Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = livestock epidemiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 - 2 Aug 2025
Viewed by 216
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
19 pages, 1977 KiB  
Article
Knowledge, Perception, and Attitude of Veterinarians About Q Fever from South Spain
by Francisco Pérez-Pérez, Rafael Jesús Astorga-Márquez, Ángela Galán-Relaño, Carmen Tarradas-Iglesias, Inmaculada Luque-Moreno, Lidia Gómez-Gascón, Juan Antonio De Luque-Ibáñez and Belén Huerta-Lorenzo
Microorganisms 2025, 13(8), 1759; https://doi.org/10.3390/microorganisms13081759 - 28 Jul 2025
Viewed by 392
Abstract
Q Fever is a zoonosis caused by Coxiella burnetii that affects domestic and wild ruminants, leading to reproductive disorders. In humans, the disease can manifest with acute and chronic clinical manifestations. Veterinarians, as healthcare professionals in close contact with animals, serve both as [...] Read more.
Q Fever is a zoonosis caused by Coxiella burnetii that affects domestic and wild ruminants, leading to reproductive disorders. In humans, the disease can manifest with acute and chronic clinical manifestations. Veterinarians, as healthcare professionals in close contact with animals, serve both as the first line of defence in preventing infection at the animal–human interface and as an important sentinel group for the rapid detection of outbreaks. The aim of this study was to assess the knowledge, perception, and attitude of veterinarians in Southern Spain regarding Q Fever. To this end, an online survey was designed, validated, and conducted among veterinarians in the province of Malaga, with a final participation of 97 individuals, predominantly from the private sector (clinic, livestock, agri-food, etc.). The data obtained reflected a general lack of knowledge about the disease, particularly concerning its epidemiology and infection prevention. Regarding perception and attitude, a significant percentage of respondents stated they did not use protective equipment when handling susceptible animals and only sought information about the disease in response to outbreak declarations. The study emphasised the significance of promoting training in zoonotic diseases during and after graduation, the relevance of official channels in occupational risk prevention, and the utility of epidemiological surveys as a tool to identify and address potential gaps in knowledge related to this disease. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

13 pages, 1384 KiB  
Article
Molecular Epidemiology of Brucella spp. in Aborted Livestock in the Ningxia Hui Autonomous Region, China
by Cai Yin, Cong Yang, Yawen Wu, Jing Di, Taotao Bai, Yumei Wang, Yuling Zhang, Longlong Luo, Shuang Zhou, Long Ma, Xiaoliang Wang, Qiaoying Zeng and Zhixin Li
Vet. Sci. 2025, 12(8), 702; https://doi.org/10.3390/vetsci12080702 - 28 Jul 2025
Viewed by 275
Abstract
Brucellosis is caused by Brucella spp.; it can result in fetal loss and abortion, resulting in economic losses and negative effects on human health. Herein, a cross-sectional study on the epidemiology of Brucella spp. in aborted livestock in Ningxia from 2022 to 2023 [...] Read more.
Brucellosis is caused by Brucella spp.; it can result in fetal loss and abortion, resulting in economic losses and negative effects on human health. Herein, a cross-sectional study on the epidemiology of Brucella spp. in aborted livestock in Ningxia from 2022 to 2023 was conducted. A total of 749 aborted tissue samples from 215 cattle and 534 sheep were collected from farmers who reported abortions that were supported by veterinarians trained in biosecurity. The samples were analyzed using qPCR and were cultured for Brucella spp. when a positive result was obtained; the samples were speciated using AMOS-PCR. MLST and MLVA were employed for genotype identification. The results demonstrated that 8.68% of the samples were identified as being positive for Brucella spp. based on qPCR results. In total, 14 field strains of Brucella spp. were subsequently isolated, resulting in 11 B. melitensis, 2 B. abortus, and 1 B. suis. being identified via AMOS-PCR. Four sequence types were identified via MLST—ST7 and ST8 (B. melitensis), ST2 (B. abortus), and ST14 (B. suis)—with ST8 predominating. Five MLVA-8 genotypes and seven MLVA-11 genotypes were identified, with MLVA-11 GT116 predominating in livestock. Thus, at least three Brucella species are circulating in aborted livestock in Ningxia. This suggests a significant risk of transmission to other animals and humans. Therefore, disinfection and safe treatment procedures for aborted livestock and their products should be carried out to interrupt the transmission pathway; aborted livestock should be examined to determine zoonotic causes and targeted surveillance should be strengthened to improve the early detection of infectious causes, which will be of benefit to the breeding industry and public health security. Full article
Show Figures

Figure 1

21 pages, 2325 KiB  
Article
Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk
by Anagnostou Glykeria-Myrto, Skarlatoudi Theodora, Theodorakis Vasileios, Bosnea Loulouda and Mataragas Marios
Vet. Sci. 2025, 12(8), 685; https://doi.org/10.3390/vetsci12080685 - 23 Jul 2025
Viewed by 318
Abstract
The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing [...] Read more.
The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness. Full article
Show Figures

Figure 1

19 pages, 5311 KiB  
Article
Projected Distribution and Dispersal Patterns of Potential Distribution Fasciola hepatica and Its Key Intermediate Host Radix spp. in Qinghai-Tibet Plateau, China, Under Plateau Climatic Conditions
by Luyao Xu, Yunhai Guo, Zengkui Li, Mingjia Guo, Ming Kang, Daoxin Liu, Limin Yang, Zhongqiu Li, Panpan Wang, Wenhui Luo and Ying Li
Pathogens 2025, 14(7), 647; https://doi.org/10.3390/pathogens14070647 - 30 Jun 2025
Viewed by 221
Abstract
(1) Background: As a prominent zoonotic parasitic disease, fascioliasis threatens the sustainable development of animal husbandry and public health. Current research focuses mainly on individual species (parasite or intermediate host), neglecting systematic evaluation of the transmission chain and exposure risks to animal husbandry. [...] Read more.
(1) Background: As a prominent zoonotic parasitic disease, fascioliasis threatens the sustainable development of animal husbandry and public health. Current research focuses mainly on individual species (parasite or intermediate host), neglecting systematic evaluation of the transmission chain and exposure risks to animal husbandry. Thus, comprehensive studies are urgently needed, especially in the ecologically fragile alpine region of the Qinghai-Tibet Plateau; (2) Methods: Distribution data of Radix spp. and Fasciola hepatica in the Qinghai-Tibet Plateau and adjacent areas were gathered to establish a potential distribution model, which was overlaid on a map of livestock farming in the region; (3) Results: The key environmental factors influencing Radix spp. distribution were temperature seasonality (21.4%), elevation (16.4%), and mean temperature of the driest quarter (14.7%). For F. hepatica, the main factors were elevation (41.3%), human footprint index (30.5%), and Precipitation of the driest month (12.1%), with all AUC values exceeding 0.9. Both species exhibited extensive suitable habitats in Qinghai and Tibet, with higher F. hepatica transmission risk in Qinghai than Tibet; (4) Conclusions: The significant transmission risk and its impacts on the livestock industry in the Qinghai-Tibet Plateau highlight the need for proactive prevention and control measures. This study provides a scientific foundation for targeted alpine diseases control, establishes an interdisciplinary risk assessment framework, fills gaps in high-altitude eco-epidemiology, and offers insights for ecological conservation of the plateau. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

60 pages, 6483 KiB  
Review
The Challenge of Lyssavirus Infections in Domestic and Other Animals: A Mix of Virological Confusion, Consternation, Chagrin, and Curiosity
by Charles E. Rupprecht, Aniruddha V. Belsare, Florence Cliquet, Philip P. Mshelbwala, Janine F. R. Seetahal and Vaughn V. Wicker
Pathogens 2025, 14(6), 586; https://doi.org/10.3390/pathogens14060586 - 13 Jun 2025
Viewed by 2390
Abstract
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially [...] Read more.
Lyssaviruses are RNA viruses in the Family Rhabdoviridae, Genus Lyssavirus. They represent the causative agents of acute, progressive encephalitis, known historically as rabies. Regardless of specific etiology, their collective viral morphology, biochemistry, pathobiology, associated clinical signs, diagnosis, epizootiology, and management are essentially the same. Despite centuries of clinical recognition, these quintessential neurotropic agents remain significant pathogens today, with substantive consequences to agriculture, public health, and conservation biology. Notably, the singular morbidity caused by lyssaviruses is incurable and constitutes the highest case fatality of any viral disease. All warm-blooded vertebrates are believed to be susceptible. The dog is the only domestic animal that serves as a reservoir, vector, and victim. In contrast, felids are effective vectors, but not reservoirs. All other rabid domestic species, such as livestock, constitute spillover infections, as a bellwether to local lyssavirus activity. Frequently, professional confusion abounds among the veterinary community, because although the viral species Lyssavirus rabies is inarguably the best-known representative in the Genus, at least 20 other recognized or putative members of this monophyletic group are known. Frequently, this is simply overlooked. Moreover, often the ‘taxonomic etiology’ (i.e., ‘Lyssavirus x’) is mistakenly referenced in a biopolitcal context, instead of the obvious clinical illness (i.e., ‘rabies’). Global consternation persists, if localities believe they are ‘disease-free’, when documented lyssaviruses circulate or laboratory-based surveillance is inadequate to support such claims. Understandably, professional chagrin develops when individuals mistake the epidemiological terminology of control, prevention, elimination, etc. Management is not simple, given that the only licensed veterinary and human vaccines are against rabies virus, sensu lato. There are no adequate antiviral drugs for any lyssaviruses or cross-reactive biologics developed against more distantly related viral members. While representative taxa among the mammalian Orders Chiroptera, Carnivora, and Primates exemplify the major global reservoirs, which mammalian species are responsible for the perpetuation of other lyssaviruses remains a seemingly academic curiosity. This zoonosis is neglected. Clearly, with such underlying characteristics as a fundamental ‘disease of nature’, rabies, unlike smallpox and rinderpest, is not a candidate for eradication. With the worldwide zeal to drive human fatalities from canine rabies viruses to zero by the rapidly approaching year 2030, enhanced surveillance and greater introspection of the poorly appreciated burden posed by rabies virus and diverse other lyssaviruses may manifest as an epidemiological luxury to the overall global program of the future. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
Show Figures

Figure 1

14 pages, 8028 KiB  
Article
Molecular Detection of Genetic Material of Toxoplasma gondii in Goat Blood Samples from Northern Thailand
by Pongpisid Koonyosying, Anucha Muenthaisong, Kanokwan Sangkakam, Kanpitcha Nontasaya, Amarin Rittipornlertrak, Boondarika Nambooppha, Nisachon Apinda, Supawadee Maneekesorn and Nattawooti Sthitmatee
Vet. Sci. 2025, 12(6), 555; https://doi.org/10.3390/vetsci12060555 - 5 Jun 2025
Viewed by 756
Abstract
Toxoplasmosis is a significant parasitic zoonosis caused by Toxoplasma gondii. Among livestock animals, small ruminants, especially sheep and goats, are the most infected. This infection is a leading cause of abortion, resulting in considerable economic losses for goat breeders. The present study [...] Read more.
Toxoplasmosis is a significant parasitic zoonosis caused by Toxoplasma gondii. Among livestock animals, small ruminants, especially sheep and goats, are the most infected. This infection is a leading cause of abortion, resulting in considerable economic losses for goat breeders. The present study aimed to assess the prevalence of T. gondii infection in goats in northern Thailand, with an emphasis on its potential zoonotic transmission to humans. Polymerase chain reaction (PCR) targeting the T. gondii dihydrofolate reductase-thymidylate synthase (Tgdhfr-ts) gene was employed for molecular detection. This represents the first report of T. gondii molecular detection in blood samples from small ruminants in Thailand by PCR. A total of 176 meat goat blood samples were analyzed, yielding an 8.52% (15/176) positivity rate for T. gondii DNA. The selected DNA sequences from the positive T. gondii DNA displayed a high degree of nucleotide sequence homology with the reference Tgdhfr-ts sequence. Phylogenetic analysis revealed a single clade alongside other T. gondii strains, showing no differentiation based on genotype. This study contributes to the understanding of T. gondii epidemiology and provides a foundation for future strategies to control and manage T. gondii transmission in livestock populations. Full article
(This article belongs to the Special Issue Detection of Parasitic Diseases in Livestock)
Show Figures

Graphical abstract

12 pages, 1718 KiB  
Case Report
Description of Acute and Chronic Cases of Poisoning by Oxalis pes-caprae
by Luigia Pinna, Daniela Mandas, Davide Pintus, Bruna Zulato, Marina Frongia, Maria Maurichi and Annamaria Coccollone
Animals 2025, 15(11), 1668; https://doi.org/10.3390/ani15111668 - 5 Jun 2025
Viewed by 400
Abstract
Oxalis pes-caprae is one of the most widespread invasive plants in the Mediterranean areas, especially in central and southern Italy, Sicily, and Sardinia. It is an herbaceous species of South African origin, very common in uncultivated areas, in meadows, and at the edges [...] Read more.
Oxalis pes-caprae is one of the most widespread invasive plants in the Mediterranean areas, especially in central and southern Italy, Sicily, and Sardinia. It is an herbaceous species of South African origin, very common in uncultivated areas, in meadows, and at the edges of roads but also in vegetable gardens and fields, where it can become a weed. Its negative impact on the economic sector is significant due to the presence of large quantities of oxalates, which are toxic and dangerous for grazing livestock; the ingestion of high amounts of oxalates causes the accumulation of oxalate crystals, which can lead to kidney failure and anuria. This work represents a descriptive, field-based case report of epidemiological relevance, describing two cases of acute and chronic poisoning by Oxalis pes-caprae found in two different sheep farms in southern Sardinia. In February 2024, the sudden death of about 40 animals was reported in a sheep farm. On another farm, seven animals died (between March and July 2024), while others showed poisoning symptoms such as weight loss, submandibular edema, and a barrel-shaped abdomen. This manuscript aims to highlight the damage caused by poor attention in pasture management and the importance of seasonal risk management; it is necessary to pay attention to the herbaceous species present in pastures, especially in our region, where climatic temperatures no longer respect seasonality and herbaceous species that normally grow in spring are easily found also in the winter months. Full article
(This article belongs to the Special Issue Ruminant Health: Management, Challenges, and Veterinary Solutions)
Show Figures

Figure 1

16 pages, 1106 KiB  
Article
Investigation of Infection of Enterocytozoon bieneusi and Giardia duodenalis in Beef Cattle in Yunnan, China
by Fan Yang, Wenjie Cheng, Jianfa Yang, Junjun He, Liujia Li, Fengcai Zou and Fanfan Shu
Vet. Sci. 2025, 12(6), 552; https://doi.org/10.3390/vetsci12060552 - 5 Jun 2025
Viewed by 622
Abstract
Enterocytozoon bieneusi and Giardia duodenalis are major zoonotic pathogens that often cause diarrhea in immunocompromised humans or animals. Beef cattle are important reservoirs for these two pathogens. Yunnan Province is a major region for beef cattle farming, and its suitable climatic conditions facilitate [...] Read more.
Enterocytozoon bieneusi and Giardia duodenalis are major zoonotic pathogens that often cause diarrhea in immunocompromised humans or animals. Beef cattle are important reservoirs for these two pathogens. Yunnan Province is a major region for beef cattle farming, and its suitable climatic conditions facilitate the transmission of the pathogens. However, research on the prevalence and distribution of E. bieneusi and G. duodenalis in beef cattle in Yunnan remains understudied. This study collected 529 fecal samples from seven beef cattle breeds in four regions in Yunnan Province for an epidemiological survey. Nested PCR combined with sequencing was used to detect E. bieneusi and G. duodenalis, and the sequencing results were analyzed to determine genotypes or assemblage types. Our results demonstrate that the prevalence rates of E. bieneusi and G. duodenalis were 3.0% (16/529) and 3.6% (19/529), respectively. The study identified four genotypes of E. bieneusi, including I (n = 8), J (n = 4), BEB8 (n = 3), and BEB4 (n = 1). Both assemblages E (n = 18) and A (n = 1) were identified among G. duodenalis-positive animals. Phylogenetic analysis revealed that the E. bieneusi genotypes detected in this study belong to Group 2. In conclusion, these findings indicate that although the overall prevalence is relatively low compared to other regions, the presence of zoonotic Group 2 genotypes and assemblage A highlights the potential risk of cross-species transmission. Moreover, the results provide foundational data to support the development of region-specific surveillance and control strategies for bovine giardiasis and microsporidiosis, and emphasize the importance of the One Health approach in managing parasitic infections in livestock populations. Full article
Show Figures

Figure 1

10 pages, 2975 KiB  
Article
Differential Distribution of Trypanosoma vivax and Trypanosoma theileri in Cattle from Distinct Agroecological Regions of Central Argentina
by Maria Celeste Facelli Fernández, Johann Barolin, Martin Allassia, Javier Hernan Gonzalez, Pablo Martin Beldomenico and Lucas Daniel Monje
Parasitologia 2025, 5(2), 27; https://doi.org/10.3390/parasitologia5020027 - 5 Jun 2025
Viewed by 550
Abstract
Bovine trypanosomiasis, caused by Trypanosoma vivax, affects livestock productivity and is increasingly being reported in South America. This study aimed to detect and characterize Trypanosoma spp. infections, with a focus on T. vivax, in cattle from two distinct agroecological regions of [...] Read more.
Bovine trypanosomiasis, caused by Trypanosoma vivax, affects livestock productivity and is increasingly being reported in South America. This study aimed to detect and characterize Trypanosoma spp. infections, with a focus on T. vivax, in cattle from two distinct agroecological regions of central Argentina: a dairy-producing plain, located in the Espinal ecoregion, and a riparian zone, dedicated to beef production, located in the Delta and Islands of Paraná ecoregion. A total of 220 blood samples were collected from nine cattle farms and analyzed using real-time PCR, melting curve analysis, and the sequencing of 18S rRNA gene fragments. Trypanosoma vivax was detected at low prevalence (2.73%), exclusively in dairy cattle. In contrast, the prevalence of Trypanosoma theileri was much higher (10.91%), and it was found mainly in beef cattle from the riparian region. Phylogenetic analyses confirmed the species identity in all sequenced samples. No trypanosomes were observed by microscopy, and none of the animals showed clinical signs. The results indicate a differential distribution of T. vivax and T. theileri between regions and production systems. Although the study initially focused on T. vivax, the detection of T. theileri highlights the need to consider multiple Trypanosoma species in epidemiological surveys. This study contributes new data on the occurrence of bovine trypanosomes in central Argentina under extensive and semi-intensive management systems. Full article
Show Figures

Figure 1

11 pages, 487 KiB  
Review
Canine Distemper Virus in Mexico: A Risk Factor for Wildlife
by Juan Macías-González, Rebeca Granado-Gil, Lizbeth Mendoza-González, Cesar Pedroza-Roldán, Rogelio Alonso-Morales and Mauricio Realpe-Quintero
Viruses 2025, 17(6), 813; https://doi.org/10.3390/v17060813 - 3 Jun 2025
Viewed by 1214
Abstract
Canine distemper is caused by a morbillivirus similar to others that affect livestock and humans. The increase in host range and its persistence in wildlife reservoirs complicate eradication considerably. Canine distemper virus has been reported in wildlife in Mexico since 2007. Dogs were [...] Read more.
Canine distemper is caused by a morbillivirus similar to others that affect livestock and humans. The increase in host range and its persistence in wildlife reservoirs complicate eradication considerably. Canine distemper virus has been reported in wildlife in Mexico since 2007. Dogs were previously considered the main reservoirs, but high vaccination coverage in the USA has helped control the disease, and racoons (Procyon lotor) are now recognized as the main reservoirs of the agent in the USA, since they live in high densities in urban environments (peridomestic), where contact with domestic and wildlife species is common. Racoons are now considered to spread CDV in wildlife species and zoo animals. Mexico is home to at least two wildlife species that have been reported as carriers of the CDV infection in studies in the USA. Raccoons and Coyotes are distributed in several Mexican states and could play the same reservoir role as for the US. In addition, the increase in non-traditional pets expands the availability of susceptible individuals to preserve CDV in domiciliary and peri-domiciliary environments, contributing to the spread of the disease. Combined with incomplete vaccination coverage in domestic canids, this could contribute to maintaining subclinical infections. Infected pets with incomplete vaccination schedules could also spread CDV to other canines or wildlife coexisting species. In controlled habitats, such as flora and fauna sanctuaries, protected habitats, zoo collections, etc., populations of wildlife species and stray dogs facilitate the spread of CDV infection, causing the spilling over of this infectious agent. Restricting domestic pets from wildlife habitats reduces the chance of spreading the infection. Regular epidemiological surveillance and specific wildlife conservation practices can contribute to managing threatened species susceptible to diseases like CDV. This may also facilitate timely interventions in companion animals which eventually minimize the impact of this disease in both scenarios. Aim: The review discusses the circulation of CDV in wildlife populations, and highlights the need for epidemiological surveillance in wildlife, particularly in endangered wildlife species from Mexico. Through an extensive review of recent scientific literature about CDV disease in wildlife that has been published in local and international databases, the findings were connected with the current needs of information from a local to global perspective, and conclusions were made to broaden the context of Mexican epidemiological scenarios as closely related to the neighboring regions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 1458 KiB  
Article
Molecular Epidemiology and Genetic Context of optrA-Carrying Linezolid-Resistant Enterococci from Humans and Animals in South Korea
by Younggwon On, Sung Young Lee, Jung Sik Yoo and Jung Wook Kim
Antibiotics 2025, 14(6), 571; https://doi.org/10.3390/antibiotics14060571 - 3 Jun 2025
Viewed by 595
Abstract
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology [...] Read more.
Objectives: Linezolid resistance among Enterococcus species poses a growing clinical and public health concern, especially due to the dissemination of transferable resistance genes, such as optrA. This study aimed to evaluate the prevalence of linezolid resistance and to characterize the molecular epidemiology and genetic contexts of optrA-positive linezolid-resistant Enterococcus (LRE) isolates from clinical and animal sources in South Korea. Methods: A total of 2156 Enterococcus isolates, collected through nationwide surveillance from hospitalized patients and healthy livestock (pigs, cattle, and chickens) between 2017 and 2019, were retrospectively analyzed. Phenotypic susceptibility testing, optrA gene screening, and whole-genome sequencing were performed to investigate genetic environments and phylogenetic relationships. Results: The prevalence of linezolid resistance was 0.2% in clinical isolates, 3.3% in pigs, 4.3% in cattle, and 1.4% in chickens. optrA-positive linezolid-resistant isolates were less frequent, with rates of 0.1%, 1.4%, 0.9%, and 1.0%, respectively. Multilocus sequence typing identified sequence types (STs) 330 and ST476 in E. faecalis from humans, with no shared STs between human and livestock isolates. The optrA gene was located either chromosomally, frequently associated with transposon Tn6674, or on multidrug resistance plasmids. Notably, optrA variants exhibited host-specific distribution patterns. Phylogenetic analysis demonstrated considerable genomic diversity, and Korean ST476 isolates were genetically related to international strains reported from livestock, poultry products, and wild birds, suggesting potential global dissemination. Conclusions: This study provides a comprehensive, nationally representative assessment of linezolid resistance in South Korea. The findings highlight the zoonotic potential and possible international dissemination of optrA-carrying ST476 lineages, underscoring the need for integrated One Health surveillance to monitor and control the spread of transferable resistance genes. Full article
Show Figures

Figure 1

16 pages, 1780 KiB  
Review
Poisoning in Ruminants by Palicourea Aubl. Species (Rubiaceae) in Brazil: A Review
by Flávia Aparecida de Oliveira Bezerra, Emily Rodrigues de Andrade, José Jailson Lima Bezerra and Antonio Fernando Morais de Oliveira
Vet. Sci. 2025, 12(6), 540; https://doi.org/10.3390/vetsci12060540 - 2 Jun 2025
Viewed by 711
Abstract
Some species belonging to the genus Palicourea (Rubiaceae) are known to cause poisoning in production animals on Brazilian rural properties, being responsible for negatively affecting the livestock sector of the country. In this context, the present study aimed to review reports of spontaneous [...] Read more.
Some species belonging to the genus Palicourea (Rubiaceae) are known to cause poisoning in production animals on Brazilian rural properties, being responsible for negatively affecting the livestock sector of the country. In this context, the present study aimed to review reports of spontaneous and experimental poisoning in ruminants caused by Palicourea species in different regions of Brazil. The documents were retrieved from various databases, covering the period from the first report published in 1986 to April 2025. Palicourea aeneofusca, Palicourea colorata (Syn. Psychotria colorata), Palicourea grandiflora, Palicourea hoffmannseggiana (Syn. Psychotria hoffmannseggiana), Palicourea marcgravii, and Palicourea violacea (Syn. Psychotria capitata) have been identified as causes of spontaneous poisoning in the following Brazilian states: Pernambuco, Sergipe, Paraíba, Goiás, São Paulo, Minas Gerais, Tocantins, Rondônia, and Distrito Federal. In general, Palicourea species cause sudden death in poisoned animals, especially P. marcgravii. Although cattle are more susceptible to poisoning by these plants, there are reports of cases in sheep, goats, and buffalo. Sodium monofluoroacetate occurs in Palicourea species and has been well reported as the main compound responsible for cases of poisoning in these animals. Despite epidemiological evidence of spontaneous poisoning cases in Brazil, the species P. colorata, P. grandiflora, P. hoffmannseggiana, and P. violacea have not yet been experimentally tested for their toxic potential, and studies of this nature are necessary. Full article
Show Figures

Graphical abstract

13 pages, 693 KiB  
Article
Assessing Q Fever Exposure in Veterinary Professionals: A Study on Seroprevalence and Awareness in Portugal, 2024
by Guilherme Moreira, Mário Ribeiro, Miguel Martins, José Maria Cardoso, Fernando Esteves, Sofia Anastácio, Sofia Duarte, Helena Vala, Rita Cruz and João R. Mesquita
Vet. Sci. 2025, 12(6), 512; https://doi.org/10.3390/vetsci12060512 - 23 May 2025
Viewed by 847
Abstract
Due to their frequent contact with animals, veterinarians may be at preferential risk of Coxiella burnetii exposure due to occupational contact with livestock. This study assesses the seroprevalence and risk factors associated with C. burnetii seropositivity in Portuguese veterinarians. A cross-sectional study compared [...] Read more.
Due to their frequent contact with animals, veterinarians may be at preferential risk of Coxiella burnetii exposure due to occupational contact with livestock. This study assesses the seroprevalence and risk factors associated with C. burnetii seropositivity in Portuguese veterinarians. A cross-sectional study compared IgG anti-C. burnetii in veterinarians’ sera to a demographically matched control group. Univariate and multivariate logistic regression analyses evaluated associations between the demographic, occupational, and biosecurity factors and seropositivity. Seroprevalence among veterinarians was 33.7%, significantly higher (p = 0.0023) than in the controls (17.39%). Univariate analysis identified higher seropositivity in the northern region (p = 0.03), though this association was not significant after adjustment (p = 0.07). Protective measures, including isolating aborting animals from the rest of the herd (adjusted OR [aOR]: 0.35, p = 0.03) and wearing gloves during sample collection (OR: 0.28, p = 0.009), were significantly associated with lower infection risk. Veterinarians face increased C. burnetii exposure, but specific biosecurity practices reduce risk. Strengthening preventive measures, including personal protective equipment (PPE) use and biosecurity training, is essential to mitigate occupational and public health risks. Further research should explore vaccination strategies and molecular epidemiology to improve risk reduction efforts. Full article
Show Figures

Figure 1

10 pages, 236 KiB  
Article
Seroepidemiological Surveillance of Livestock Within an Endemic Focus of Leishmaniasis Caused by Leishmania infantum
by Joaquina Martín-Sánchez, María Ángeles Trujillos-Pérez, Andrés Torres-Llamas, Victoriano Díaz-Sáez, Francisco Morillas-Márquez, Patricia Ibáñez-De Haro, Francisca L. de Torres, Antonio Ortiz and Manuel Morales-Yuste
Animals 2025, 15(11), 1511; https://doi.org/10.3390/ani15111511 - 22 May 2025
Viewed by 511
Abstract
Leishmaniasis by Leishmania infantum has a zoonotic transmission cycle involving an increasing number of mammalian hosts, forming a cooperative network. The sand fly feeding on livestock is evidenced, but clinical confirmation regarding their infection is limited. We aimed to evaluate Leishmania seroprevalence in [...] Read more.
Leishmaniasis by Leishmania infantum has a zoonotic transmission cycle involving an increasing number of mammalian hosts, forming a cooperative network. The sand fly feeding on livestock is evidenced, but clinical confirmation regarding their infection is limited. We aimed to evaluate Leishmania seroprevalence in livestock to assess its impact on leishmaniasis epidemiology in an endemic area located in the Mediterranean region. A cross-sectional serological study screened livestock exposure to L. infantum and risk factors in Southern Spain. A total of 864 serum samples of clinically healthy sheep, goats, cattle, and pigs were examined by an indirect fluorescence antibody test, using a 1/80 cut-off titre to minimize cross-reactions. Global seroprevalence was 10.8%: 21.6% cattle, 15.4% sheep, 7.3% goats, and 0.6% pigs. Statistically significant differences in positive detection were observed among species (p < 0.001) and natural regions (p < 0.001). High positive reactions in cattle, goats, and sheep suggest livestock exposure to Leishmania spp. and potential asymptomatic infection. Livestock presence in biotopes could promote a dilution effect, reducing human leishmaniasis incidence. Further investigation is needed to confirm livestock roles in leishmaniasis maintenance and transmission. Full article
(This article belongs to the Special Issue Leishmania Infection in Animals)
Back to TopTop