Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = liquid hot water treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 317
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

23 pages, 9698 KiB  
Article
Experimental Investigation of Shear Behavior and Pore Structure Evolution in Heat-Treated Granite Subjected to Liquid Nitrogen and Water Cooling
by Fan Zhang, Shengyuan Liu, Subiao Zhang, Yiming Zhang, Shaohui Quan and Man Li
Appl. Sci. 2025, 15(8), 4581; https://doi.org/10.3390/app15084581 - 21 Apr 2025
Viewed by 677
Abstract
It is imperative to understand the shear mechanical properties and pore evolution of granite under thermal shock to assess the fracturing of hot dry rock reservoirs. In this study, variable-angle shear tests were performed on coarse- and fine-grained granite samples following liquid nitrogen [...] Read more.
It is imperative to understand the shear mechanical properties and pore evolution of granite under thermal shock to assess the fracturing of hot dry rock reservoirs. In this study, variable-angle shear tests were performed on coarse- and fine-grained granite samples following liquid nitrogen (LN2) cooling under different high-temperature conditions. The effect of thermal treatment temperature, particle type, and cooling method on the shear strength, cohesion, and angle of internal friction of granite was then analyzed. To this end, low field nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM) were used to investigate the pore size distribution and microstructural evolution of granite. The experimental results indicate that both the shear strength and cohesion of granite initially increase and then decrease with the rise in thermal treatment temperature. The maximum increases in shear strength and cohesion are 38.0% and 36.7%, respectively, while the maximum decreases reach 43.7% and 42.4%. Notably, the most pronounced thermal hardening effect is observed at 200 °C. In contrast, the internal friction angle exhibits a decreasing-then-increasing trend as the temperature rises, with a maximum reduction of 5.4% and a maximum increase of 14.5%. In addition, fine-grained granite exhibits superior shear strength and a more pronounced thermal hardening effect compared to coarse-grained granite. Furthermore, the damage effect caused by thermal shock increases with increasing heat treatment temperature, with the damage effect induced by liquid nitrogen cooling being particularly significant compared to water cooling. Furthermore, for both types of granite at the same shear angle, an increase in the heat treatment temperature results in a corresponding increase in the total fracture area, with the fracture area after liquid nitrogen cooling being more significant. The macroscopic failure mode changes from a mixed compression–shear failure mode to a direct shear failure mode with increasing shear angle. NMR testing shows that liquid nitrogen cooling can effectively increase the proportion of medium pores and large pores in the granite and increase the connectivity of internal pores; specifically, in coarse-grained granite, medium pores and large pores collectively increased by 10.5%, while in fine-grained granite, the total increase in medium pores reached 51%. As the heat treatment temperature increases, the type of crack that develops in granite changes from intragranular to transgranular. In addition, the fracture surface of granite is more prone to form micropores and small pores when cooled with liquid nitrogen, increasing the connectivity of the crack network. The results of this research will be useful for fracturing hot dry rock reservoirs. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

23 pages, 5085 KiB  
Article
Catalytic Hydrothermal Production of Platform Chemicals from Coffee Biomass Using Organic Acids as Catalysts
by Alejandra Sophia Lozano Pérez, Valentina Romero Mahecha and Carlos Alberto Guerrero Fajardo
ChemEngineering 2025, 9(1), 19; https://doi.org/10.3390/chemengineering9010019 - 17 Feb 2025
Viewed by 901
Abstract
Coffee cherry waste, a byproduct of coffee production, presents significant environmental challenges due to its large volume—approximately 20 million tons annually. The disposal of this waste, which includes pulp and mucilage, often leads to pollution of land and water systems, contributing to environmental [...] Read more.
Coffee cherry waste, a byproduct of coffee production, presents significant environmental challenges due to its large volume—approximately 20 million tons annually. The disposal of this waste, which includes pulp and mucilage, often leads to pollution of land and water systems, contributing to environmental degradation. Additionally, the high acidity and organic content of coffee cherry waste complicate its management, making it crucial to find sustainable solutions for its valorization and reuse in order to mitigate these ecological impacts. The purpose of this study is to investigate the efficiency and selectivity of various organic acid catalysts in the hydrothermal valorization of coffee cherry waste. The procedures were conducted using the liquid hot water (LHW) treatment for one hour with a 1:20 biomass/catalyst ratio and a 1 mm biomass particle size at 180 °C in 500 mL batch reactors modifying 10 different organic acids at 0.02 M. Concentrations of the valorized products (HMF, furfural, levulinic acid, formic acid, and sugars) were measured using HPLC-IR. Among the catalysts tested, adipic acid demonstrated the highest efficiency, with a total yield of 53.667%, showing significant selectivity towards formic acid (19.663%) and levulinic acid (11.291%). In contrast, butyric acid was the least efficient catalyst, yielding a total of 17.395% and showing minimal selectivity towards other compounds. Chloroacetic acid and benzoic acid were notable for their high selectivity towards sugars. Other catalysts, such as anthranilic acid, propanoic acid, and succinic acid, displayed moderate efficiency and selectivity, with balanced yields across various compounds. These findings highlight the importance of catalyst selection in optimizing the hydrothermal process for desired product outcomes. Full article
Show Figures

Figure 1

18 pages, 3313 KiB  
Article
Toxic Cyanopeptides Monitoring in Thermal Spring Water by Capillary Electrophoresis Tandem Mass Spectrometry
by Rocío Carmona-Molero, Laura Carbonell-Rozas, Ana M. García-Campaña, Monsalud del Olmo-Iruela and Francisco J. Lara
Toxins 2025, 17(2), 63; https://doi.org/10.3390/toxins17020063 - 31 Jan 2025
Viewed by 1294
Abstract
Cyanobacteria are an ancient group of prokaryotes capable of oxygenic photosynthesis. Recently, thermal crises symptoms in hot springs have been associated with acute cyanopeptides poisoning. The aim of this work is to develop a fast, easy and reliable method to monitor the presence [...] Read more.
Cyanobacteria are an ancient group of prokaryotes capable of oxygenic photosynthesis. Recently, thermal crises symptoms in hot springs have been associated with acute cyanopeptides poisoning. The aim of this work is to develop a fast, easy and reliable method to monitor the presence of toxic cyanopeptides in geothermal waters. The analytical method based on capillary zone electrophoresis coupled with tandem mass spectrometry (CZE-MS/MS) was developed for the simultaneous determination of 14 cyanopeptides in less than 7.5 min. A basic 50 mM ammonium acetate buffer at pH 10.2 was selected as the background electrolyte, positive electrospray ionization (ESI+) was employed for all compounds, and a salting-out assisted liquid–liquid extraction (SALLE) protocol with acetonitrile as an extraction solvent and MgSO4 as an auxiliary salting-out agent was optimized as sample treatment. Six natural hot springs in the province of Granada (Andalucía, Spain) were sampled at the beginning of the summer season (June) and at the end (September). Biomass collected at two sample points (Santa Fe and Zújar) contained cyanobacteria cells from the genera Phormidium, Leptolyngbya, and Spirulina. Nevertheless, cyanotoxins covered by this work were not found in any of the water samples analyzed. The greenness and transferability of the method was evaluated highlighting its sustainability and applicability. Full article
Show Figures

Figure 1

17 pages, 5959 KiB  
Article
Effects of Different Cooling Treatments on Heated Granite: Insights from the Physical and Mechanical Characteristics
by Qinming Liang, Gun Huang, Jinyong Huang, Jie Zheng, Yueshun Wang and Qiang Cheng
Materials 2024, 17(18), 4539; https://doi.org/10.3390/ma17184539 - 15 Sep 2024
Cited by 2 | Viewed by 1256
Abstract
The exploration of Hot Dry Rock (HDR) geothermal energy is essential to fulfill the energy demands of the increasing population. Investigating the physical and mechanical properties of heated rock under different cooling methods has significant implications for the exploitation of HDR. In this [...] Read more.
The exploration of Hot Dry Rock (HDR) geothermal energy is essential to fulfill the energy demands of the increasing population. Investigating the physical and mechanical properties of heated rock under different cooling methods has significant implications for the exploitation of HDR. In this study, ultrasonic testing, uniaxial strength compression experiments, Brazilian splitting tests, nuclear magnetic resonance (NMR), and scanning electron microscope (SEM) were conducted on heated granite after different cooling methods, including cooling in air, cooling in water, cooling in liquid nitrogen, and cycle cooling in liquid nitrogen. The results demonstrated that the density, P-wave velocity (Vp), uniaxial compressive strength (UCS), tensile strength (σt), and elastic modulus (E) of heated granite tend to decrease as the cooling rate increases. Notably, heated granite subjected to cyclic liquid nitrogen cooling exhibits a more pronounced decline in physical and mechanical properties and a higher degree of damage. Furthermore, the cooling treatments also lead to an increase in rock pore size and porosity. At a faster cooling rate, the fracture surfaces of the granite transition from smooth to rough, suggesting enhanced fracture propagation and complexity. These findings provide critical theoretical insights into optimizing stimulation performance strategies for HDR exploitation. Full article
(This article belongs to the Special Issue Manufacturing, Characterization and Modeling of Advanced Materials)
Show Figures

Figure 1

16 pages, 9049 KiB  
Article
Study on the Temperature and Water Distribution of Hot Air in Red Loam Based on Soil Continuous Cropping Obstacles
by Zhenjie Yang, Muhammad Ameen, Yilu Yang, Anyan Xue, Junyu Chen, Junyou Yang, Pengcheng Fang, Yu Lai, Junqian Liu, Yuhan Wang and Yijie Zhang
Agriculture 2024, 14(4), 588; https://doi.org/10.3390/agriculture14040588 - 8 Apr 2024
Viewed by 1493
Abstract
In recent years, the problematic circumstances of the constant cropping problem in facility crops have become increasingly serious. Compared to chemical disinfection, soil steam disinfestation offers the benefits of environmental protection and being pollution-free, which can effectively reduce the problem of constant cropping [...] Read more.
In recent years, the problematic circumstances of the constant cropping problem in facility crops have become increasingly serious. Compared to chemical disinfection, soil steam disinfestation offers the benefits of environmental protection and being pollution-free, which can effectively reduce the problem of constant cropping in crops. However, during the steam disinfection procedure, a large quantity of liquid water is formed due to the condensation of high-temperature steam, which causes soil pore blockage, seriously affecting the mass and heat transfer efficacy of steam and, thus, affecting the disinfection efficiency. Therefore, to solve this problem, this paper proposes the use of hot air dehumidification to remove excess water from soil pores and achieve the goal of dredging the pores. However, further exploration is needed on how to efficiently remove excess water from different pore structures through hot air applications. Therefore, this paper first used CFD simulation technology to simulate and analyze the hot air flow field, mass, and heat transfer in soil aggregates of different sizes (<2 mm to >8 mm). Then, based on the soil hot air heating experimental platform, research was conducted on the mass and heat transfer mechanism of hot air under diverse soil pore conditions. The results show that as the soil particle size increases from <2 mm to >8 mm, the number of soil macropores also increases, which makes the soil prone to the formation of macropore thermal currents, and the efficiency of hot air heating for dehumidification first increases and then decreases. Among them, the 4–6 mm treatment has the best dehumidification effect through hot air heating, with a deep soil temperature of up to 90 °C and a water content reduction of 6%. The 4–6 mm treatment has a high-temperature heating and dehumidification area of 15–20 cm deep. The above results lay the theoretical foundations for the parameters of hot air heating and dehumidification operations, as well as the placement of the hot air pipe. This paper aims to combine hot air dehumidification technology, for the removal of excess water from soil, and dredging soil pores, ultimately achieving the goal of improving soil steam disinfection efficiency. Full article
Show Figures

Figure 1

12 pages, 593 KiB  
Article
Microbial Fermentation of the Water-Soluble Fraction of Brewers’ Spent Grain for the Production of High-Value Fatty Acids
by Stefano Serra, Paola D’Arrigo, Letizia Anna Maria Rossato and Eleonora Ruffini
Fermentation 2023, 9(12), 1008; https://doi.org/10.3390/fermentation9121008 - 7 Dec 2023
Cited by 4 | Viewed by 2446
Abstract
Brewers’ spent grain (BSG) constitutes the primary by-product of the brewing industry. The valorization of BSG from a circular economy perspective is of high industrial interest. The objective of this study was the exploitation of BSG for the microbial production of branched-chain fatty [...] Read more.
Brewers’ spent grain (BSG) constitutes the primary by-product of the brewing industry. The valorization of BSG from a circular economy perspective is of high industrial interest. The objective of this study was the exploitation of BSG for the microbial production of branched-chain fatty acids (BCFAs) and polyunsaturated fatty acids (PUFAs), representing two different classes of high-value fatty acids (FAs). In the present study, this waste material underwent treatment with hot water in an autoclave and the resultant extract was utilized for the preparation of a novel liquid medium (BSG medium) to be employed for microbial fermentation. Screening and subsequent scaling-up experiments confirmed the suitability of the BSG medium to support the microbial production of various high-value FAs. In particular, Streptomyces jeddahensis and Conidiobolus heterosporus could be employed for BCFAs production, Pythium ultimum and Mortierella alpina could be used to provide cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and arachidonic acid (ARA), whereas Mucor circinelloides, when grown in a BSG medium, was able to accumulate γ-linolenic acid (GLA). Full article
(This article belongs to the Special Issue Recent Advances in Bioconversion of Biomass to Value-Added Products)
Show Figures

Figure 1

17 pages, 2249 KiB  
Article
Pressurized Hot Water Extraction of Mangosteen Pericarp and Its Associated Molecular Signatures in Endothelial Cells
by Sakeena Si Yu Tan, Meyammai Shanmugham, Yu Ling Chin, Jia An, Chee Kai Chua, Eng Shi Ong and Chen Huei Leo
Antioxidants 2023, 12(11), 1932; https://doi.org/10.3390/antiox12111932 - 30 Oct 2023
Cited by 8 | Viewed by 3650
Abstract
The mangosteen (Garcinia mangostana L.) pericarp is known to be rich in potent bioactive phytochemical compounds such as xanthones, which possess pharmacologically important antioxidant activity and beneficial cardiometabolic properties. Mangosteen pericarp is typically classified as unavoidable food waste and discarded, despite being [...] Read more.
The mangosteen (Garcinia mangostana L.) pericarp is known to be rich in potent bioactive phytochemical compounds such as xanthones, which possess pharmacologically important antioxidant activity and beneficial cardiometabolic properties. Mangosteen pericarp is typically classified as unavoidable food waste and discarded, despite being rich in bioactive phytochemical compounds that therefore present an exciting opportunity for valorization. Thus, this study aims to extract phytochemical compounds from mangosteen pericarp using pressurized hot water extraction (PHWE) and determine its biological effects in endothelial cells using RNA sequencing. Liquid chromatography with MS/MS (LC/MSMS) and UV detection (LC/UV) was subsequently used to identify three key phytochemical compounds extracted from the mangosteen pericarp: α-Mangostin, γ-Mangostin, and Gartanin. Within the tested range of extraction temperatures by PHWE, our results demonstrated that an extraction temperature of 120 °C yielded the highest concentrations of α-Mangostin, γ-Mangostin, and Gartanin with a concomitant improvement in antioxidant capacity compared to other extraction temperatures. Using global transcriptomic profiling and bioinformatic analysis, the treatment of endothelial cells with mangosteen pericarp extracts (120 °C PHWE) for 48 h caused 408 genes to be differentially expressed. Furthermore, our results demonstrated that key biological processes related to “steroid biosynthesis and metabolism”, likely involving the activation of the AMPK signaling pathway, were upregulated by mangosteen pericarp extract treatment. In conclusion, our study suggests a green extraction method to valorize phytochemical compounds from mangosteen pericarp as a natural product with potential beneficial effects on cardiometabolic health. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

15 pages, 2774 KiB  
Article
Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying
by Tania Ferreira-Anta, María Dolores Torres, Jose Manuel Vilarino, Herminia Dominguez and Noelia Flórez-Fernández
Foods 2023, 12(20), 3881; https://doi.org/10.3390/foods12203881 - 23 Oct 2023
Cited by 2 | Viewed by 1933
Abstract
The formulation of polymeric microparticles to encapsulate bioactive compounds from two hop varieties (Nugget and Perle) using sequential green extraction processes was performed. The technologies used were ultrasound-assisted extraction (UAE) and pressurized hot water (PHW) extraction. Liquid phases were analyzed for total phenolic [...] Read more.
The formulation of polymeric microparticles to encapsulate bioactive compounds from two hop varieties (Nugget and Perle) using sequential green extraction processes was performed. The technologies used were ultrasound-assisted extraction (UAE) and pressurized hot water (PHW) extraction. Liquid phases were analyzed for total phenolic content (~2%), antioxidant activity (IC50, DPPH: 3.68 (Nugget); 4.46 (Perle) g/L, TEAC (~4–5%), FRAP (~2–3%), and reducing power (~4%)), protein content (~1%), oligosaccharide content (~45%), and for structural features. The fractions obtained from UAE were selected to continue with the drying process, achieving the maximum yield at 120 °C (Perle) and 130 °C (Nugget) (~77%). Based on these results, the formulation of polymeric microparticles using mannitol as the carrier was performed with these fractions. The production yield (~65%), particle size distribution (Perle: 250–750 µm and Nugget: ~100 µm), and rheological features (30–70 mPa s at 0.1 s−1) were the parameters evaluated. The UAE extracts from hop samples processed using a sustainable aqueous treatment allowed the formulation of microparticles with a suitable yield, and morphological and viscosity properties adequate for potential food and non-food applications. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Figure 1

23 pages, 2829 KiB  
Article
The Content of Bioactive Compounds and Technological Properties of Matcha Green Tea and Its Application in the Design of Functional Beverages
by Katarzyna Najman, Anna Sadowska, Monika Wolińska, Katarzyna Starczewska and Krzysztof Buczak
Molecules 2023, 28(20), 7018; https://doi.org/10.3390/molecules28207018 - 10 Oct 2023
Cited by 10 | Viewed by 6560
Abstract
Matcha is a powdered green tea obtained from the Camellia sinensis L. plant intended for both “hot” and “cold” consumption. It is a rich source of bioactive ingredients, thanks to which it has strong antioxidant properties. In this research, an organoleptic evaluation was [...] Read more.
Matcha is a powdered green tea obtained from the Camellia sinensis L. plant intended for both “hot” and “cold” consumption. It is a rich source of bioactive ingredients, thanks to which it has strong antioxidant properties. In this research, an organoleptic evaluation was carried out, and the physical characteristics (i.e., instrumental color measurement (L*a*b*), water activity, water solubility index (WSI), water holding capacity (WHC) of 10 powdered Matcha green teas, and in the 2.5% Matcha water solutions, pH, °Brix and osmolality were tested. Also, the content of phenolic ingredients, i.e., selected phenolic acids, flavonoids and total polyphenols, was assessed. The content of chlorophyll, vitamin C and antioxidant potential were also examined. Matcha M-4 was used to design two functional model beverages, in the form of ready-to-use powdered drinks, consisting of Matcha green tea, protein preparations, inulin, maltodextrin and sugar. The obtained powdered drink, when dissolved in the preferred liquid (water, milk, juice), is regenerative, high-protein and rich in bioactive ingredients from the Matcha drink, with prebiotic properties derived from the added inulin. The beverage is also characterized by low osmolality. It can be recommended as a regenerating beverage for a wide group of consumers, athletes and people with deficiencies, among others protein, and elderly people, as well as in the prevention and supportive treatment of bone and joint tissue diseases. Full article
(This article belongs to the Special Issue Bioactive Compounds from Functional Foods)
Show Figures

Figure 1

20 pages, 6980 KiB  
Article
Fabrication of Superhydrophobic Porous Brass by Chemical Dealloying for Efficient Emulsion Separation
by Yanbiao Zhou, Qingqing Ye, Yongjun Han, Guoxu He and Changdong Chen
Molecules 2023, 28(18), 6509; https://doi.org/10.3390/molecules28186509 - 8 Sep 2023
Cited by 4 | Viewed by 2056
Abstract
By taking advantage of typical dealloying and subsequent aging methods, a novel homogeneous porous brass with a micro/nano hierarchical structure was prepared without any chemical modification. The treatment of commercial brass with hot concentrated HCl solution caused preferential etching of Zn from Cu [...] Read more.
By taking advantage of typical dealloying and subsequent aging methods, a novel homogeneous porous brass with a micro/nano hierarchical structure was prepared without any chemical modification. The treatment of commercial brass with hot concentrated HCl solution caused preferential etching of Zn from Cu62Zn38 alloy foil, leaving a microporous skeleton with an average tortuous channel size of 1.6 μm for liquid transfer. After storage in the atmosphere for 7 days, the wettability of the dealloyed brass changed from superhydrophilic to superhydrophobic with a contact angle > 156° and sliding angle < 7°. The aging treatment enhanced the hydrophobicity of the brass by the formation of Cu2O on the surface. By virtue of the opposite wettability to water and oil, the aged brass separated surfactant-stabilized water-in-oil emulsions with separation efficiency of over 99.4% and permeate flux of about 851 L·m−2·h−1 even after recycling for 60 times. After 10 times of tape peeling or sandpaper abrasion, the aged brass maintained its superhydrophobicity, indicating its excellent mechanical stability. Moreover, the aged brass still retained its superhydrophobicity after exposure to high temperatures or corrosive solutions, displaying high resistance to extreme environments. The reason may be that the bicontinuous porous structure throughout the whole foil endows stable mechanical properties to tolerate extreme environments. This method should have a promising future in expanding the applications of alloys. Full article
Show Figures

Figure 1

19 pages, 4839 KiB  
Article
Riluzole-Loaded Nanostructured Lipid Carriers for Hyperproliferative Skin Diseases
by Xavier Llorente, Gerard Esteruelas, Lorena Bonilla, Mariana Garnica Agudelo, Ingrid Filgaira, Daniel Lopez-Ramajo, Ruoyi C Gong, Concepció Soler, Marta Espina, Maria Luisa García, Joan Manils, Montserrat Pujol and Elena Sánchez-López
Int. J. Mol. Sci. 2023, 24(9), 8053; https://doi.org/10.3390/ijms24098053 - 29 Apr 2023
Cited by 19 | Viewed by 3246
Abstract
Nanocarriers, and especially nanostructured lipid carriers (NLC), represent one of the most effective systems for topical drug administration. NLCs are biodegradable, biocompatible and provide a prolonged drug release. The glutamate release inhibitor Riluzole (RLZ) is a drug currently used for amyotrophic lateral sclerosis [...] Read more.
Nanocarriers, and especially nanostructured lipid carriers (NLC), represent one of the most effective systems for topical drug administration. NLCs are biodegradable, biocompatible and provide a prolonged drug release. The glutamate release inhibitor Riluzole (RLZ) is a drug currently used for amyotrophic lateral sclerosis (ALS), with anti-proliferative effects potentially beneficial for diseases with excessive cell turnover. However, RLZ possesses low water solubility and high light-sensibility. We present here optimized NLCs loaded with RLZ (RLZ-NLCs) as a potential topical treatment. RLZ-NLCs were prepared by the hot-pressure homogenization method using active essential oils as liquid lipids, and optimized using the design of experiments approach. RLZ-NLCs were developed obtaining optimal properties for dermal application (mean size below 200 nm, negative surface charge and high RLZ entrapment efficacy). In vitro release study demonstrates that RLZ-NLCs allow the successful delivery of RLZ in a sustained manner. Moreover, RLZ-NLCs are not angiogenic and are able to inhibit keratinocyte cell proliferation. Hence, a NLCs delivery system loading RLZ in combination with natural essential oils constitutes a promising strategy against keratinocyte hyperproliferative conditions. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Pharmacology in Spain 2.0)
Show Figures

Figure 1

13 pages, 1270 KiB  
Article
A Comparative Study on Extraction and Physicochemical Properties of Soluble Dietary Fiber from Glutinous Rice Bran Using Different Methods
by Haoshuang Chen, Shudong He, Hanju Sun, Qiuyang Li, Kuan Gao, Xinya Miao, Jie Xiang, Xiongjie Wu, Longmei Gao and Yi Zhang
Separations 2023, 10(2), 90; https://doi.org/10.3390/separations10020090 - 29 Jan 2023
Cited by 11 | Viewed by 3900
Abstract
The methods of hot water extraction and ultrasound-assisted enzymatic treatment were applied for extracting the soluble dietary fiber from the glutinous rice bran in the study. Based on the single factor experiment for the hot water method, the optimum parameters of the extraction [...] Read more.
The methods of hot water extraction and ultrasound-assisted enzymatic treatment were applied for extracting the soluble dietary fiber from the glutinous rice bran in the study. Based on the single factor experiment for the hot water method, the optimum parameters of the extraction time of 120 min, solid-liquid ratio 1:20 (w/v), and pH 8.0, as well as the extraction temperature 80 °C, were obtained, while the yield and purity of SDF reached 31.83 ± 0.06% and 93.28 ± 0.27%, respectively. Furthermore, the SDF yield was improved to 34.87 ± 0.55% by using the ultrasound-assisted enzymatic treatment under the optimum conditions of cellulase dosage 9 × 103 U/g and ultrasonic temperature of 50 °C. Similar polysaccharide compositions were detected based on the infrared spectroscopic analysis. Compared with the SDF obtained from hot water extraction, the whiteness, solubility, water holding capacity, and swelling properties of SDF extracted by ultrasound-assisted enzymatic method improved significantly. These results demonstrated that both two strategies could be applied to SDF extraction in practical production, and the ultrasound-assisted enzymatic method might be an effective tool to improve the functional properties of SDF. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Figure 1

16 pages, 3839 KiB  
Article
Anti-Periodontitis Effects of Dendropanax morbiferus H.Lév Leaf Extract on Ligature-Induced Periodontitis in Rats
by Ye jin Yang, Jun-Ho Song, Ju-Hye Yang, Min Jung Kim, Kwang Youn Kim, Jin-Kyoung Kim, Yeung Bea Jin, Woo Hyun Kim, Suk Kim, Ki-Rim Kim, Kwang Il Park and Hu-Jang Lee
Molecules 2023, 28(2), 849; https://doi.org/10.3390/molecules28020849 - 14 Jan 2023
Cited by 3 | Viewed by 2894
Abstract
Periodontitis is caused by pathogens in the oral cavity. It is a chronic infectious disease that causes symptoms including gingival bleeding and tooth loss resulting from the destruction of periodontal tissues coupled with inflammation. Dendropanax morbiferus H.Lév (DM) is a natural product that [...] Read more.
Periodontitis is caused by pathogens in the oral cavity. It is a chronic infectious disease that causes symptoms including gingival bleeding and tooth loss resulting from the destruction of periodontal tissues coupled with inflammation. Dendropanax morbiferus H.Lév (DM) is a natural product that exhibits various biological activities with few side effects. In this study, the potential of DM leaf hot-water extracts (DMWE) as a treatment for periodontitis was determined and its anti-oxidant and anti-inflammatory effects were evaluated. Compounds in DMWE were identified by high-performance liquid chromatography (HPLC) and nitric oxide (NO) and prostaglandin E2 (PGE2) production was measured in RAW 264.7 cells. We measured the gingival index and gingival sulcus depth, and micro-CT was performed in vivo using a ligature-induced periodontitis rat model, which is similar to human periodontitis. The DMWE-treated group exhibited a decrease in cytokine concentration and relieved the gingival index and gingival sulcus depth compared with the periodontitis-induced control group. In addition, micro-CT and histological analysis revealed that DMWE exhibited anti-inflammatory effects and improved alveolar bone loss in periodontitis-induced rats. These findings suggest that DMWE has excellent anti-oxidant and anti-inflammatory effects that protect and prevent periodontal tissue damage and tooth loss caused by the inflammatory response. Full article
Show Figures

Figure 1

11 pages, 1539 KiB  
Article
Effect of Liquefaction of Honey on the Content of Phenolic Compounds
by Tomáš Hájek
Molecules 2023, 28(2), 714; https://doi.org/10.3390/molecules28020714 - 11 Jan 2023
Cited by 4 | Viewed by 2628
Abstract
Thermal liquefaction at low temperature is very time consuming and microwaves or an ultrasonic bath can be used to accelerate the process of dissolving sugar crystals. Phenolic compounds, such as phenolic acids or flavonoids, are an important group of secondary metabolites of plants [...] Read more.
Thermal liquefaction at low temperature is very time consuming and microwaves or an ultrasonic bath can be used to accelerate the process of dissolving sugar crystals. Phenolic compounds, such as phenolic acids or flavonoids, are an important group of secondary metabolites of plants and become honey from the nectar of blossoms. In this study, how the content of phenolic acids and flavones in honey were affected by liquefaction of honey using a microwave oven was studied. The concentration of tested compounds in untreated honey and in honey liquefied in a hot water bath, ultrasonic bath and microwave oven at four microwave power levels were determined by reversed phase liquid chromatography combined with multichannel electrochemical detection. A significant decrease in the content of all compounds was observed for all melting treatments. The phenolic compounds concentration decreased on average by 31.1–35.5% using microwave at intensities 270, 450 and 900 W and the time required for the sugar crystal melting was more than 20 times less than in the case of the 80 °C water bath. The temperature of samples after the end of microwave liquefaction was 76–89 °C. Significantly higher losses of phenolic compounds were observed during ultrasound treatment (48.5%), although the maximum temperature of honey was 45 °C, and at the lowest microwaves power (50.6%). Full article
(This article belongs to the Special Issue Natural and Synthetic Phenolic Compounds for Food Applications II)
Show Figures

Graphical abstract

Back to TopTop