Microbial Fermentation of the Water-Soluble Fraction of Brewers’ Spent Grain for the Production of High-Value Fatty Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. BSG Aqueous Extraction and Preparation of BSG Media
2.2. Fermentation with a BSG Microbial Growth Medium
3. Results and Discussion
3.1. BSG Medium Preparation and Characterization
3.2. Microbial Growth on the BSG Medium: Strains Screening
3.3. Microbial Growth on the BSG Medium: Scaling-Up and Evaluating the PUFAs Productivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notations
ALA | α-linolenic acid |
ARA | Arachidonic acid |
BCFA | Branched-chain fatty acid |
BSG | Brewers’ spent grain |
DHA | cis-4,7,10,13,16,19-docosahexaenoic acid |
EPA | cis-5,8,11,14,17-eicosapentaenoic acid |
FA | Fatty acid |
GLA | γ-linolenic acid |
LA | Linolenic acid |
OA | Oleic acid |
PAL | Palmitic acid |
PUFA | Polyunsaturated fatty acid |
References
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/ddn-20230803-1 (accessed on 8 October 2023).
- Agrawal, D.; Gopaliya, D.; Willoughby, N.; Khare, S.K.; Kumar, V. Recycling potential of brewer’s spent grains for circular biorefineries. Curr. Opin. Green Sustain. Chem. 2023, 40, 100748. [Google Scholar] [CrossRef]
- Schmidt, A.R.; Dresch, A.P.; Alves Junior, S.L.; Bender, J.P.; Treichel, H. Applications of brewer’s spent grain hemicelluloses in biorefineries: Extraction and value-added product obtention. Catalysts 2023, 13, 755. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Spent grain: A functional ingredient for food applications. Foods 2023, 12, 1533. [Google Scholar] [CrossRef]
- Mitri, S.; Salameh, S.-J.; Khelfa, A.; Leonard, E.; Maroun, R.G.; Louka, N.; Koubaa, M. Valorization of brewers’ spent grains: Pretreatments and fermentation, a review. Fermentation 2022, 8, 50. [Google Scholar] [CrossRef]
- Allegretti, C.; Bellinetto, E.; D’Arrigo, P.; Griffini, G.; Marzorati, S.; Rossato, L.A.M.; Ruffini, E.; Schiavi, L.; Serra, S.; Strini, A.; et al. Towards a complete exploitation of brewers’ spent grain from a circular economy perspective. Fermentation 2022, 8, 151. [Google Scholar] [CrossRef]
- Llimós, J.; Martínez-Avila, O.; Marti, E.; Corchado-Lopo, C.; Llenas, L.; Gea, T.; Ponsá, S. Brewer’s spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme. Biomass Convers. Biorefinery 2022, 12, 3921–3932. [Google Scholar] [CrossRef]
- De Crane d’Heysselaer, S.; Bockstal, L.; Jacquet, N.; Schmetz, Q.; Richel, A. Potential for the valorisation of brewer’s spent grains: A case study for the sequential extraction of saccharides and lignin. Waste Manag. Res. 2021, 40, 1007. [Google Scholar] [CrossRef] [PubMed]
- Chetrariu, A.; Dabija, A. Brewer’s spent grains: Possibilities of valorization, a review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Duan, Y.; Zhang, H.; Ma, H. A mini-review on brewer’s spent grain protein: Isolation, physicochemical properties, application of protein, and functional properties of hydrolysates. J. Food Sci. 2019, 84, 3330–3340. [Google Scholar] [CrossRef] [PubMed]
- Outeiriño, D.; Costa-Trigo, I.; Pinheiro de Souza Oliveira, R.; Pérez Guerra, N.; Domínguez, J.M. A novel approach to the biorefinery of brewery spent grain. Process Biochem. 2019, 85, 135–142. [Google Scholar] [CrossRef]
- Patel, A.; Mikes, F.; Bühler, S.; Matsakas, L. Valorization of brewers’ spent grain for the production of lipids by oleaginous yeast. Molecules 2018, 23, 3052. [Google Scholar] [CrossRef]
- Yi, J.S.; Yoo, H.-W.; Kim, E.-J.; Yang, Y.-H.; Kim, B.-G. Engineering Streptomyces coelicolor for production of monomethyl branched chain fatty acids. J. Biotechnol. 2020, 307, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Gozdzik, P.; Magkos, F.; Sledzinski, T.; Mika, A. Monomethyl branched-chain fatty acids: Health effects and biological mechanisms. Prog. Lipid Res. 2023, 90, 101226. [Google Scholar] [CrossRef] [PubMed]
- Ran-Ressler, R.R.; Khailova, L.; Arganbright, K.M.; Adkins-Rieck, C.K.; Jouni, Z.E.; Koren, O.; Ley, R.E.; Brenna, J.T.; Dvorak, B. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS ONE 2011, 6, e29032. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiaohan, W.; Chen, Y.; Jin, W.; Jin, Q.; Wang, X. Enrichment of branched chain fatty acids from lanolin via urea complexation for infant formula use. LWT 2020, 117, 108627. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Jesionowska, M.; Ovadia, J.; Hockemeyer, K.; Clews, A.C.; Xu, Y. EPA and DHA in microalgae: Health benefits, biosynthesis, and metabolic engineering advances. J. Am. Oil Chem. Soc. 2023, 100, 831–842. [Google Scholar] [CrossRef]
- Jovanovic, S.; Dietrich, D.; Becker, J.; Kohlstedt, M.; Wittmann, C. Microbial production of polyunsaturated fatty acids—High-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr. Opin. Biotechnol. 2021, 69, 199–211. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Allegretti, C.; Bellinetto, E.; D’Arrigo, P.; Ferro, M.; Griffini, G.; Rossato, L.A.M.; Ruffini, E.; Schiavi, L.; Serra, S.; Strini, A.; et al. Fractionation of raw and parboiled rice husks with deep eutectic solvents and characterization of the extracted lignins towards a circular economy perspective. Molecules 2022, 27, 8879. [Google Scholar] [CrossRef]
- Röttig, A.; Atasayar, E.; Meier-Kolthoff, J.P.; Spröer, C.; Schumann, P.; Schauer, J.; Steinbüchel, A. Streptomyces jeddahensis sp. Nov., an oleaginous bacterium isolated from desert soil. Int. J. Syst. Evol. Microbiol. 2017, 67, 1676–1682. [Google Scholar] [CrossRef] [PubMed]
- Ghazani, S.M.; Marangoni, A.G. Microbial lipids for foods. Trends Food Sci. Technol. 2022, 119, 593–607. [Google Scholar] [CrossRef]
- Tyrrell, D. The fatty acid composition of some Entomophthoraceae. III. Can. J. Microbiol. 1971, 17, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Nagai, T.; Ishiyama, I. Fatty acid and lipid compositions of Conidiobolus. J. Appl. Bacteriol. 1983, 54, 85–90. [Google Scholar] [CrossRef]
- Kendrick, A.; Ratledge, C. Lipid formation in the oleaginous mold Entomophthora exitalis grown in continuous culture: Effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Appl. Microbiol. Biotechnol. 1992, 37, 18–22. [Google Scholar] [CrossRef]
- Fraatz, M.A.; Goldmann, M.; Geissler, T.; Gross, E.; Backes, M.; Hilmer, J.-M.; Ley, J.; Rost, J.; Francke, A.; Zorn, H. Biotechnological production of methyl-branched aldehydes. J. Agric. Food Chem. 2018, 66, 2387–2392. [Google Scholar] [CrossRef]
- Gandhi, S.R.; Weete, J.D. Production of the polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus Pythium ultimum. Microbiology 1991, 137, 1825–1830. [Google Scholar] [CrossRef]
- Stredansky, M.; Conti, E.; Salaris, A. Production of polyunsaturated fatty acids by Pythium ultimum in solid-state cultivation. Enzyme Microb. Technol. 2000, 26, 304–307. [Google Scholar] [CrossRef]
- Jacobs, A.; Botha, A.; Van Zyl, W.H. The production of eicosapentaenoic acid by representatives of the genus Mortierella grown on brewers’ spent grain. Biologia 2009, 64, 871–876. [Google Scholar] [CrossRef]
- Hideki, F. Process for Secretive Fermentation of Lipids by Fungi or Algae. European Patent Application EP207475, 7 January 1987. [Google Scholar]
- Moi, I.M.; Leow, A.T.C.; Ali, M.S.M.; Rahman, R.N.Z.R.A.; Salleh, A.B.; Sabri, S. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl. Microbiol. Biotechnol. 2018, 102, 5811–5826. [Google Scholar] [CrossRef] [PubMed]
- Didrihsone, E.; Dubencovs, K.; Grube, M.; Shvirksts, K.; Suleiko, A.; Suleiko, A.; Vanags, J. Crypthecodinium cohnii growth and omega fatty acid production in mediums supplemented with extract from recycled biomass. Mar. Drugs 2022, 20, 68. [Google Scholar] [CrossRef] [PubMed]
Entry | Strain | BCFAs (%) 1 | Linear FAs (%) 1 | Other (%) 2 | ||
---|---|---|---|---|---|---|
iso + anteiso | SFAs 3 | MUFAs 4 | PUFAs 5 | |||
1 | Streptomyces cavourensis (DSM 112466) | 66.1 | 15.0 | 3.7 (OA) | 7.5 (LA) | 7.7 |
2 | Streptomyces jeddahensis (DSM 101878) | 63.1 | 23.2 (PAL 16.6) | 4.9 (OA) | 6.1 (LA) | 2.7 |
3 | Entomophthora exitialis (CBS 180.60) | 21.1 | 30.1 (PAL 15.6) | 15.6 (OA 8.8) | 26.6 (ARA 24.0) | 6.6 |
4 | Conidiobolus heterosporus (CBS 543.63) | 56.1 (iso-C14 34.8) | 25.8 | 2.8 | 15.3 (ARA 10.4; EPA 1.5) | - |
5 | Pythium ultimum (CBS 805.95) | - | 44.8 (PAL 19.0) | 24.9 (OA 12.5) | 24.5 (LA 13.4; EPA 5.4; ARA 3.0; GLA 0.3) | 5.8 |
6 | Mucor circinelloides (DSM 1191) | - | 31.4 | 26.9 (OA 21.9) | 38.8 (GLA 23.3; LA 11.8) | 2.9 (ER 2.1) |
7 | Mucor plumbeus (DSM 62759) | - | 26.4 (PAL 17.6) | 33.3 (OA 28.0) | 36.3 (GLA 20.6; LA 14.3) | 3.8 (ER) |
8 | Cunninghamella echinulata (DSM 1905) | - | 25.1 (PAL 15.9) | 28.3 (OA 26.4) | 44.4 (GLA 22.2; LA 20.6) | 2.2 (ER 1.4) |
9 | Rhizopus stolonifer (DSM 855) | - | 38.8 (PAL 25.9) | 16.7 (OA 15.5) | 31.7 (GLA 22.0; LA 9.3) | 12.8 (ER 10.7) |
10 | Rhizopus oryzae (CBS 112.07) | - | 32.6 (PAL 18.2) | 27.5 (OA 25.8) | 38.2 (LA 27.4; GLA 10.8) | 1.7 (ER 1.0) |
11 | Syncephalastrum racemosus (MUT 2770) | - | 30.4 (PAL 20.5) | 39.4 (OA 37.7) | 28.1 (LA 15.0; GLA 12.7) | 2.0 (ER) |
12 | Absidia coerulea (AM93) | - | 37.3 (PAL 24.1) | 41.0 (OA) | 21.7 (LA 14.6; GLA 7.1) | - |
13 | Rhizomucor pusillus (CBS 354.68) | - | 25.9 (PAL 20.3) | 42.3 (OA 37.7) | 31.4 (LA 29.8; GLA 1.6) | 0.4 |
14 | Mortierella alpina (CBS 754.68) | - | 26.5 (PAL 14.4) | 11.6 (OA 9.1) | 59.1 (ARA 40.3; LA 12.0; GLA 3.8) | 2.8 |
15 | Mortierella Isabellina (CBS 208.32) | - | 25.5 (PAL 15.8) | 44.5 (OA 39.7) | 29.1 (LA 16.2; GLA 12.9) | 0.9 |
16 | Trichoderma viride (DSM 63065) | - | 55.3 (PAL 32.5) | 33.5 (OA) | 11.2 (LA) | - |
17 | Chaetomium globosum (DSM 1962) | - | 23.0 (PAL 19.3) | 5.2 (OA 4.5) | 62.0 (LA 57.0; ALA 5.0) | 9.8 (ER 9.7) |
18 | Aspergillus niger (CBS 626.66) | - | 90.1 | 2.6 (OA) | 2.3 (LA) | 5.0 |
19 | Aspergillus kanagawaensis (CBS 424.68) | - | 39.9 | 23.3 (OA 16.9) | 33.1 (LA) | 3.7 |
20 | Cladosporium cucumerinum (CBS 158.51) | - | 67.6 | 8.9 (OA) | 14.0 (LA) | 9.5 |
21 | Sodiomyces alcalophilus (CBS 114.92) | - | 21.7 (PAL 16.7) | 27.6 (OA 26.3) | 45.3 (LA) | 5.4 (ER 3.0) |
22 | Nigrospora oryzae (MUT 5844) | - | 35.4 (PAL 28.9) | 29.1 (OA 27.8) | 34.2 (LA) | 1.3 |
23 | Fusarium culmorum (MUT 5855) | - | 14.1 (PAL 11.9) | 47.1 (OA 44.1) | 35.6 (LA) | 3.2 |
24 | Beauveria bassiana (AM278) | - | 10.9 | 23.3 | 53.1 (LA) | 12.7 (ER) |
25 | Neurospora crassa (DSM 894) | - | 18.7 (PAL 15.7) | 3.1 (AO 1.8) | 71.5 (LA 50.4; ALA 21.1) | 6.7 (ER 6.2) |
26 | Alternaria alternata (DSM 1102) | - | 13.4 (PAL 9.2) | 1.9 | 62.5 (LA 48.6; ALA 13.9) | 22.2 (ER 18.6) |
Entry | Strain | Growth Conditions 1 | Biomass Yield 2 | Fatty Acid Yield 3 | High-Value Fatty Acids 4 |
---|---|---|---|---|---|
1 | Streptomyces cavourensis (DSM 112466) | 4 days, 28 °C pH 7.0 | 2.1 g/L (80 g/kg BSG) | 220 mg/L (8.2 g/kg BSG) | BCFAs (67.0) |
2 | Streptomyces jeddahensis (DSM 101878) | 5 days, 30 °C pH 6.9 | 2.3 g/L (86 g/kg BSG) | 313 mg/L (11.7 g/kg BSG) | BCFAs (65.2) |
3 | Conidiobolus heterosporus (CBS 543.63) | 6 days, 22 °C pH 6.6 | 5.4 g/L (202 g/kg BSG) | 460 mg/L (17.2 g/kg BSG) | BCFAs (23.2) PUFAs (27.5) (ARA 19.2; EPA 3.7; LA 2.3) |
4 | Entomophthora exitialis (CBS 180.60) | 5 days, 24 °C pH 7.0 | 1.6 g/L (60 g/kg BSG) | 170 mg/L (6.5 g/kg BSG) | BCFAs (20.5) PUFAs (26.9) (ARA 17.5; LA 7.4) |
5 | Pythium ultimum (CBS 805.95) | 5 days, 23 °C pH 6.5 | 3.9 g/L (147 g/kg BSG) | 400 mg/L (15 g/kg BSG) | PUFAs (35.8) (LA 16.3; EPA 9.3; ARA 8.3) |
6 | Mortierella alpina (CBS 754.68) | 5 days, 23 °C pH 6.5 | 7 g/L (262 g/kg BSG) | 900 mg/L (33.7 g/kg BSG) | PUFAs (60.2) (ARA 41.0; LA 11.5; GLA 3.3) |
7 | Rhizopus stolonifer (DSM 855) | 6 days, 24 °C pH 6.8 | 2.6 g/L (99 g/kg BSG) | 250 mg/L (9.4 g/kg BSG) | PUFAs (31.6) (GLA 21.0; LA 10.6) |
8 | Mucor circinelloides (DSM 1191) | 6 days, 23 °C pH 6.8 | 6.5 g/L (242 g/kg BSG) | 600 mg/L (22.6 g/kg BSG) | PUFAs (35.7) (GLA 21.0; LA 13.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, S.; D’Arrigo, P.; Rossato, L.A.M.; Ruffini, E. Microbial Fermentation of the Water-Soluble Fraction of Brewers’ Spent Grain for the Production of High-Value Fatty Acids. Fermentation 2023, 9, 1008. https://doi.org/10.3390/fermentation9121008
Serra S, D’Arrigo P, Rossato LAM, Ruffini E. Microbial Fermentation of the Water-Soluble Fraction of Brewers’ Spent Grain for the Production of High-Value Fatty Acids. Fermentation. 2023; 9(12):1008. https://doi.org/10.3390/fermentation9121008
Chicago/Turabian StyleSerra, Stefano, Paola D’Arrigo, Letizia Anna Maria Rossato, and Eleonora Ruffini. 2023. "Microbial Fermentation of the Water-Soluble Fraction of Brewers’ Spent Grain for the Production of High-Value Fatty Acids" Fermentation 9, no. 12: 1008. https://doi.org/10.3390/fermentation9121008
APA StyleSerra, S., D’Arrigo, P., Rossato, L. A. M., & Ruffini, E. (2023). Microbial Fermentation of the Water-Soluble Fraction of Brewers’ Spent Grain for the Production of High-Value Fatty Acids. Fermentation, 9(12), 1008. https://doi.org/10.3390/fermentation9121008