Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = liquid natural gas (LNG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5232 KiB  
Article
Analysis of the Characteristics of a Multi-Generation System Based on Geothermal, Solar Energy, and LNG Cold Energy
by Xinfeng Guo, Hao Li, Tianren Wang, Zizhang Wang, Tianchao Ai, Zireng Qi, Huarong Hou, Hongwei Chen and Yangfan Song
Processes 2025, 13(8), 2377; https://doi.org/10.3390/pr13082377 - 26 Jul 2025
Viewed by 341
Abstract
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is [...] Read more.
In order to reduce gas consumption and increase the renewable energy proportion, this paper proposes a poly-generation system that couples geothermal, solar, and liquid natural gas (LNG) cold energy to produce steam, gaseous natural gas, and low-temperature nitrogen. The high-temperature flue gas is used to heat LNG; low-temperature flue gas, mainly nitrogen, can be used for cold storage cooling, enabling the staged utilization of the energy. Solar shortwave is used for power generation, and longwave is used to heat the working medium, which realizes the full spectrum utilization of solar energy. The influence of different equipment and operating parameters on the performance of a steam generation system is studied, and the multi-objective model of the multi-generation system is established and optimized. The results show that for every 100 W/m2 increase in solar radiation, the renewable energy ratio of the system increases by 1.5%. For every 10% increase in partial load rate of gas boiler, the proportion of renewable energy decreases by 1.27%. The system’s energy efficiency, cooling output, and the LNG vaporization flow rate are negatively correlated with the scale of solar energy utilization equipment. The decision variables determined by the TOPSIS (technique for order of preference by similarity to ideal solution) method have better economic performance. Its investment cost is 18.14 × 10 CNY, which is 7.83% lower than that of the LINMAP (linear programming technique for multidimensional analysis of preference). Meanwhile, the proportion of renewable energy is only 0.29% lower than that of LINMAP. Full article
(This article belongs to the Special Issue Innovations in Waste Heat Recovery in Industrial Processes)
Show Figures

Figure 1

12 pages, 3521 KiB  
Article
Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
by Jinjie Wang, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao and Qianhao Zang
Metals 2025, 15(7), 761; https://doi.org/10.3390/met15070761 - 6 Jul 2025
Viewed by 422
Abstract
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded [...] Read more.
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded joint performance during stainless steel welding significantly constrain the construction quality and safety of LNG carriers. While conventional tungsten inert gas (TIG) welding can produce high-integrity welds, it is inherently limited by shallow penetration depth and low efficiency. Magnetic field-assisted TIG welding technology addresses these limitations by introducing an external magnetic field, which effectively modifies arc morphology, refines grain structure, enhances penetration depth, and improves corrosion resistance. In this study, TIG bead-on-plate welding was performed on 304 stainless steel plates, with a systematic investigation into the dynamic arc behavior during welding, as well as the microstructure and anti-corrosion properties of the deposited metal. The experimental results demonstrate that, in the absence of a magnetic field, the welding arc remains stable without deflection. As the intensity of the alternating magnetic field intensity increases, the arc exhibits pronounced periodic oscillations. At an applied magnetic field intensity of 30 mT, the maximum arc deflection angle reaches 76°. With increasing alternating magnetic field intensity, the weld penetration depth gradually decreases, while the weld width progressively expands. Specifically, at 30 mT, the penetration depth reaches a minimum value of 1.8 mm, representing a 44% reduction compared to the non-magnetic condition, whereas the weld width peaks at 9.3 mm, corresponding to a 9.4% increase. Furthermore, the ferrite grains in the weld metal are significantly refined at higher alternating magnetic field intensities. The weld metal subjected to a 30 mT alternating magnetic field exhibits the highest breakdown potential, the lowest corrosion rate, and the most protective passive film, indicating superior corrosion resistance compared to other tested conditions. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Graphical abstract

17 pages, 4576 KiB  
Article
Experiment and Simulation on the Influence of Fire Radiation on the Evaporation of Liquefied Natural Gas
by Li Xiao, Fan Yang, Jing Tian, Wenqing Song and Cunyong Song
Processes 2025, 13(6), 1673; https://doi.org/10.3390/pr13061673 - 26 May 2025
Viewed by 725
Abstract
With the introduction of the “dual carbon” strategy, public attention to green energy has surged, leading to a notable increase in the demand for natural gas. Consequently, the storage and transportation of liquefied natural gas (LNG) have emerged as critical aspects to ensure [...] Read more.
With the introduction of the “dual carbon” strategy, public attention to green energy has surged, leading to a notable increase in the demand for natural gas. Consequently, the storage and transportation of liquefied natural gas (LNG) have emerged as critical aspects to ensure its safe and cost-effective utilization. For onshore LNG storage, LNG storage tanks play a pivotal role. However, in extreme scenarios such as fires, these tanks may be exposed to radiant heat, which not only jeopardizes their structural integrity but could also result in LNG leaks, triggering severe safety incidents and environmental disasters. Against this backdrop, this study delves into the evaporation characteristics of large-scale LNG storage tanks under fire radiation conditions. Given the unique properties of LNG and the similarity between the bubble-point lines and heat exchange curves of nitrogen and LNG, liquid nitrogen is employed as a substitute for LNG in experimental investigations to observe evaporation behaviors. Furthermore, the FLUENT 2022R1 software is utilized to conduct numerical simulations on a 160,000-cubic-meter LNG storage tank, aiming to model the intricate process of internal evaporation and the impact of environmental factors. The findings of this research aim to furnish a scientific basis for enhancing the storage safety of large-scale LNG storage tanks. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

87 pages, 11054 KiB  
Review
Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization
by Bahram Ghorbani, Sohrab Zendehboudi and Noori M. Cata Saady
Energies 2025, 18(6), 1443; https://doi.org/10.3390/en18061443 - 14 Mar 2025
Cited by 2 | Viewed by 3215
Abstract
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase [...] Read more.
Recent research in the liquefied natural gas (LNG) industry has concentrated on reducing specific power consumption (SPC) during production, which helps to lower operating costs and decrease the carbon footprint. Although reducing the SPC offers benefits, it can complicate the system and increase investment costs. This review investigates the thermodynamic parameters of various natural gas (NG) liquefaction technologies. It examines the cryogenic NG processes, including integrating NG liquid recovery plants, nitrogen rejection cycles, helium recovery units, and LNG facilities. It explores various approaches to improve hybrid NG liquefaction performance, including the application of optimization algorithms, mixed refrigerant units, absorption refrigeration cycles, diffusion–absorption refrigeration systems, auto-cascade absorption refrigeration processes, thermoelectric generator plants, liquid air cold recovery units, ejector refrigeration cycles, and the integration of renewable energy sources and waste heat. The review evaluates the economic aspects of hybrid LNG systems, focusing on specific capital costs, LNG pricing, and capacity. LNG capital cost estimates from academic sources (173.2–1184 USD/TPA) are lower than those in technical reports (486.7–3839 USD/TPA). LNG prices in research studies (0.2–0.45 USD/kg, 2024) are lower than in technical reports (0.3–0.7 USD/kg), based on 2024 data. Also, this review investigates LNG accidents in detail and provides valuable insights into safety protocols, risk management strategies, and the overall resilience of LNG operations in the face of potential hazards. A detailed evaluation of LNG plants built in recent years is provided, focusing on technological advancements, operational efficiency, and safety measures. Moreover, this study investigates LNG ports in the United States, examining their infrastructures, regulatory compliance, and strategic role in the global LNG supply chain. In addition, it outlines LNG’s current status and future outlook, focusing on key industry trends. Finally, it presents a market share analysis that examines LNG distribution by export, import, re-loading, and receiving markets. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 1635 KiB  
Article
Analysis of Coupled Liquid Air Energy Storage and Liquefied Natural Gas Cold Energy Cascade Utilization System
by Zetong Li, Xiaolei Si, Yongchao Zhao, Hongyan Zhao, Zheng Cai and Yingjun Guo
Energies 2025, 18(6), 1415; https://doi.org/10.3390/en18061415 - 13 Mar 2025
Cited by 1 | Viewed by 1058
Abstract
The vaporization of liquefied natural gas (LNG) liberates a substantial quantity of cold energy. If left unutilized, this cold energy would cause significant energy waste. Currently, both domestic and international cold energy utilization strategies are rather simplistic and unable to fully capitalize on [...] Read more.
The vaporization of liquefied natural gas (LNG) liberates a substantial quantity of cold energy. If left unutilized, this cold energy would cause significant energy waste. Currently, both domestic and international cold energy utilization strategies are rather simplistic and unable to fully capitalize on the wide temperature range feature inherent in LNG cold energy. This study presents a three-tiered cold energy utilization system that integrates liquid air energy storage (LAES), cold energy power generation, and cold energy air conditioning. Moreover, during the LNG vaporization process, the thermal discharge from the power plant is utilized as a heat source to boost energy utilization efficiency and environmental performance. This research develops thermodynamic and economic evaluation models for the coupled system. It uses Aspen HYSYS V14 software to conduct process simulation, analyze cycle efficiency and exergy efficiency, and assesses the system’s economic feasibility by applying the net present value (NPV) method, which is based on the regional electricity prices of an LNG receiving station in Tangshan. The results show that the system attains a cycle efficiency of 105.83% and an exergy efficiency of 55.89%, representing a 6.18% improvement over traditional LAES systems. The system yields an annual revenue of CNY 77.06 million, with a net present value (NPV) of CNY 566.41 million and a capital payback period of merely 2.53 years, demonstrating excellent economic feasibility. This study offers crucial references and a foundation for the engineering application of LNG cold energy in energy storage and power plant peak regulation. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

26 pages, 16031 KiB  
Article
Study on Hydroelastic Responses of Membrane-Type LNG Cargo Containment Structure under Impulsive Sloshing Loads of Different Media
by Cheon-Jin Park, Jeoung-Kyu Lee and Yonghwan Kim
J. Mar. Sci. Eng. 2024, 12(10), 1794; https://doi.org/10.3390/jmse12101794 - 9 Oct 2024
Cited by 1 | Viewed by 1528
Abstract
Owing to the increasing g lobal demand for natural gas, the construction of liquefied natural gas (LNG) carriers has become a key trend in the shipbuilding market. In the design of membrane-type LNG carriers, a sloshing analysis is crucial for cargo containment systems [...] Read more.
Owing to the increasing g lobal demand for natural gas, the construction of liquefied natural gas (LNG) carriers has become a key trend in the shipbuilding market. In the design of membrane-type LNG carriers, a sloshing analysis is crucial for cargo containment systems (CCSs). In this study, structural responses due to impulsive sloshing loads were observed, including the effects of hydroelasticity and the test medium. To this end, the structural responses were first observed with and without hydroelastic coupling between the liquid and structure. When fluid–structure coupling is considered, a finite element analysis is performed for the integrated structure of the hull and CCS. This method was then applied to evaluate the capacity and safety of the inner hull structures of actual LNG vessels in cases where different sloshing pressures occurred owing to the different liquid–gas media. The structural capacity was evaluated using the utilization factor (UT). The results confirm that the effects of the hydroelasticity, density ratio, and phase transition of the experimental medium are essential for the evaluation of the structural responses of LNG CCSs. Full article
Show Figures

Figure 1

19 pages, 6492 KiB  
Article
Comparative Analysis of Heat Transfer in a Type B LNG Tank Pre-Cooling Process Using Various Refrigerants
by Qiang Sun, Yanli Zhang, Yan Lv, Dongsheng Peng, Siyu Zhang, Zhaokuan Lu and Jun Yan
Energies 2024, 17(16), 4013; https://doi.org/10.3390/en17164013 - 13 Aug 2024
Cited by 2 | Viewed by 1609
Abstract
This study presents a comprehensive three-dimensional Computational Fluid Dynamics (CFD) analysis of the pre-cooling process of a Type B LNG tank using various refrigerants, including liquid nitrogen (LN), nitrogen gas (NG), liquefied natural gas (LNG), boil-off gas (BOG), and their combinations. The simulation [...] Read more.
This study presents a comprehensive three-dimensional Computational Fluid Dynamics (CFD) analysis of the pre-cooling process of a Type B LNG tank using various refrigerants, including liquid nitrogen (LN), nitrogen gas (NG), liquefied natural gas (LNG), boil-off gas (BOG), and their combinations. The simulation model accounts for phase change (through the mixture multiphase model), convective heat transfer, and conjugate heat exchange between the fluid and the tank structure. The results indicate that liquid nitrogen is the most efficient refrigerant, achieving the highest cooling rate through both latent and sensible heat. LNG also demonstrated a relatively high cooling rate, 79% of that of liquid nitrogen. Gas-only pre-cooling schemes relying solely on sensible heat exhibited slower cooling rates, with BOG achieved 79.4% of the cooling rate of NG. Mixed refrigerants such as NG + LN and BOG + LNG can achieve comparable, while slightly slower, cooling than the pure liquid refrigerants, outperforming gas-only strategies. A further assessment of the heat transfer coefficient suggests the mixed cooling schemes have almost identical heat transfer coefficient on the inner tank surface to the liquid cooling scheme, over 5% higher than the gas refrigerants. The study also highlighted the uneven temperature distribution within the tank due to the bulkhead’s blockage effect, which can induce significant thermal stress and potentially compromise structural integrity. Mixed schemes exhibit thermal gradients higher than those of gas schemes but lower than those of liquid schemes, while achieving cooling speeds comparable to liquid schemes if the inlet velocity of the refrigerants is properly configured. These findings offer valuable insights for developing safer and more efficient pre-cooling procedures for Type B LNG tanks and similar cryogenic storage tanks. Full article
(This article belongs to the Special Issue Advances in Fluid Dynamics: Heat and Mass Transfer in Energy Systems)
Show Figures

Figure 1

22 pages, 10757 KiB  
Article
Impact and Technical Solutions of Hydrodynamic and Thermodynamic Processes in Liquefied Natural Gas Regasification Process
by Marijonas Bogdevicius, Vigaile Semaskaite, Tatjana Paulauskiene and Jochen Uebe
J. Mar. Sci. Eng. 2024, 12(7), 1164; https://doi.org/10.3390/jmse12071164 - 10 Jul 2024
Cited by 3 | Viewed by 1449
Abstract
Transporting natural gas in liquid form increases opportunities for storage and export worldwide, thus making transportation more sustainable. However, liquefied natural gas (LNG) is in an unsteady state, leading to LNG conversion to the gas state occurring throughout the storage, loading, unloading, and [...] Read more.
Transporting natural gas in liquid form increases opportunities for storage and export worldwide, thus making transportation more sustainable. However, liquefied natural gas (LNG) is in an unsteady state, leading to LNG conversion to the gas state occurring throughout the storage, loading, unloading, and transportation processes. To observe the transition of LNG to natural gas, mathematical models are developed to monitor technical parameters. This research analyses a floating storage and regasification unit for and adopts a mathematical model of the LNG regasification system, aiming for improved observation of hydrodynamic, dynamic, and thermo-physical properties. The complex mathematical model of the system was implemented using the Fortran programming language and MATLAB R28a. From the investigation of the total LNG regasification system, it could be concluded that increasing the outlet pressure of the system results in a decrease in the velocity of LNG. It was found that the total hydraulic energy losses of the total LNG regasification system were approximately 41.3 kW (with outlet pressure of 2 MPa), 12.75 kW (with outlet pressure of 5 MPa), and 4.24 kW (with outlet pressure of 7 MPa). Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 17318 KiB  
Article
Fluid-Solid-Thermal Coupled Freezing Modeling Test of Soil under the Low-Temperature Condition of LNG Storage Tank
by Guolong Jin, Xiongyao Xie, Pan Li, Hongqiao Li, Mingrui Zhao and Meitao Zou
Energies 2024, 17(13), 3246; https://doi.org/10.3390/en17133246 - 2 Jul 2024
Cited by 3 | Viewed by 1482
Abstract
Due to the extensive utilization of liquid nature gas (abbreviated as LNG) resources and a multitude of considerations, LNG storage tanks are gradually transitioning towards smaller footprints and heightened safety standards. Consequently, underground LNG storage tanks are being designed and constructed. However, underground [...] Read more.
Due to the extensive utilization of liquid nature gas (abbreviated as LNG) resources and a multitude of considerations, LNG storage tanks are gradually transitioning towards smaller footprints and heightened safety standards. Consequently, underground LNG storage tanks are being designed and constructed. However, underground LNG storage tanks release a considerable quantity of cold into the ground under both accidental and normal conditions. The influence of cold results in the ground freezing, which further compromises the safety of the structure. Existing research has neglected to consider the effects of this. This oversight could potentially lead to serious safety accidents. In this work, a complete set of experiments using a novel LNG underground storage tank fluid-solid-thermal coupled cryogenic leakage scale model were conducted for the first time to simulate the effect of the tank on the soil temperature field, stress field, and displacement field and to analyze the development of the three fields and the results of the effect. This research helps the related personnel to better design, construct, and evaluate the LNG underground storage tanks to avoid the catastrophic engineering risks associated with cryogenic leakage and helps to improve the design process of LNG underground storage tanks. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies and Applications (AESAs))
Show Figures

Figure 1

15 pages, 6046 KiB  
Article
Seismic Response Analysis of Underground Large Liquefied Natural Gas Tanks Considering the Fluid–Structure–Soil Interaction
by Guolong Jin, Yonglai Zhang, Mingrui Zhao, Xiongyao Xie and Hongqiao Li
Appl. Sci. 2024, 14(11), 4753; https://doi.org/10.3390/app14114753 - 31 May 2024
Cited by 3 | Viewed by 1642
Abstract
The seismic response of underground liquefied natural gas (LNG) storage tanks has been a significant focus in both academic and engineering circles. This study utilized Ansys (2021R1) to conduct seismic analyses of large-capacity LNG tanks, considering the fluid–structure–soil coupling interaction (FSSI), and it [...] Read more.
The seismic response of underground liquefied natural gas (LNG) storage tanks has been a significant focus in both academic and engineering circles. This study utilized Ansys (2021R1) to conduct seismic analyses of large-capacity LNG tanks, considering the fluid–structure–soil coupling interaction (FSSI), and it was solved using the Volume of Fluid model (VOF) and Finite Element Method (FEM). The mechanical properties of both the LNG tank structure and soil were simulated using solid elements, and seismic acceleration loads were applied. An analysis of liquefied natural gas was performed using fluid elements within FLUENT. Initially, a modal analysis of the tank was conducted, which revealed lower frequencies for a full-liquid tank (3.193 Hz) compared to an empty tank (3.714 Hz). Subsequently, the seismic responses of both the aboveground and underground LNG tank structures were separately simulated, comparing the acceleration, stress, and displacement of the tank wall structures. The findings indicate that the peak relative displacement of the aboveground empty tank wall is 122 mm, less than that of a full tank (136 mm), while the opposite holds true for underground tanks. The period and wave height of LNG liquid shaking in underground tanks are lower than those in aboveground tanks, which is more conducive to tank safety. The deformation and acceleration of underground tanks are lower than those of aboveground tanks, but the Mises stress is higher. The results indicate that underground LNG tank structures are safer under earthquake conditions. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 6142 KiB  
Article
Predicting Liquid Natural Gas Consumption via the Multilayer Perceptron Algorithm Using Bayesian Hyperparameter Autotuning
by Hyungah Lee, Woojin Cho, Jong-hyeok Park and Jae-hoi Gu
Energies 2024, 17(10), 2290; https://doi.org/10.3390/en17102290 - 9 May 2024
Viewed by 1349
Abstract
Reductions in energy consumption and greenhouse gas emissions are required globally. Under this background, the Multilayer Perceptron machine-learning algorithm was used to predict liquid natural gas consumption to improve energy consumption efficiency. Setting hyperparameters remains challenging in machine-learning-based prediction. Here, to improve prediction [...] Read more.
Reductions in energy consumption and greenhouse gas emissions are required globally. Under this background, the Multilayer Perceptron machine-learning algorithm was used to predict liquid natural gas consumption to improve energy consumption efficiency. Setting hyperparameters remains challenging in machine-learning-based prediction. Here, to improve prediction efficiency, hyperparameter autotuning via Bayesian optimization was used to identify the optimal combination of the eight key hyperparameters. The autotuned model was validated by comparing its predictive performance with that of a base model (with all hyperparameters set to the default values) using the coefficient of variation of root-mean-square error (CvRMSE) and coefficient of determination (R2) based on the Measurement and Verification Guideline evaluation metrics. To confirm the model’s industrial applicability, its predictions were compared with values measured at a small-to-medium-sized food factory. The optimized model performed better than the base model, achieving a CvRMSE of 12.30% and an R2 of 0.94, and achieving a predictive accuracy of 91.49%. By predicting energy consumption, these findings are expected to promote the efficient operation and management of energy in the food industry. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

15 pages, 4345 KiB  
Review
Development and Recent Progress of Hoses for Cryogenic Liquid Transportation
by Qiang Chen, Qingguo Sun, Jia Yan, Yunguang Cui, Lufeng Yang, Xiaojing Yang and Zhanjun Wu
Polymers 2024, 16(7), 905; https://doi.org/10.3390/polym16070905 - 26 Mar 2024
Cited by 7 | Viewed by 2717
Abstract
Recently, the application of cryogenic hoses in the field of cryogenic media has become a hot topic, especially in the industry of offshore liquefied natural gas and aerospace field. However, the structure of cryogenic hoses is complex, and reasonable structural properties are required [...] Read more.
Recently, the application of cryogenic hoses in the field of cryogenic media has become a hot topic, especially in the industry of offshore liquefied natural gas and aerospace field. However, the structure of cryogenic hoses is complex, and reasonable structural properties are required due to the harsh working conditions. There is still plenty of scope for further development to improve the performance in all aspects. In this paper, the current development status of cryogenic hoses for liquefied natural gas (LNG) transportation is reviewed first, including the types, manufacturers, structural forms, performance, and key technical challenges. And then, the recent progress and prospect of cryogenic hoses for cryogenic liquid transportation (such as LNG and liquid oxygen) are summarized, including structure design, low-temperature resistant polymers, liquid oxygen compatible polymers, and leakage monitoring technologies. This paper provides a comprehensive overview of the research development and application of cryogenic hoses. Moreover, future research directions have been proposed to facilitate its practical applications in aerospace. Full article
(This article belongs to the Special Issue Polymers and Their Composites Applied in Extreme Environments)
Show Figures

Figure 1

21 pages, 9521 KiB  
Article
A New Multi-Objective Optimization Strategy for Improved C3MR Liquefaction Process
by Fenghe Cui, Lei Pan, Yi Pang, Jianwei Chen, Fan Shi and Yin Liang
Processes 2024, 12(3), 542; https://doi.org/10.3390/pr12030542 - 10 Mar 2024
Viewed by 2138
Abstract
In the traditional C3MR process (T-C3MR), the boiling gas (BOG) output from the last stage of the gas–liquid separator is directly discharged, in which the excellent low-temperature capability is not utilized, and the system efficiency is decreased. In liquefied natural gas (LNG), single-objective [...] Read more.
In the traditional C3MR process (T-C3MR), the boiling gas (BOG) output from the last stage of the gas–liquid separator is directly discharged, in which the excellent low-temperature capability is not utilized, and the system efficiency is decreased. In liquefied natural gas (LNG), single-objective optimization methods are commonly used to optimize system parameters, which may result in incomplete system analysis. To solve the above problems, this paper proposes a multi-objective optimization strategy for the improved C3MR process(I-C3MR) based on a new multi-objective optimization algorithm called EHR-GWO-GA. Firstly, the main work proposes an I-C3MR structure. Secondly, an optimization strategy of the I-C3MR with the maximization of liquefaction amount, minimization of unit energy consumption and minimization of exergy loss as objective functions are proposed. Based on the optimization results, the influence of decision variables on liquefaction amount, unit energy consumption and exergy loss are analyzed, and the results show that the decision variables have good adaptability. Finally, a detailed exergy analysis of the equipment used is made, and the results show that the main exergy losses come from the water coolers and compressors, accounting for 32% and 34%, respectively. Compared to the T-C3MR, the improved C3MR based on EHR-GWO-GA(E-C3MR) has an approximate 8% increase in liquefaction amount—a roughly 23% decrease in unit energy consumption and a decrease of nearly 24% in exergy loss. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 13898 KiB  
Article
Cross-Scale Reliability Analysis Framework for LNG Storage Tanks Considering Concrete Material Uncertainty
by Fupeng Liu, Jiandong Ma, Zhongzhi Ye, Lijia Wang, Yu Sun, Jianxing Yu, Yuliang Qin, Dongliang Zhang, Wengang Cai and Hao Li
J. Mar. Sci. Eng. 2024, 12(2), 276; https://doi.org/10.3390/jmse12020276 - 3 Feb 2024
Cited by 3 | Viewed by 1846
Abstract
The reliability of liquefied natural gas (LNG) storage tanks is an important factor that must be considered in their structural design. Concrete is a core component of LNG storage tanks, and the geometric uncertainty of concrete aggregate material has a significant impact on [...] Read more.
The reliability of liquefied natural gas (LNG) storage tanks is an important factor that must be considered in their structural design. Concrete is a core component of LNG storage tanks, and the geometric uncertainty of concrete aggregate material has a significant impact on their reliability. However, owing to the significant size difference between the concrete aggregate compared to the LNG storage tank, structural analysis using an accurate finite element model that includes all the geometric characteristics of the aggregate incurs significant analytical costs. In particular, for reliability analysis requiring a large number of samples, the computational costs incurred by finite element models are infeasible. Therefore, a dual acceleration strategy based on the asymptotic homogenization method and surrogate model technology is proposed to improve the efficiency of LNG storage tank reliability analysis. In the cross-scale analysis of a LNG storage tank based on asymptotic homogenization, order reduction of the LNG storage tank analysis model was realized. Based on this, a surrogate model construction method with the aggregate fraction and mass moment as inputs was proposed to further accelerate the reliability analysis of LNG storage tanks. Subsequently, a Monte Carlo method was used to perform a reliability analysis of the LNG storage tank considering the uncertainty of the concrete aggregate geometry and distribution under the action of liquid weight and wind load. The analysis showed that the wind load has a significant influence on the safety of the design of the roof of a LNG storage tank. The directionality of the wind load has a significant impact on the distribution of the sample point response for reliability analysis and the failure mode of the LNG storage tank. Owing to the directionality of the wind load, the response distributions of the maximum displacement and maximum stress of LNG were more concentrated, and the reliability of the LNG storage tank decreased after considering the wind load. In particular, the stress reliability of the tank decreased by 5.86%. When only the liquid load was considered, the maximum displacement and stress exhibited asynchronous failure, and the two almost never occurred simultaneously. When the wind load was considered, the failure mode of the LNG storage tank was dominated by the maximum stress. Moreover, the numerical example also demonstrated that the degree of freedom involved in structural analysis, as well as the time of structural analysis can be significantly reduced. So, the proposed cross-scale analysis framework can significantly improve the efficiency of reliability analysis. The conclusions established in this study provide theoretical and methodological guidance for the reliable design of LNG storage tanks. Full article
Show Figures

Figure 1

23 pages, 4387 KiB  
Article
The Application of Cryogenic Carbon Capture Technology on the Dual-Fuel Ship through the Utilisation of LNG Cold Potential
by Sergejus Lebedevas and Audrius Malūkas
J. Mar. Sci. Eng. 2024, 12(2), 217; https://doi.org/10.3390/jmse12020217 - 25 Jan 2024
Cited by 15 | Viewed by 3877
Abstract
The International Maritime Organization (IMO) has set targets to reduce carbon emissions from shipping by 40% by 2030 (IMO2030) and 70% by 2040 (IMO2050). Within the framework of decarbonising the shipping industry, liquefied natural gas (LNG) fuel and carbon capture technologies are envisioned [...] Read more.
The International Maritime Organization (IMO) has set targets to reduce carbon emissions from shipping by 40% by 2030 (IMO2030) and 70% by 2040 (IMO2050). Within the framework of decarbonising the shipping industry, liquefied natural gas (LNG) fuel and carbon capture technologies are envisioned as a transitional option toward a pathway for clean energy fuels. The aim of the complex experimental and computational studies performed was to evaluate the CO2 capture potential through the utilisation of LNG cold potential on the FSR-type vessel within a dual-fuel propulsion system. Based on the experimental studies focused on actual FSRU-type vessel performance, the energy efficiency indicators of the heat exchanging machinery were determined to fluctuate at a 0.78–0.99 ratio. The data obtained were used to perform an algorithm-based systematic comparison of energy balances between LNG regasification and fuel combustion cycles on an FSRU-type vessel. In the due course of research, it was determined that LNG fuel combustion requires 18,254 kJ/kg energy to separate and capture CO2 in the liquid phase to form exhaust gas; meanwhile, low sulfur marine diesel oil (LSMDO) requires 13,889 kJ/kg of energy. According to the performed calculations, the regasification of 1 kg LNG requires 1018 kJ/kg energy, achieving a cryogenic carbon capture ratio of 5–6% using LNG as a fuel and 7–8% using LSMDO as a fuel. The field of carbon capture in the maritime industry is currently in its pioneering stage, and the results achieved through research establish an informative foundation that is crucial for the constructive development and practical implementation of cryogenic carbon capture technology on dual-fuel ships. Full article
Show Figures

Figure 1

Back to TopTop