Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (461)

Search Parameters:
Keywords = lithium resources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 13989 KB  
Article
Facile Preparation of a Cellulose-Based Thermoresponsive Gel for Rapid Water Harvesting from the Atmosphere
by Xiaoyu Wang, Hui Zhang, Xinxin Liu, Jie Du and Yingguang Xu
Polymers 2025, 17(16), 2253; https://doi.org/10.3390/polym17162253 - 20 Aug 2025
Viewed by 281
Abstract
Atmospheric water harvesting, as an emerging water collection technology, is expected to mitigate water resource crises. Adsorption-based atmospheric water harvesting technology offers distinct advantages, including geographical independence and reduced reliance on ambient humidity levels. Herein, a thermoresponsive gel (PNIPAM/TO-CNF) integrated with lithium chloride [...] Read more.
Atmospheric water harvesting, as an emerging water collection technology, is expected to mitigate water resource crises. Adsorption-based atmospheric water harvesting technology offers distinct advantages, including geographical independence and reduced reliance on ambient humidity levels. Herein, a thermoresponsive gel (PNIPAM/TO-CNF) integrated with lithium chloride was constructed to achieve accelerated moisture sorption and rapid desorption capabilities. In the designated PNIPAM/TO-CNF/LiCl gel, PNIPAM provided a temperature-responsive hydrophilic–hydrophobic transition network; the hydrophilicity and structural strength were enhanced by TO-CNF, the moisture absorption capacity was dramatically elevated by hygroscopic salt LiCl, and pore-forming agent polyethylene glycol created a favorable porous structure. This synergistic design endows the gel with an optimized hydrophilic network, temperature-responsive behavior, and a porous architecture conducive to water vapor transportation, thereby achieving rapid moisture absorption and desorption. Under 60% relative humidity, the gel exhibited a water vapor adsorption capacity of 144% within 1 h, reaching its maximum absorption capacity of 178% after 140 min. The gel exhibited an even more superior desorption performance: when heated to 70 °C, its moisture content rapidly decreased to 16% of its initial weight within 1 h, corresponding to the desorption of 91% of the total absorbed water. A simplified pore-forming methodology that enables the integration of temperature-responsive properties with efficient moisture transfer channels was reported in this paper, providing a viable design pathway for achieving accelerated adsorption–desorption cycles in atmospheric water harvesting. Full article
(This article belongs to the Special Issue Advances in Lignocellulose: Cellulose, Hemicellulose and Lignin)
Show Figures

Graphical abstract

18 pages, 7705 KB  
Article
Mineral Liberation Analysis (MLA)-Based Characterization of Lithium Source: Biotite and Associated Minerals in Nepheline Syenites
by Zeynep Üçerler-Çamur, Ozgul Keles and Murat Olgaç Kangal
Minerals 2025, 15(8), 876; https://doi.org/10.3390/min15080876 - 20 Aug 2025
Viewed by 167
Abstract
Due to the rapid advancement of technology, lithium carbonate has become a crucial raw material for battery storage applications. Brines remain the primary source, while lithium carbonate production from ores is limited. Therefore, expanding resources, identifying potential deposits, and characterizing existing sources are [...] Read more.
Due to the rapid advancement of technology, lithium carbonate has become a crucial raw material for battery storage applications. Brines remain the primary source, while lithium carbonate production from ores is limited. Therefore, expanding resources, identifying potential deposits, and characterizing existing sources are essential. Direct lithium detection via MLA is challenging due to its atomic number being below 6; however, it can be indirectly identified through lithium-bearing biotite. This study characterizes lithium-bearing biotite in nepheline syenite ore, considering biotite as the primary lithium source. Analytical methods included MLA, modal mineralogy, XRD, ICP-OES, XRF, SEM-BSE, and EDS. The ore contained 4% biotite, with a liberation degree exceeding 70% in particles finer than 500 µm. Biotite formed binary, ternary, and complex associations with K-feldspar, nepheline, and albite. Finer particle sizes increased biotite liberation while reducing associations; no binary biotite–nepheline associations were detected below 75 µm. EDS spectra confirmed biotite as the sole lithium-bearing mineral. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

37 pages, 2042 KB  
Review
Energy-Efficient Ion Recovery from Water Using Electro-Driven Membranes: A Comprehensive Critical Review
by Akeem Adeyemi Oladipo and Mehdi Ahmad
Water 2025, 17(16), 2456; https://doi.org/10.3390/w17162456 - 19 Aug 2025
Viewed by 391
Abstract
Amid concurrent pressures on water and material resources, recovering valuable ions like lithium and nutrients from brines and wastewater is a critical tenet of the circular economy. This review provides a critical assessment of electro-driven membranes (EDMs) as a key technology platform for [...] Read more.
Amid concurrent pressures on water and material resources, recovering valuable ions like lithium and nutrients from brines and wastewater is a critical tenet of the circular economy. This review provides a critical assessment of electro-driven membranes (EDMs) as a key technology platform for achieving this goal with high energy efficiency. A comprehensive synthesis and analysis of the current state-of-the-art of core EDM technologies, including electrodialysis (ED) and membrane capacitive deionization (MCDI), is presented, focusing the analysis on the performance metrics of specific energy consumption and ion selectivity. The findings reveal that the optimal EDM technology is highly application-dependent, with MCDI excelling for dilute streams and ED for concentrated ones. While significant advances in monovalent selective membranes have enabled lithium recovery, achieving high selectivity between ions of the same valence (e.g., Li+/Na+) remains a fundamental challenge. Moreover, persistent issues of membrane fouling and scaling continue to inflate energy consumption and represent a major bottleneck for industrial-scale deployment. While EDMs are a vital technology for ion resource recovery, unlocking their full potential requires a dual-pronged approach: advancing materials science to design novel, highly selective membranes, while simultaneously developing intelligently integrated systems to surmount existing performance and economic barriers. Full article
(This article belongs to the Special Issue Wastewater Treatment and Reuse Advances Review)
Show Figures

Figure 1

21 pages, 3739 KB  
Article
Occurrence State and Extraction of Lithium from Jinyinshan Clay-Type Lithium Deposit, Southern Hubei: Novel Blank Roasting–Acid Leaching Processes
by Hao Zhang, Peng Li, Wensheng Zhang, Jiankang Li, Zhenyu Chen, Jin Yin, Yong Fang, Shuang Liu, Jian Kang and Dan Zhu
Appl. Sci. 2025, 15(16), 9100; https://doi.org/10.3390/app15169100 - 18 Aug 2025
Viewed by 285
Abstract
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to [...] Read more.
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to provide technical guidance for subsequent geological exploration and development of such deposits. Analytical techniques, including AMICS, EPMA, and LA-ICP-MS, reveal that Li primarily occurs in structurally bound forms within cookeite (82.55% of total Li), illite (6.65%), and rectorite (5.20%), with mineral particle sizes concentrated in fine-grained fractions (<45 μm). Leveraging process mineralogical insights, two industrially adaptable blank roasting–acid leaching processes were innovatively developed. Process I employs a full flow of blank roasting–hydrochloric acid leaching–Li-Al separation–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Optimizing roasting temperature (600 °C), hydrochloric acid concentration (18 wt%), and leaching parameters achieved a 92.37% Li leaching rate. Multi-step purification yielded lithium carbonate with >99% Li2CO3 purity and an overall Li recovery of 73.89%. Process II follows blank roasting–sulfuric acid leaching–Al removal via alum precipitation–Al/Fe removal–freeze crystallization for sodium sulfate removal–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Parameter optimization and freezing impurity removal achieved an 89.11% Li leaching rate, producing lithium carbonate with >98.85% Li2CO3 content alongside by-products like crude sodium chloride and ammonium alum. Both processes enable resource utilization of Al-rich residues, with the hydrochloric acid-based method excelling in stability and the sulfuric acid-based approach offering superior by-product valorization potential. This low-energy, high-yield clean extraction system provides critical theoretical and technical foundations for scaling clay-type Li deposit utilization, advancing green Li extraction and industrial chain development. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

5 pages, 142 KB  
Editorial
Manufacturing and Characterization of Metallic Electrode Materials
by Que Huang
Metals 2025, 15(8), 882; https://doi.org/10.3390/met15080882 - 7 Aug 2025
Viewed by 174
Abstract
In recent years, the growing demand for resources has driven the development of energy storage devices and related technologies, particularly the application of metal electrode materials, which are of particular importance in lithium, sodium, potassium, and zinc-based ion batteries, metal batteries, and solar [...] Read more.
In recent years, the growing demand for resources has driven the development of energy storage devices and related technologies, particularly the application of metal electrode materials, which are of particular importance in lithium, sodium, potassium, and zinc-based ion batteries, metal batteries, and solar energy storage and catalytic technologies [...] Full article
(This article belongs to the Special Issue Manufacturing and Characterization of Metallic Electrode Materials)
21 pages, 1124 KB  
Review
Advances in Graphite Recycling from Spent Lithium-Ion Batteries: Towards Sustainable Resource Utilization
by Maria Joriza Cañete Bondoc, Joel Hao Jorolan, Hyung-Sub Eom, Go-Gi Lee and Richard Diaz Alorro
Minerals 2025, 15(8), 832; https://doi.org/10.3390/min15080832 - 5 Aug 2025
Viewed by 511
Abstract
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, [...] Read more.
Graphite has been recognized as a critical material by the United States (US), the European Union (EU), and Australia. Owing to its unique structure and properties, it is utilized in many industries and has played a key role in the clean energy sector, particularly in the lithium-ion battery (LIB) industries. With the projected increase in global graphite demand, driven by the shift to clean energy and the use of EVs, as well as the geographically concentrated production and reserves of natural graphite, interest in graphite recycling has increased, with a specific focus on using spent LIBs and other waste carbon material. Although most established and developing LIB recycling technologies are focused on cathode materials, some have started recycling graphite, with promising results. Based on the different secondary sources and recycling paths reported, hydrometallurgy-based treatment is usually employed, especially for the purification of graphite; greener alternatives are being explored, replacing HF both in lab-scale research and in industry. This offers a viable solution to resource dependency and mitigates the environmental impact associated with graphite production. These developments signal a trend toward sustainable and circular pathways for graphite recycling. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3870 KB  
Review
Eco-Friendly, Biomass-Derived Materials for Electrochemical Energy Storage Devices
by Yeong-Seok Oh, Seung Woo Seo, Jeong-jin Yang, Moongook Jeong and Seongki Ahn
Coatings 2025, 15(8), 915; https://doi.org/10.3390/coatings15080915 - 5 Aug 2025
Viewed by 482
Abstract
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom [...] Read more.
This mini-review emphasizes the potential of biomass-derived materials as sustainable components for next-generation electrochemical energy storage systems. Biomass obtained from abundant and renewable natural resources can be transformed into carbonaceous materials. These materials typically possess hierarchical porosities, adjustable surface functionalities, and inherent heteroatom doping. These physical and chemical characteristics provide the structural and chemical flexibility needed for various electrochemical applications. Additionally, biomass-derived materials offer a cost-effective and eco-friendly alternative to traditional components, promoting green chemistry and circular resource utilization. This review provides a systematic overview of synthesis methods, structural design strategies, and material engineering approaches for their use in lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs), and supercapacitors (SCs). It also highlights key challenges in these systems, such as the severe volume expansion of anode materials in LIBs and the shuttle effect in LSBs and discusses how biomass-derived carbon can help address these issues. Full article
Show Figures

Figure 1

15 pages, 1832 KB  
Article
PyBEP: An Open-Source Tool for Electrode Potential Determination from Battery OCV Measurements
by Jon Pišek, Tomaž Katrašnik and Klemen Zelič
Batteries 2025, 11(8), 295; https://doi.org/10.3390/batteries11080295 - 4 Aug 2025
Viewed by 480
Abstract
This paper introduces PyBEP, a Python-based tool for the automated and optimized selection of open-circuit potential (OCP) curves and calculation of stoichiometric cycling ranges for lithium-ion battery electrodes based on open-circuit voltage (OCV) measurements. Thereby, it overcomes key challenges in traditional approaches, which [...] Read more.
This paper introduces PyBEP, a Python-based tool for the automated and optimized selection of open-circuit potential (OCP) curves and calculation of stoichiometric cycling ranges for lithium-ion battery electrodes based on open-circuit voltage (OCV) measurements. Thereby, it overcomes key challenges in traditional approaches, which are often time-intensive and susceptible to errors due to manual curve digitization, data inconsistency, and coding complexities. The originality of PyBEP arises from the systematic integration of automated electrode chemistry identification, quality-controlled database usage, refinement of the results using incremental capacity methodology, and simultaneous optimization of multiple electrode parameters. The PyBEP database leverages high-quality, curated OCP data and employs differential evolution optimization for precise OCP determination. Validation against literature data and experimental results confirms the robustness and accuracy of PyBEP, consistently achieving precision of 10 mV or better. PyBEP also offers features like electrode chemical composition identification and quality enhancement of measurement data, further extending the battery modeling functionalities without the need for battery disassembly. PyBEP is open-source and accessible on GitHub, providing a streamlined, accurate resource for the battery research community, making PyBEP a unique and directly applicable toolkit for electrochemical researchers and engineers. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Graphical abstract

15 pages, 571 KB  
Article
Exploring the Material Feasibility of a LiFePO4-Based Energy Storage System
by Caleb Scarlett and Vivek Utgikar
Energies 2025, 18(15), 4102; https://doi.org/10.3390/en18154102 - 1 Aug 2025
Viewed by 309
Abstract
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a [...] Read more.
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a 50/50 mix of wind and solar power generation, is assumed to satisfy projected world electrical demand in 2050, incorporating the electrification of transportation. The battery electrical storage capacity needed to support this grid is estimated and translated into the required number of nominal 10 MWh LFP storage plants similar to the ones currently in operation. The total lithium required for the global storage system is determined from the number of nominal plants and the inventory of lithium in each plant. The energy required to refine this amount of lithium is accounted for in the estimation of the total lithium requirement. Comparison of the estimated lithium requirements with known global lithium resources indicates that a global storage system consisting only of LFP plants would require only around 12.3% of currently known lithium reserves in a high-economic-growth scenario. The overall cost for a global LFP-based grid-scale energy storage system is estimated to be approximately USD 17 trillion. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

18 pages, 16988 KB  
Article
Deploying Virtual Quality Gates in a Pilot-Scale Lithium-Ion Battery Assembly Line
by Xukuan Xu, Simon Stier, Andreas Gronbach and Michael Moeckel
Batteries 2025, 11(8), 285; https://doi.org/10.3390/batteries11080285 - 25 Jul 2025
Viewed by 359
Abstract
Pilot production is a critical transitional phase in the process of new product development or manufacturing, aiming at ensuring that products are thoroughly validated and optimized before entering full-scale production. During this stage, a key challenge is how to leverage limited resources to [...] Read more.
Pilot production is a critical transitional phase in the process of new product development or manufacturing, aiming at ensuring that products are thoroughly validated and optimized before entering full-scale production. During this stage, a key challenge is how to leverage limited resources to build data infrastructure and conduct data analysis to establish and verify quality control. This paper presents the implementation of a cyber–physical system (CPS) for a lithium battery pilot assembly line. A machine learning-based predictive model was employed to establish quality control mechanisms. Process knowledge-guided data analysis was utilized to build a quality prediction model based on the collected battery data. The model-centric concept of ‘virtual quality’ enables early quality judgment during production, which allows for flexible quality control and the determination of optimal process parameters, thereby reducing production costs and minimizing energy consumption during manufacturing. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

20 pages, 1487 KB  
Article
Structural Evolution and Factors of the Electric Vehicle Lithium-Ion Battery Trade Network Among European Union Member States
by Liqiao Yang, Ni Shen, Izabella Szakálné Kanó, Andreász Kosztopulosz and Jianhao Hu
Sustainability 2025, 17(15), 6675; https://doi.org/10.3390/su17156675 - 22 Jul 2025
Viewed by 528
Abstract
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European [...] Read more.
As global climate change intensifies and the transition to clean energy accelerates, lithium-ion batteries—critical components of electric vehicles—are becoming increasingly vital in international trade networks. This study investigates the structural evolution and determinants of the electric vehicle lithium-ion battery trade network among European Union (EU) member states from 2012 to 2023, employing social network analysis and the multiple regression quadratic assignment procedure method. The findings demonstrate the transformation of the network from a centralized and loosely connected structure, with Germany as the dominant hub, to a more interconnected and decentralized system in which Poland and Hungary emerge as the leading players. Key network metrics, such as the density, clustering coefficients, and average path lengths, reveal increased regional trade connectivity and enhanced supply chain efficiency. The analysis identifies geographic and economic proximity, logistics performance, labor cost differentials, energy resource availability, and venture capital investment as significant drivers of trade flows, highlighting the interaction among spatial, economic, and infrastructural factors in shaping the network. Based on these findings, this study underscores the need for targeted policy measures to support Central and Eastern European countries, including investment in logistics infrastructure, technological innovation, and regional cooperation initiatives, to strengthen their integration into the supply chain and bolster their export capacity. Furthermore, fostering balanced inter-regional collaborations is essential in building a resilient trade network. Continued investment in transportation infrastructure and innovation is recommended to sustain the EU’s competitive advantage in the global electric vehicle lithium-ion battery supply chain. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

20 pages, 1677 KB  
Review
Froth Flotation of Lepidolite—A Review
by Xusheng Yang, Bo Feng and Longxia Jiang
Minerals 2025, 15(7), 750; https://doi.org/10.3390/min15070750 - 17 Jul 2025
Viewed by 399
Abstract
As one of the important lithium resource sources, lepidolite has become a new energy strategic resource research hot spot. The efficient flotation of lepidolite directly affects the recovery and economic value of lithium resources. This paper systematically reviews the flotation research progress of [...] Read more.
As one of the important lithium resource sources, lepidolite has become a new energy strategic resource research hot spot. The efficient flotation of lepidolite directly affects the recovery and economic value of lithium resources. This paper systematically reviews the flotation research progress of lepidolite, focusing on the influence of the type of capture agent and process parameters (pH, activator, and depressant) on flotation. In view of the separation problems caused by the similarity of the surface properties of lepidolite and its associated gangue minerals (albite, feldspar, and quartz), the strategies for regulating the crystal structure of the minerals and their surface properties are analyzed. In addition, the lepidolite flotation process and its challenges are summarized, including poor selectivity of chemicals, fine mineral embedded size, easy to form sludge, and insufficient environmental friendliness, etc. The future development direction of lepidolite flotation technology is also prospected, which provides theoretical support and reference for the efficient recovery of lepidolite. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

24 pages, 2152 KB  
Review
A Concise Overview of the Use of Low-Dimensional Molybdenum Disulfide as an Electrode Material for Li-Ion Batteries and Beyond
by Mattia Bartoli, Meltem Babayiğit Cinali, Özlem Duyar Coşkun, Silvia Porporato, Diego Pugliese, Erik Piatti, Francesco Geobaldo, Giuseppe A. Elia, Claudio Gerbaldi, Giuseppina Meligrana and Alessandro Piovano
Batteries 2025, 11(7), 269; https://doi.org/10.3390/batteries11070269 - 16 Jul 2025
Viewed by 597
Abstract
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and [...] Read more.
The urgent demand for sustainable energy solutions in the face of climate change and resource depletion has catalyzed a global shift toward cleaner energy production and more efficient storage technologies. Lithium-ion batteries (LIBs), as the cornerstone of modern portable electronics, electric vehicles, and grid-scale storage systems, are continually evolving to meet the growing performance requirements. In this dynamic context, two-dimensional (2D) materials have emerged as highly promising candidates for use in electrodes due to their layered structure, tunable electronic properties, and high theoretical capacity. Among 2D materials, molybdenum disulfide (MoS2) has gained increasing attention as a promising low-dimensional candidate for LIB anode applications. This review provides a comprehensive yet concise overview of recent advances in the application of MoS2 in LIB electrodes, with particular attention to its unique electrochemical behavior at the nanoscale. We critically examine the interplay between structural features, charge-storage mechanisms, and performance metrics—chiefly the specific capacity, rate capability, and cycling stability. Furthermore, we discuss current challenges, primarily poor intrinsic conductivity and volume fluctuations, and highlight innovative strategies aimed at overcoming these limitations, such as through nanostructuring, composite formation, and surface engineering. By shedding light on the opportunities and hurdles in this rapidly progressing field, this work offers a forward-looking perspective on the role of MoS2 in the next generation of high-performance LIBs. Full article
(This article belongs to the Section Battery Mechanisms and Fundamental Electrochemistry Aspects)
Show Figures

Figure 1

18 pages, 4203 KB  
Article
Enhancing Lithium-Ion Battery State-of-Health Estimation via an IPSO-SVR Model: Advancing Accuracy, Robustness, and Sustainable Battery Management
by Siyuan Shang, Yonghong Xu, Hongguang Zhang, Hao Zheng, Fubin Yang, Yujie Zhang, Shuo Wang, Yinlian Yan and Jiabao Cheng
Sustainability 2025, 17(13), 6171; https://doi.org/10.3390/su17136171 - 4 Jul 2025
Viewed by 456
Abstract
Precise forecasting of lithium-ion battery health status is crucial for safe, efficient, and sustainable operation throughout the battery life cycle, especially in applications like electric vehicles (EVs) and renewable energy storage systems. In this study, an improved particle swarm optimization–support vector regression (IPSO-SVR) [...] Read more.
Precise forecasting of lithium-ion battery health status is crucial for safe, efficient, and sustainable operation throughout the battery life cycle, especially in applications like electric vehicles (EVs) and renewable energy storage systems. In this study, an improved particle swarm optimization–support vector regression (IPSO-SVR) model is proposed for dynamic hyper-parameter tuning, integrating multiple intelligent optimization algorithms (including PSO, genetic algorithm, whale optimization, and simulated annealing) to enhance the accuracy and generalization of battery state-of-health (SOH) estimation. The model dynamically adjusts SVR hyperparameters to better capture the nonlinear aging characteristics of batteries. We validate the approach using a publicly available NASA lithium-ion battery degradation dataset (cells B0005, B0006, B0007). Key health features are extracted from voltage–capacity curves (via incremental capacity analysis), and correlation analysis confirms their strong relationship with battery capacity. Experimental results show that the proposed IPSO-SVR model outperforms a conventional PSO-SVR benchmark across all three datasets, achieving higher prediction accuracy: a mean MAE of 0.611%, a mean RMSE of 0.794%, a mean MSE of 0.007%, and robustness a mean R2 of 0.933. These improvements in SOH prediction not only ensure more reliable battery management but also support sustainable energy practices by enabling longer battery life spans and more efficient resource utilization. Full article
Show Figures

Figure 1

17 pages, 3910 KB  
Article
Extraction of Valuable Metals from Spent Li-Ion Batteries Combining Reduction Smelting and Chlorination
by Chen Wang, Wei Liu, Congren Yang and Hongbin Ling
Metals 2025, 15(7), 732; https://doi.org/10.3390/met15070732 - 30 Jun 2025
Cited by 1 | Viewed by 488
Abstract
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization [...] Read more.
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization process for the comprehensive recovery of strategic metals (Li, Mn, Cu, Co, Ni) from spent ternary lithium-ion batteries; calcium chloride was selected as the chlorinating agent for this purpose. Thermodynamic analysis was performed to understand the phase evolution during reduction smelting and to design an appropriate slag composition. Preliminary experiments compared carbon and aluminum powder as reducing agents to identify optimal operational parameters: a smelting temperature of 1450 °C, 2.5 times theoretical CaCl2 dosage, and duration of 120 min. The process achieved effective element partitioning with lithium and manganese volatilizing as chloride species, while transition metals (Cu, Ni, Co) were concentrated into an alloy phase. Process validation in an induction furnace with N2-O2 top blowing demonstrated enhanced recovery efficiency through optimized oxygen supplementation (four times the theoretical oxygen requirement). The recovery rates of Li, Mn, Cu, Co, and Ni reached 94.1%, 93.5%, 97.6%, 94.4%, and 96.4%, respectively. This synergistic approach establishes an energy-efficient pathway for simultaneous multi-metal recovery, demonstrating industrial viability for large-scale lithium-ion battery recycling through minimized processing steps and maximized resource utilization. Full article
(This article belongs to the Special Issue Green Technologies in Metal Recovery)
Show Figures

Figure 1

Back to TopTop