Projected Distribution and Dispersal Patterns of Potential Distribution Fasciola hepatica and Its Key Intermediate Host Radix spp. in Qinghai-Tibet Plateau, China, Under Plateau Climatic Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Distribution Data Collection
2.2. Relevant Environment Variables Collection and Filtering
2.3. Analytical Tools and Methods
2.4. Model Parameter Tuning Using the ENMeval Package
2.5. Model Accuracy Verification
2.6. Analyze the Impact of Environmental Variables
2.7. Possibility of Predicting the Distribution of Radix spp. and Fasciola hepatica
2.8. Livestock Impact Assessment
3. Results
3.1. Distribution of Radix spp. and Fasciola hepatica in Qinghai-Tinbet Plateau and Surrounding Areas
3.2. Environmental Factor Screening of Distribution Prediction Model
3.3. Model Parameter Tuning Using the ENMeval Package
3.4. Evaluation of Distributed Prediction Models
3.5. Importance Analysis of Environmental Variables
3.6. Prediction of Communication Risk
3.7. Evaluation of the Impact of Radix spp. And Fasciola hepatica on Animal Husbandry in Qinghai-Tibet Plateau
3.8. Distribution Results of Other Important Trematoda
3.9. Distribution Results of Other Important Lymnaeidae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MaxEnt | Maximum Entropy model |
AUC | receiver operating characteristic (ROC) curve’s area under the curve |
GBIF | Global biodiversity information exchange database |
RM | Regularization multiplier |
FC | Feature combination |
AIC | Akaike information criterion correction |
Appendix A
References
- Dayrat, B.; Conrad, M.; Balayan, S.; White, T.R.; Albrecht, C.; Golding, R.; Gomes, S.R.; Harasewych, M.G.; de Frias, M.A. Phylogenetic relationships and evolution of pulmonate gastropods (Mollusca): New insights from increased taxon sampling. Mol. Phylogenet. Evol. 2011, 59, 425–437. [Google Scholar] [CrossRef]
- Kaplan, R.M. Fasciola hepatica: A review of the economic impact in cattle and considerations for control. Vet. Ther. 2001, 2, 40–50. [Google Scholar] [PubMed]
- Gu, Y.; Shen, Y.; Mao, X. Research on pathogenic factors of Fascioliasis. Chin. J. Anim. Infect. Dis. 2000, 2, 55–59. [Google Scholar]
- Gayo, V.; Mera, Y.; Sierra, R. With IAEA Support, Latin America Controls Liver Fluke (Fasciola hepatica) in Livestock and Humans; FAO/IAEA Program; IAEA: Vienna, Austria, 2010. [Google Scholar]
- Xu, H.; Zhu, R.; Zhao, H. Research progress in diagnosis and control of Fascioliasis. Chin. J. Anim. Infect. Dis. 2000, 4, 49–51. [Google Scholar]
- Hurtrez-Boussès, S.; Meunier, C.; Durand, P.; Renaud, F. Dynamics of host-parasite interactions: The example of population biology of the Fasciola hepatica. Microbes Infect. 2001, 3, 841–849. [Google Scholar] [CrossRef]
- Yang, L. Classification and Phylogeny of Lymnaeidae. Master’s Thesis, Nanchang University, Nanchang, China, 2019. [Google Scholar]
- Li, G.; Jin, J.; Cai, X.; Duan, Z. Investigation on the species of intermediate hosts of Fasciola hepatica in Gannan Pastoral Area. Chin. Vet. Sci. 1988, 9, 23–27. [Google Scholar] [CrossRef]
- Zhou, L. Serological Investigation on Fasciolopsis buski in Tibetan yaks and Tibetan sheep in the Qinghai-Tibet Plateau and Identification of Oncomelania hupensis in Tibet. Master’s Thesis, Xizang University, Lasa, China, 2020. [Google Scholar]
- Zhao, C.; Guo, M.; Li, W.; Chen, G.; Kang, M. Investigation of Fasciola hepatica infection in Tibetan sheep in some areas of Qinghai Province. Anim. Husb. Vet. Med. 2016, 48, 134–136. [Google Scholar]
- Liu, Y.; Wang, Y. The morphology and habits of Lymnaeidae. Biol. Bull. 1965, 3, 8–12. [Google Scholar]
- Zhu, G.; Liu, G.; Bu, W.; Gao, Y. Ecological niche modeling and its application in Biodiversity Conservation. Biodivers. Sci. 2013, 21, 90–98. [Google Scholar] [CrossRef]
- Lin, X.; Xiao, H.; Tian, H. Applications of ecological niche models in risk predictions of infectious diseases. Chin.Prev. Med. 2013, 47, 294–296. [Google Scholar] [CrossRef]
- Hu, X.; Xia, S.; Guo, Y.; Hao, Y.; Xue, J.; Lv, S.; Xu, J.; Li, S. Ecological niche modeling and its applications in research on transmission risks of parasitic diseases. Chin. Parasitol. Parasit. Dis. 2020, 38, 238–244. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, K.; Wei, F.; Ren, Y.; Zhang, L.; Xiao, W. Impact of future climate change on the potential distribution of Oncomelania in Hubei Province. Adv. Clim. Change Res. 2017, 13, 606–613. [Google Scholar] [CrossRef]
- Liao, J. Study on Potential Transmission Risk of Schistosomiasis in China Based on Ecological Niche Model. Master’s Thesis, Central South University, Changsha, China, 2011. [Google Scholar]
- Yang, Y.; Cheng, W.; Wu, X.; Huang, S.; Deng, Z.; Zeng, X.; Yuan, D.; Yang, Y.; Wu, Z.; Chen, Y.; et al. Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni. PLoS Negl. Trop. Dis. 2018, 12, e0006548. [Google Scholar] [CrossRef]
- Pedersen, U.B.; Stendel, M.; Midzi, N.; Mduluza, T.; Soko, W.; Stensgaard, A.S.; Vennervald, B.J.; Mukaratirwa, S. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe. Parasit. Vectors 2014, 7, 536. [Google Scholar] [CrossRef]
- Chamaillé, L.; Tran, A.; Meunier, A.; Bourdoiseau, G.; Ready, P.; Dedet, J.P. Environmental risk mapping of canine leishmaniasis in France. Parasit. Vectors 2010, 3, 31. [Google Scholar] [CrossRef]
- Moyes, C.L.; Shearer, F.M.; Huang, Z.; Wiebe, A.; Gibson, H.S.; Nijman, V.; Mohd-Azlan, J.; Brodie, J.F.; Malaivijitnond, S.; Linkie, M.; et al. Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasit. Vectors 2016, 9, 242. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, P.; Pan, W. Predicting the potential suitable distribution area of Pomacea canaliculata in China based on the GARP ecological niche modeling. J. Fujian Agri Fore Univ. (Nat. Sci. Ed.) 2018, 47, 21–25. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, D.; Mu, X.; Wei, H.; Luo, J.; Zhang, J.; Hu, C. Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models. Chin. J. Appl. Ecol. 2016, 27, 1277–1284. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudik, M.; Chee, Y.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2015, 17, 43–57. [Google Scholar] [CrossRef]
- Xing, D.; Hao, Z. The principle of maximum entropy and its application in ecology. Biodivers. Sci. 2011, 19, 295–302. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2010, 29, 129–151. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Zheng, D.; Yang, Q. Trend of climate change in the Tibetan Plateau in the past 30 years. Acta Geogr. Sin. 2005, 1, 3–11. [Google Scholar]
- Liu, Q. Impact of climate change on vector-borne diseases and related response strategies in China: Major research findings and recommendations for future research. Chin. J. Vector Biol. Control 2021, 32, 1–11. [Google Scholar] [CrossRef]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035+1–2. [Google Scholar] [CrossRef]
- Carpenter, G.; Gillison, A.N.; Winter, J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 1993, 2, 667–680. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef]
- Warren, D.L.; Wright, A.N.; Seifert, S.N.; Shaffer, H.B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 2014, 20, 334–343. [Google Scholar] [CrossRef]
- Zhu, G.; Qiao, H. Effect of the Maxent model’s complexity on the prediction of species potential distribution area. Biodivers. Sci. 2016, 24, 1189–1196. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods in Ecol Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 2011, 34, 232–243. [Google Scholar] [CrossRef]
- Zhu, G.; Fan, J.; Wang, M.; Chen, M.; Qiao, H. The importance of the shape of receiver operating characteristic (ROC) curve in ecological niche model evaluation—Case study of Hlyphantria cunea. J. Biosaf. 2017, 26, 184–190. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, W.; Li, H.; Wang, B.; Yang, X.; Liu, Y. Modelling the potential distribution and shifts of three varieties of Stipa tianschanica in the eastern Eurasian Steppe under multiple climate change scenarios. Glob. Ecol. Conserv. 2018, 16, e00501. [Google Scholar] [CrossRef]
- Hu, Z.; Nong, M.; Yu, W.; Yu, Q.; Hu, E. MaxEnt distribution prediction of Dermacentor nuttalli in Xinjiang region of China. Ecol. Sci. 2022, 41, 92–101. [Google Scholar] [CrossRef]
- Fan, J.; Gao, J.; Yuan, X.; Tan, Y.; Wei, Z.; Gao, J. Junior Secondary School Geography: Volume 2, Eighth Grade Edition; People’s Education Press: Beijing, China, 2023; p. 88. [Google Scholar]
- He, T.; Zhou, Y.; Cheng, N.; Shi, Y.; Tang, M.; Xu, X. Molecular identification and genetic polymorphism analysis of Fasciola hepatica in Nanning area, Guangxi. Chin. J. Pathogenic Biol. 2021, 16, 557–563. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Chen, F.; Hao, M.; Li, X.; Zhao, Y.; Zhang, D.; Zhang, Q.; Li, C.; Zhang, J.; et al. Investigation and molecular identification of Fasciolopsis buski infection in domestic animals in Dali Bai Autonomous Prefecture, Yunnan Province. Chin. J. Parasitol. Parasit. Dis. 2024, 42, 715–720. [Google Scholar]
- Ichikawa-Seki, M.; Peng, M.; Hayashi, K.; Shoriki, T.; Mohanta, U.K.; Shibahara, T.; Itagaki, T. Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China. Parasitology 2017, 144, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Jia, T. Global distribution and transmission of Fasciola. Chin. J. Schistosomiasis Control 2019, 34, 654–658. [Google Scholar] [CrossRef]
- Chidan, L.; Wu, J.; Lin, H.; Ma, X. Investigation and comprehensive control technology of fascioliasis in cattle and sheep in the county of Xigaze, Tibet. Tibet’s Sci. Technol. 2014, 1, 50–52. [Google Scholar]
- LI, W. Investigation on Fasciola hepatica Infection of Tibetan Sheep in Some Areas of Qinghai Province and Drug Dehelminth Test. Masrer’s Thesis, Qinghai University, Xining, China, 2014. [Google Scholar]
- Mas-Coma, S.; Valero, M.A.; Bargues, M.D. Chapter 2. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv. Parasitol. 2009, 69, 41–146. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Buchon, P.; Funatsu, I.R.; Angles, R.; Mas-Bargues, C.; Artigas, P.; Valero, M.A.; Bargues, M.D. Donkey fascioliasis within a One Health control action: Transmission capacity, field epidemiology, and reservoir role in a human hyperendemic area. Front. Vet. Sci. 2020, 7, 591384. [Google Scholar] [CrossRef] [PubMed]
- Young, M.R. The life cycles of six species of freshwater molluscs in the Worcester-Birmingham canal. J. Mollus Stud. 1975, 41, 533–548. [Google Scholar]
- Økland, J. Lakes and Snails: Environment and Gastropoda in 1500 Norwegian lakes, Ponds and Rivers; English Edition; Balogh Scientific Books: Oegstgeest, The Netherlands, 1990. [Google Scholar]
- Taft, L.; Wiechert, U.; Riedel, F.; Marc, W.; Zhang, H. Sub-seasonal oxygen and carbon isotope variations in shells of modern Radix sp.(Gastropoda) from the Tibetan Plateau: Potential of a new archive for palaeoclimatic studies. Quat. Sci. Rev. 2012, 34, 44–56. [Google Scholar] [CrossRef]
- White, D.; Preece, R.C.; Shchenikov, A.A.; Parfitt, S.A.; Dlussky, K.G. A Holocene molluscan succession from floodplain sediments of the upper Lena River (Lake Baikal region), Siberia. Quat. Sci. Rev. 2008, 27, 962–987. [Google Scholar] [CrossRef]
- Gaten, E. Life cycle of Lymnaea peregra (Gastropoda: Pulmonata) in the Leicester canal, UK, with an estimate of annual production. Hydrobiologia 1986, 135, 45–54. [Google Scholar] [CrossRef]
- Sheng, S.; Gui, H.; Zhang, M.; Tai, Y.; Ni, S. Ecological study on snails (Lymnaeidae) in Huainan section of the Huaihe River. Chin. J. Appl. Environ. Biol. 2005, 5, 45–47. [Google Scholar]
- Yi, M.; Bai, B.; Liu, Y. Seasonal dynamics of fascioliasis in livestock and selection of the best dehelminth time in high altitude areas. Chin. J. Vet. 1995, 7, 20–22. [Google Scholar]
- Cai, D. Epidemiological investigation of fascioliasis in Tibetan sheep in high altitude pastoral areas. Anim. Husb. Vet Med. 2012, 44, 101–102. [Google Scholar]
VARIABLE NAME | DEFINITION | SOURCE |
---|---|---|
BIO 1 | Annual mean temperature | WorldClim |
BIO 2 | Mean diurnal range [mean of monthly (max temp-min temp)] | WorldClim |
BIO 3 | Isothermality (BIO 02/BIO 07) × 100 | WorldClim |
BIO 4 | Temperature seasonality | WorldClim |
BIO 5 | Maximum temperature of the warmest month | WorldClim |
BIO 6 | Minimum temperature of the coldest month | WorldClim |
BIO 7 | Temperature annual range (BIO 5-BIO 6) | WorldClim |
BIO 8 | Mean temperature of the wettest quarter | WorldClim |
BIO 9 | Mean temperature of the driest quarter | WorldClim |
BIO 10 | Mean temperature of the warmest quarter | WorldClim |
BIO 11 | Mean temperature of the coldest quarter | WorldClim |
BIO 12 | Annual precipitation | WorldClim |
BIO 13 | Precipitation of the wettest month | WorldClim |
BIO 14 | Precipitation of the driest month | WorldClim |
BIO 15 | Precipitation seasonality | WorldClim |
BIO 16 | Precipitation of the wettest quarter | WorldClim |
BIO 17 | Precipitation of the driest quarter | WorldClim |
BIO 18 | Precipitation of the warmest quarter | WorldClim |
BIO 19 | Precipitation of the coldest quarter | WorldClim |
ELEV | Elevation | WorldClim |
HII | Human influence index | Last of the Wild Data Version 2 2005 |
HFP | Human footprint index | http://www.ciesin.columbia.edu/wild_areas/ (accessed on 24 March 2024) |
LOCATION | SPECIES | SAMPLE SIZE | ELEVATION (AVERAGE VALUE) |
---|---|---|---|
QINGHAI | Radix spp. | 35 | 3000 m |
Fasciola hepatica | 83 | ||
XIZANG | Radix spp. | 112 | 4000 m |
Fasciola hepatica | 6 |
VARIABLE NAME | PERCENT CONTRIBUTION | PERMUTATION IMPORTANCE |
---|---|---|
BIO 4 | 21.4 | 32 |
ELEV | 16.4 | 16.9 |
BIO 9 | 14.7 | 13.4 |
BIO 12 | 13.3 | 22.6 |
HFP | 13.2 | 10.5 |
BIO 3 | 12.4 | 3.3 |
VARIABLE NAME | PERCENT CONTRIBUTION | PERMUTATION IMPORTANCE |
---|---|---|
ELEV | 41.3 | 47.4 |
HFP | 30.5 | 22.4 |
BIO 14 | 12.1 | 1.1 |
BIO 2 | 11.4 | 22.1 |
BIO 12 | 3.8 | 5.4 |
BIO 3 | 0.8 | 0.3 |
Radix | Fasciola hepatica | |||||||
---|---|---|---|---|---|---|---|---|
Risk Value | High (0.51–1) | Medium (0.26–0.5) | Low (0.11–0.25) | No Risk (0–0.1) | High (0.47–1) | Medium (0.21–0.46) | Low (0.11–0.2) | No Risk (0–0.1) |
Northern Tibetan sheep | √ | √ | ||||||
Hequ Horses | √ | √ | ||||||
Tibetan goats | √ | √ | ||||||
Qinghai Bos grunniens | √ | √ | ||||||
Xizang Bos grunniens | √ | √ | ||||||
Southern Tibetan sheep | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Guo, Y.; Li, Z.; Guo, M.; Kang, M.; Liu, D.; Yang, L.; Li, Z.; Wang, P.; Luo, W.; et al. Projected Distribution and Dispersal Patterns of Potential Distribution Fasciola hepatica and Its Key Intermediate Host Radix spp. in Qinghai-Tibet Plateau, China, Under Plateau Climatic Conditions. Pathogens 2025, 14, 647. https://doi.org/10.3390/pathogens14070647
Xu L, Guo Y, Li Z, Guo M, Kang M, Liu D, Yang L, Li Z, Wang P, Luo W, et al. Projected Distribution and Dispersal Patterns of Potential Distribution Fasciola hepatica and Its Key Intermediate Host Radix spp. in Qinghai-Tibet Plateau, China, Under Plateau Climatic Conditions. Pathogens. 2025; 14(7):647. https://doi.org/10.3390/pathogens14070647
Chicago/Turabian StyleXu, Luyao, Yunhai Guo, Zengkui Li, Mingjia Guo, Ming Kang, Daoxin Liu, Limin Yang, Zhongqiu Li, Panpan Wang, Wenhui Luo, and et al. 2025. "Projected Distribution and Dispersal Patterns of Potential Distribution Fasciola hepatica and Its Key Intermediate Host Radix spp. in Qinghai-Tibet Plateau, China, Under Plateau Climatic Conditions" Pathogens 14, no. 7: 647. https://doi.org/10.3390/pathogens14070647
APA StyleXu, L., Guo, Y., Li, Z., Guo, M., Kang, M., Liu, D., Yang, L., Li, Z., Wang, P., Luo, W., & Li, Y. (2025). Projected Distribution and Dispersal Patterns of Potential Distribution Fasciola hepatica and Its Key Intermediate Host Radix spp. in Qinghai-Tibet Plateau, China, Under Plateau Climatic Conditions. Pathogens, 14(7), 647. https://doi.org/10.3390/pathogens14070647