Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (142)

Search Parameters:
Keywords = liquid gated

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2258 KiB  
Review
Adsorption and Absorption Techniques for the Separation of Gaseous C2–C5 Olefins
by Fengxiang Guo, Chao Sun, Mo Xian and Huibin Zou
Separations 2025, 12(6), 144; https://doi.org/10.3390/separations12060144 - 1 Jun 2025
Viewed by 716
Abstract
Volatile C2–C5 olefins are important bulk chemicals in the polymer industry. Traditionally, C2–C5 olefins are produced from cracked petroleum resources using an energy-consuming and hazardous distillation method. Currently, volatile olefins can be produced from renewable biomass. To obtain polymer-grade volatile olefins from diversified [...] Read more.
Volatile C2–C5 olefins are important bulk chemicals in the polymer industry. Traditionally, C2–C5 olefins are produced from cracked petroleum resources using an energy-consuming and hazardous distillation method. Currently, volatile olefins can be produced from renewable biomass. To obtain polymer-grade volatile olefins from diversified resources, more sustainable and feasible separation techniques need to be developed. This review focuses on two updated separation techniques for C2–C5 olefins: (a) adsorption separation, which separates olefins through porous affinity, the pi complexation effect, and size-exclusion and gate-opening sieving, and (b) liquid absorption separation, which utilizes either organic solvents or ionic liquids for olefin separation. In this review, different separation techniques are compared in terms of their mechanisms and operation conditions in the separation of different types of C2–C5 olefins from variable resources, such as cracked ethylene/propylene/butylene/isoprene and bio-isoprene. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

13 pages, 5706 KiB  
Article
High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses
by Ștefan Popa, Andrei Nazîru, Ana-Maria Lupu, Dan Gh. Matei, Alice Dumitru, Cristian Alexe, Ioan Dăncuş, Claudiu A. Stan and Daniel Ursescu
Photonics 2025, 12(6), 533; https://doi.org/10.3390/photonics12060533 - 24 May 2025
Viewed by 445
Abstract
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used [...] Read more.
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used in a Frequency Resolved Optical Gating (FROG) configuration to analyze the spectral phase for near-infrared pulses far from the Fourier limit. Three types of targets were compared for characterizing pulses in the 1–8 ps range: a glass slide, a polymer tape, and a thin liquid sheet created by two impinging micrometer-scale jets. The thin liquid film had the best mechanical stability and introduced the least spectral distortion, allowing the most robust reconstruction of the temporal intensity profile. The spectral phase was reconstructed using a non-iterative algorithm, which reproduced the second-order phase distortions induced with an acousto-optic programmable dispersive filter with an RMS error of 6.2%, leading to measured pulse durations with an RMS deviation ranging from 1% for pulses of 6.8–7.8 ps up to 7.5% for pulses around 1 ps. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Lasers and Applications)
Show Figures

Figure 1

22 pages, 2821 KiB  
Review
Pixel Circuit Designs for Active Matrix Displays
by Dan-Mei Wei, Hua Zheng, Chun-Hua Tan, Shenghao Zhang, Hua-Dan Li, Lv Zhou, Yuanrui Chen, Chenchen Wei, Miao Xu, Lei Wang, Wei-Jing Wu, Honglong Ning and Baohua Jia
Appl. Syst. Innov. 2025, 8(2), 46; https://doi.org/10.3390/asi8020046 - 31 Mar 2025
Cited by 1 | Viewed by 2950
Abstract
Pixel circuits are key components of flat panel displays, including liquid crystal displays (LCDs), organic light-emitting diode displays (OLEDs), and micro light-emitting diode displays (micro-LEDs). Depending on the active layer material of the thin film transistor (TFT), pixel circuits are categorised into amorphous [...] Read more.
Pixel circuits are key components of flat panel displays, including liquid crystal displays (LCDs), organic light-emitting diode displays (OLEDs), and micro light-emitting diode displays (micro-LEDs). Depending on the active layer material of the thin film transistor (TFT), pixel circuits are categorised into amorphous silicon (a-Si) technology, low-temperature polycrystalline silicon (LTPS) technology, metal oxide (MO) technology, and low-temperature polycrystalline silicon and oxide (LTPO) technology. In this review, we outline the fundamental display principles and four major TFT technologies, covering conventional single-gated TFTs to novel two-gated TFTs. We focus on novel pixel circuits for three glass-based display technologies with additional mention of pixel circuits for silicon-based OLED and silicon-based micro-LED. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

12 pages, 1523 KiB  
Article
Light-Controlled Soft Switches for Optical Logic Gate Operations
by Chuang Wang, Hao Wu, Quanwang Niu, Xiaohong Yan and Xiangfu Wang
Sensors 2025, 25(7), 2051; https://doi.org/10.3390/s25072051 - 25 Mar 2025
Viewed by 659
Abstract
While liquid crystal elastomers (LCEs) show promise for diverse soft actuators due to their strong stimulus responsiveness, limited investigation into their light perception and processing restricts their wider use in intelligent systems. This study employs a hollow double-layer structure to design light-controlled logic [...] Read more.
While liquid crystal elastomers (LCEs) show promise for diverse soft actuators due to their strong stimulus responsiveness, limited investigation into their light perception and processing restricts their wider use in intelligent systems. This study employs a hollow double-layer structure to design light-controlled logic soft switches based on LCEs. The design realizes digital logic circuits including AND gates, OR gates, and NOT gates, as well as an optical switch array capable of converting light signals into visualized digital signals. These light-controlled soft switches exhibit strong photothermal responsiveness (~12 s), high programmability, and excellent cyclic stability (>500 times). This research provides a new perspective on light-controlled logic soft switches and their applications in logic circuits. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 4013 KiB  
Article
Detection of Short-Circuit Faults in Induction Motor Winding Turns Using a Neural Network and Its Implementation in FPGA
by Luz del Carmen García-Rodríguez, Raúl Santiago-Montero, Jose de Jesus Rangel-Magdaleno, Francisco Javier Pérez-Pinal, Rogelio José González-González, Allan G. S. Sánchez and Alejandro Espinosa-Calderón
Processes 2025, 13(3), 815; https://doi.org/10.3390/pr13030815 - 11 Mar 2025
Viewed by 1089
Abstract
Nowadays, induction motors are an essential part of industrial development. Faults due to short-circuit turns within induction motors are “incipient faults”. This type of failure affects engine operation through undesirable vibrations. Such vibrations negatively affect the operation of the system or the products [...] Read more.
Nowadays, induction motors are an essential part of industrial development. Faults due to short-circuit turns within induction motors are “incipient faults”. This type of failure affects engine operation through undesirable vibrations. Such vibrations negatively affect the operation of the system or the products with which said motor is in contact. Early fault detection prevents sudden downtime in the industry that can result in heavy economic losses. The incipient failures these motors can present have been a vast research topic worldwide. Existing methodologies for detecting incipient faults in alternating current motors have the problem that they are implemented at the simulation level, or are invasive, or do not allow in situ measurements, or their digital implementation is complex. This article presents the design and development of a purpose-specific system capable of detecting short-circuit faults in the turns of the induction motor winding without interrupting the motor’s working conditions, allowing online measurements. This system is standalone, portable and allows non-invasive and in situ measurements to obtain phase currents. These data form classified descriptors using a multilayer perceptron neural network. This type of neural network enables agile and efficient digital processing. The developed neural network could classify current faults with an accuracy rate of 93.18%. The neural network was successfully implemented on a low-cost and low-range purpose-specific Field Programmable Gate Array board for online processing, taking advantage of its computing power and real time processing features. The measurement of phase current and the class of fault detected is displayed on a liquid-crystal display screen, allowing the user to take necessary actions before major faults occur. Full article
Show Figures

Figure 1

10 pages, 2330 KiB  
Article
Liquid-Gated Graphene Field Effect Transistor for High-Performance Label-Free Sensing of Polycyclic Aromatic Hydrocarbons
by Cuiyun Kou, Xiaofeng Xu, Yu Bao, Zhinan Guo and Li Niu
Chemosensors 2025, 13(2), 56; https://doi.org/10.3390/chemosensors13020056 - 7 Feb 2025
Viewed by 949
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most toxic environmental pollutants, which are very harmful to the human body. It is crucial to find convenient and effective detection methods of PAHs for preventing and controlling environmental pollution. Low-dimensional material-based field effect transistor [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are one of the most toxic environmental pollutants, which are very harmful to the human body. It is crucial to find convenient and effective detection methods of PAHs for preventing and controlling environmental pollution. Low-dimensional material-based field effect transistor (FET) sensors exhibit the advantages of a small size, simple structure, fast response, and high sensitivity. In this work, graphene (Gr) has been selected as the channel material for FET sensors for PAH detections. Through π-π electron stacking interactions, PAHs could be spontaneously adsorbed on the surface of the Gr and affect its electronic carrier transport behavior. Based on the relationship between the concentrations and the changes in the Dirac point of the Gr, the sensor achieved an effective response to PAHs in a broad range from 10−10 to 10−6 mol/L and a limit of detection of 10−10 mol/L was obtained, which was lower than that provided by the World Health Organization (3.46 × 10−9 mol/L), in drinking water. The results demonstrate a great application of the FET sensors in environmental analysis, and provide an important way for rapid and in situ monitoring of PAHs. Full article
Show Figures

Figure 1

16 pages, 3185 KiB  
Article
Microwave Sensor for Dielectric Constant of Lossy Organic Liquids Based on Negative-Resistance Oscillation
by Huan Liu and Yichao Meng
Sensors 2025, 25(3), 961; https://doi.org/10.3390/s25030961 - 5 Feb 2025
Viewed by 918
Abstract
The dielectric constant, or permittivity, is a fundamental property that characterizes a material’s electromagnetic behavior, crucial for diverse applications in agriculture, healthcare, industry, and scientific research. In microwave engineering, accurate permittivity measurement is essential for advancements in fields such as biomedicine, aerospace, and [...] Read more.
The dielectric constant, or permittivity, is a fundamental property that characterizes a material’s electromagnetic behavior, crucial for diverse applications in agriculture, healthcare, industry, and scientific research. In microwave engineering, accurate permittivity measurement is essential for advancements in fields such as biomedicine, aerospace, and microwave chemistry. However, conventional waveguide resonator methods face challenges when measuring high-loss materials, often leading to reduced accuracy and increased cost. This paper introduces a lightweight, compact system for dielectric constant measurement using a negative-resistance voltage-controlled oscillator (VCO) integrated within a frequency synthesizer. The proposed system employs phase response variations of a planar sensor embedded in the VCO’s gate network to detect changes in oscillation frequency, enabling precise measurement of high-loss materials. The experimental validation demonstrates the system’s capability to accurately measure dielectric constants of lossy organic liquids, with applications in distinguishing liquid mixtures. The contributions include the design of a resonant-network-attached oscillator, comprehensive sensor performance simulations, and successful characterization of organic liquid mixtures, showcasing the potential of this approach for practical dielectric property measurements. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

9 pages, 1320 KiB  
Perspective
Bioinspired Design and Applications of Liquid Gating Gas Valve Membranes
by Yiyao Li, Yang Liu, Rui Xu, Jing Liu and Xu Hou
Biomimetics 2025, 10(2), 77; https://doi.org/10.3390/biomimetics10020077 - 26 Jan 2025
Cited by 1 | Viewed by 1572
Abstract
In nature, dynamic liquid interfaces play a vital role in regulating gas transport, as exemplified by the adaptive mechanisms of plant stomata and the liquid-lined alveoli, which enable efficient gas exchange through reversible opening and closing. These biological processes provide profound insights into [...] Read more.
In nature, dynamic liquid interfaces play a vital role in regulating gas transport, as exemplified by the adaptive mechanisms of plant stomata and the liquid-lined alveoli, which enable efficient gas exchange through reversible opening and closing. These biological processes provide profound insights into the design of advanced gas control technologies. Inspired by these natural systems, liquid gating membranes have been developed utilizing capillary-stabilized liquids to achieve precise fluid regulation. These membranes offer unique advantages of rapid responses, stain resistance, and high energy efficiency. Particularly, they break through the limitations of traditional solid, porous membranes in gas transport. This perspective introduces bioinspired liquid gating gas valve membranes (LGVMs), emphasizing their opening/closing mechanism. It highlights how external stimuli can be exploited to enable advanced, multi-level gas control through active or passive regulation strategies. Diverse applications in gas flow regulation and selective gas transport are discussed. While challenges related to precise controllability, long-term stability, and scalable production persist, these advancements unlock significant opportunities for groundbreaking innovations across diverse fields, including gas purification, microfluidics, medical diagnostics, and energy harvesting technologies. Full article
Show Figures

Figure 1

22 pages, 5992 KiB  
Review
IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies
by Youngmin Han, Juhyung Seo, Dong Hyun Lee and Hocheon Yoo
Micromachines 2025, 16(2), 118; https://doi.org/10.3390/mi16020118 - 21 Jan 2025
Cited by 1 | Viewed by 3641
Abstract
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 [...] Read more.
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 cm2/V·s and excellent transmittance of more than ~80%. Amorphous IGZO (a-IGZO) offers additional advantages, including compatibility with various processes and flexibility making it suitable for applications in flexible and wearable devices. Furthermore, IGZO-based thin-film transistors (TFTs) exhibit high uniformity and high-speed switching behavior, resulting in low power consumption due to their low leakage current. These advantages position IGZO not only as a key material in display technologies but also as a candidate for various next-generation electronic devices. This review paper provides a comprehensive overview of IGZO-based electronics, including applications in gas sensors, biosensors, and photosensors. Additionally, it emphasizes the potential of IGZO for implementing logic gates. Finally, the paper discusses IGZO-based neuromorphic devices and their promise in overcoming the limitations of the conventional von Neumann computing architecture. Full article
(This article belongs to the Special Issue Semiconductor and Energy Materials and Processing Technology)
Show Figures

Figure 1

14 pages, 4348 KiB  
Article
Basic Characteristics of Ionic Liquid-Gated Graphene FET Sensors for Nitrogen Cycle Monitoring in Agricultural Soil
by Naoki Shiraishi, Jian Lu, Fatin Bazilah Fauzi, Ryo Imaizumi, Toyohiro Tsukahara, Satoshi Mogari, Shosuke Iida, Yusuke Matsukura, Satoshi Teramoto, Keisuke Yokoi, Izumi Ichinose and Mutsumi Kimura
Biosensors 2025, 15(1), 55; https://doi.org/10.3390/bios15010055 - 16 Jan 2025
Cited by 3 | Viewed by 1331
Abstract
Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3–N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (N2O), a [...] Read more.
Nitrogen-based fertilizers are crucial in agriculture for maintaining soil health and increasing crop yields. Soil microorganisms transform nitrogen from fertilizers into NO3–N, which is absorbed by crops. However, some nitrogen is converted to nitrous oxide (N2O), a greenhouse gas with a warming potential about 300-times greater than carbon dioxide (CO2). Agricultural activities are the main source of N2O emissions. Monitoring N2O can enhance soil health and optimize nitrogen fertilizer use, thereby supporting precision agriculture. To achieve this, we developed ionic liquid-gated graphene field-effect transistor (FET) sensors to measure N2O concentrations in agricultural soil. We first fabricated and tested the electrical characteristics of the sensors. Then, we analyzed their transfer characteristics in our developed N2O evaluation system using different concentrations of N2O and air. The sensors demonstrated a negative shift in transfer characteristic curves when exposed to N2O, with a Dirac point voltage difference of 0.02 V between 1 and 10 ppm N2O diluted with pure air. These results demonstrate that the ionic liquid-gated graphene FET sensor is a promising device for N2O detection for agricultural soil applications. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Figure 1

15 pages, 1870 KiB  
Article
Electrochemical Switching of Laser-Induced Graphene/Polymer Composites for Tunable Electronics
by Maxim Fatkullin, Ilia Petrov, Elizaveta Dogadina, Dmitry Kogolev, Alexandr Vorobiev, Pavel Postnikov, Jin-Ju Chen, Rafael Furlan de Oliveira, Olfa Kanoun, Raul D. Rodriguez and Evgeniya Sheremet
Polymers 2025, 17(2), 192; https://doi.org/10.3390/polym17020192 - 14 Jan 2025
Cited by 2 | Viewed by 1643
Abstract
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes [...] Read more.
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance. To overcome these challenges, we report on a post-processing redox treatment that allows the tuning of the electrochemical properties of laser-induced rGO/polymer composite electrodes. We show that the polymer substrate plays a crucial role in the electrochemical modulation of the composites’ properties, such as the electrode impedance, charge transfer resistance, and areal capacitance. The mechanism behind the reversible control of electrochemical properties of the rGO/polymer composites is the cleavage of polymer chains in the vicinity of rGO flakes during redox cycling, which exposes rGO active sites to interact with the electrolyte. Sequential redox cycling improves composite performance, allowing the development of devices such as electrolyte-gated transistors, which are widely used in chemical sensing applications. Our strategy enables the engineering of the electrochemical properties of rGO/polymer composites by post-treatment with dynamic switching, opening up new possibilities for flexible electronics and electrochemical applications having tunable properties. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials)
Show Figures

Figure 1

22 pages, 7903 KiB  
Article
Forecasting Forex Market Volatility Using Deep Learning Models and Complexity Measures
by Pavlos I. Zitis, Stelios M. Potirakis and Alex Alexandridis
J. Risk Financial Manag. 2024, 17(12), 557; https://doi.org/10.3390/jrfm17120557 - 13 Dec 2024
Cited by 1 | Viewed by 5403
Abstract
In this article, we examine whether incorporating complexity measures as features in deep learning (DL) algorithms enhances their accuracy in predicting forex market volatility. Our approach involved the gradual integration of complexity measures alongside traditional features to determine whether their inclusion would provide [...] Read more.
In this article, we examine whether incorporating complexity measures as features in deep learning (DL) algorithms enhances their accuracy in predicting forex market volatility. Our approach involved the gradual integration of complexity measures alongside traditional features to determine whether their inclusion would provide additional information that improved the model’s predictive accuracy. For our analyses, we employed recurrent neural networks (RNNs), long short-term memory (LSTM), and gated recurrent units (GRUs) as DL model architectures, while using the Hurst exponent and fuzzy entropy as complexity measures. All analyses were conducted on intraday data from four highly liquid currency pairs, with volatility estimated using the Range-Based estimator. Our findings indicated that the inclusion of complexity measures as features significantly enhanced the accuracy of DL models in predicting volatility. In achieving this, we contribute to a relatively unexplored area of research, as this is the first instance of such an approach being applied to the prediction of forex market volatility. Additionally, we conducted a comparative analysis of the three models’ performance, revealing that the LSTM and GRU models consistently demonstrated a superior accuracy. Finally, our findings also have practical implications, as they may assist risk managers and policymakers in forecasting volatility in the forex market. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

29 pages, 20518 KiB  
Article
Research and Analysis of Liquid Cooling Heat Dissipation Equipment for Insulated-Gate Bipolar Transistor Modules of Wind Power Converters Based on the Finite Element Analysis Method
by Xinyu Zhu, Xue Hu, Lixin Zhang, Wenchun Li, Lijiao Gong, Wenhao Yu, Haonan Wang, Feng Chen and Xinwang Zhang
Machines 2024, 12(10), 699; https://doi.org/10.3390/machines12100699 - 2 Oct 2024
Cited by 1 | Viewed by 1544
Abstract
The primary objective of this study is to develop a simulation model for a liquid cooling plate (LCP) for insulated-gate bipolar transistor (IGBT) modules, with the aim of reducing the operating temperature of wind power converters (WPCs). The initial impetus for this study [...] Read more.
The primary objective of this study is to develop a simulation model for a liquid cooling plate (LCP) for insulated-gate bipolar transistor (IGBT) modules, with the aim of reducing the operating temperature of wind power converters (WPCs). The initial impetus for this study was the observation that the energy conversion efficiency of a WPC declines when the operating temperature of the IGBT module exceeds a critical threshold. Three LCPs, with and without heat sinks, were modelled under extreme conditions using the finite element simulation method. The effect of the number and height of the fins on the cooling efficacy was evaluated through the simulation and analysis of the LCP model with heat sinks. The results demonstrate that the optimal configuration, comprising five 10 mm fins and 13 10 mm struts, can achieve the following reductions: maximum temperature by 11.4 K, heat dissipation efficiency by 3.33%, pressure drop by 10.6 KPa, and pump power by 31.00%. Moreover, the findings suggest that the number of fins has a significant impact on temperature fluctuations, whereas the height of the fins exerts a markedly significant influence on pressure drop. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

12 pages, 27277 KiB  
Article
Process Development of a Liquid-Gated Graphene Field-Effect Transistor Gas Sensor for Applications in Smart Agriculture
by Jian Lu, Naoki Shiraishi, Ryo Imaizumi, Lan Zhang and Mutsumi Kimura
Sensors 2024, 24(19), 6376; https://doi.org/10.3390/s24196376 - 1 Oct 2024
Cited by 2 | Viewed by 1816
Abstract
A compact, multi-channel ionic liquid-gated graphene field-effect transistor (FET) has been proposed and developed in our work for on-field continuous monitoring of nitrate nitrogen and other nitrogen fertilizers to achieve sustainable and efficient farming practices in agriculture. However, fabricating graphene FETs with easy [...] Read more.
A compact, multi-channel ionic liquid-gated graphene field-effect transistor (FET) has been proposed and developed in our work for on-field continuous monitoring of nitrate nitrogen and other nitrogen fertilizers to achieve sustainable and efficient farming practices in agriculture. However, fabricating graphene FETs with easy filling of ionic liquids, minimal graphene defects, and high process yields remains challenging, given the sensitivity of these devices to processing conditions and environmental factors. In this work, two approaches for the fabrication of our graphene FETs were presented, evaluated, and compared for high yields and easy filling of ionic liquids. The process difficulties, major obstacles, and improvements are discussed herein in detail. Both devices, those fabricated using a 3 μm-thick CYTOP® layer for position restriction and volume control of the ionic liquid and those using a ~20 nm-thick photosensitive hydrophobic layer for the same purpose, exhibited typical FET characteristics and were applicable to various application environments. The research findings and experiences presented in this paper will provide important references to related societies for the design, fabrication, and application of liquid-gated graphene FETs. Full article
(This article belongs to the Special Issue Gas Sensors: Progress, Perspectives and Challenges)
Show Figures

Figure 1

14 pages, 5069 KiB  
Article
Optimizing Vertical Zone Refining for Ultra-High-Purity Tin: Numerical Simulations and Experimental Analyses
by Yu Yao, Jiajun Wen, Qi He, Meizhen Wu, Lishi Chen, Yuxu Bao and Hongxing Zheng
Separations 2024, 11(9), 273; https://doi.org/10.3390/separations11090273 - 19 Sep 2024
Viewed by 1323
Abstract
This study investigates the application of the vertical zone refining process to produce ultra-high-purity tin. Computational fluid dynamics (CFD) simulations were conducted using an Sn-1 wt.%Bi binary alloy to assess the effects of two key parameters—heater temperature and pulling rate—on Bi impurity segregation. [...] Read more.
This study investigates the application of the vertical zone refining process to produce ultra-high-purity tin. Computational fluid dynamics (CFD) simulations were conducted using an Sn-1 wt.%Bi binary alloy to assess the effects of two key parameters—heater temperature and pulling rate—on Bi impurity segregation. The simulations revealed a dynamic evolution in molten zone height, characterized by an initial rapid rise, followed by a gradual increase and ending with a sharp decline. Despite these fluctuations, the lower solid–liquid interface consistently remained slightly convex. After nine zone passes, impurities accumulated at the top of the sample, with dual vortices forming a rhombus- or gate-shaped negative segregation zone. The simulations demonstrated that lower heater temperatures and slower pulling rates enhanced impurity segregation efficiency. Based on these results, experiments were performed using 6N-grade tin as the starting material. Glow discharge mass spectrometry (GDMS) analysis showed that the effective partition coefficients (keff) for impurities such as Ag, Pb, Co, Al, Bi, Cu, Fe, and Ni were significantly less than 1, while As was slightly below but very close to 1, and Sb was above 1. Under optimal conditions—405 °C heater temperature and a pulling rate of 5 μm/s—over 60% of impurities were removed after nine zone passes, approaching 6N9-grade purity. These findings provide valuable insights into optimizing the vertical zone refining process and demonstrate its potential for achieving 7N-grade ultra-high-purity tin. Full article
Show Figures

Figure 1

Back to TopTop