal cycling up to 300 °C and 200 °C, respectively, with larger changes at higher temperatures. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

16 pages, 1293 KiB  
Article
Effect of Pre-Treatment on the Pressing Yield and Quality of Grape Juice Obtained from Grapes Grown in Poland
by Rafał Nadulski, Paweł Sobczak, Jacek Mazur and Grzegorz Łysiak
Sustainability 2025, 17(15), 7010; https://doi.org/10.3390/su17157010 - 1 Aug 2025
Viewed by 120
Abstract
Gradual climate warming is favoring viticulture in Poland. At the same time, there is a lack of information about the suitability of grape varieties grown in Poland for processing. The primary aim of the study was to determine the effect of pre-treatment on [...] Read more.
Gradual climate warming is favoring viticulture in Poland. At the same time, there is a lack of information about the suitability of grape varieties grown in Poland for processing. The primary aim of the study was to determine the effect of pre-treatment on the pressing yield of grape juice and its qualitative assessment. The study applied pre-treatment of raw material, involving either enzymatic liquefaction of the pulp in the first case or freezing and thawing of the pulp prior to pressing in the second case. There was considerable variation among the grape varieties studied in terms of the characteristics under analysis. The varietal characteristics had a significant effect on the pressing yield and the quality of the juice obtained. Pre-treatment had different effects on the pressing yield of the individual grape varieties and the quality of the obtained juices. The research carried out may improve the efficiency and quality of agricultural production with the rational use of locally grown grape hybrids. Full article
Show Figures

Figure 1

22 pages, 4248 KiB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 - 1 Aug 2025
Viewed by 145
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

Back to TopTop