Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = lipophilic nucleosides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1863 KB  
Article
Validating TDP1 as an Inhibition Target for Lipophilic Nucleoside Derivative in Human Cells
by Irina A. Chernyshova, Tatyana E. Kornienko, Nadezhda S. Dyrkheeva, Alexandra L. Zakharenko, Arina A. Chepanova, Konstantin E. Orishchenko, Nikolay N. Kurochkin, Mikhail S. Drenichev and Olga I. Lavrik
Int. J. Mol. Sci. 2025, 26(20), 10193; https://doi.org/10.3390/ijms262010193 - 20 Oct 2025
Viewed by 666
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important DNA repair enzyme and its functioning is considered as one of the possible reasons for tumor resistance to topoisomerase 1 (TOP1) poisons such as topotecan. Thus, TDP1 inhibitors in combination with topotecan may improve the effectiveness [...] Read more.
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important DNA repair enzyme and its functioning is considered as one of the possible reasons for tumor resistance to topoisomerase 1 (TOP1) poisons such as topotecan. Thus, TDP1 inhibitors in combination with topotecan may improve the effectiveness of anticancer therapy. TDP1 acts somehow in a phospholipase manner, depleting the phosphodiester bond between lipophilic tyrosine residue and 3′ end of DNA; therefore, lipophilic molecules bearing aromatic substituents can interact with TDP1 and even possess high inhibitory activity, which is evidenced by data from the literature. Previously, we identified lipophilic nucleoside derivative (compound 6d, IC50 = 0.82 µM) as an effective inhibitor of the purified enzyme TDP1 that enhances the cytotoxic, DNA-damaging, and antitumor effects of topotecan. However, the role of TDP1 inhibition in this synergistic effect remained not fully understood. In the present study, we have tested the hypothesis of a TDP1-dependent mechanism of action for compound 6d, showing that it sensitizes wild-type A549 lung cancer cells, but not TDP1 knockout cells, to the cytotoxic effects of topotecan. The sensitizing effect was absent in non-cancerous HEK293A cells regardless of TDP1 status. Additionally, we analyzed the effect of compound 6d and topotecan on the expression level of TOP1 and TDP1 to determine whether the observed synergy was due to direct TDP1 inhibition and/or changes in regulation of these enzymes. The data obtained shows that compound 6d did not affect TDP1 gene expression level in HEK293A and A549 WT cells. Thus, compound 6d most probably does not suppress the transcription or mRNA stability of TDP1, and the synergistic action of 6d with topotecan is related to TDP1 inhibtion. Full article
Show Figures

Figure 1

37 pages, 8429 KB  
Review
Chemical Space of Fluorinated Nucleosides/Nucleotides in Biomedical Research and Anticancer Drug Discovery
by Yugandhar Kothapalli, Tucker A. Lesperance, Ransom A. Jones, Chung K. Chu and Uma S. Singh
Chemistry 2025, 7(1), 7; https://doi.org/10.3390/chemistry7010007 - 13 Jan 2025
Cited by 2 | Viewed by 4631
Abstract
Fluorinated nucleos(t)ide drugs have proven to be successful chemotherapeutic agents in treating various cancers. The Food and Drug Administration (FDA) has approved several drugs that fit within the fluorinated nucleoside pharmacophore, and many more are either in preclinical development or clinical trials. The [...] Read more.
Fluorinated nucleos(t)ide drugs have proven to be successful chemotherapeutic agents in treating various cancers. The Food and Drug Administration (FDA) has approved several drugs that fit within the fluorinated nucleoside pharmacophore, and many more are either in preclinical development or clinical trials. The addition of fluorine atoms to nucleos(t)ides improves the metabolic stability of the glycosidic bond and, in certain instances, facilitates additional interactions of nucleons(t)ides with receptors. The insertion of fluorine either on sugar or the base of nucleos(t)ides proved to enhance the lipophilicity, pharmacokinetic, and pharmacodynamic properties. Overall, the fluorine atom feeds diverse advantages to the biological profile of nucleos(t)ide analogs by improving their drug-like properties and therapeutic potential. This review article covers the often-used fluorinating reagents in nucleoside chemistry, the clinical significance of [18F]-labeled nucleosides, the synthesis and anticancer activity of FDA-approved fluoro-nucleos(t)ide drugs, as well as clinical candidates, which are at various stages of clinical development as anticancer agents. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 4730 KB  
Article
The Interactions of Anti-HIV Pronucleotides with a Model Phospholipid Membrane
by Monika Rojewska, Joanna Romanowska, Adam Kraszewski, Michał Sobkowski and Krystyna Prochaska
Molecules 2024, 29(23), 5787; https://doi.org/10.3390/molecules29235787 - 7 Dec 2024
Cited by 1 | Viewed by 1329
Abstract
Pronucleotides, after entering the cell, undergo chemical or enzymatic conversion into nucleotides with a free phosphate residue, and the released nucleoside 5′-monophosphate is then phosphorylated to the biologically active form, namely nucleoside 5′-triphosphate. The active form can inhibit HIV virus replication. For the [...] Read more.
Pronucleotides, after entering the cell, undergo chemical or enzymatic conversion into nucleotides with a free phosphate residue, and the released nucleoside 5′-monophosphate is then phosphorylated to the biologically active form, namely nucleoside 5′-triphosphate. The active form can inhibit HIV virus replication. For the most effective therapy, it is necessary to improve the transport of prodrugs into organelles. The introduction of new functional groups into their structure increases lipophilicity and, as a result, facilitates the interaction of pronucleotide molecules with components of biological membranes. Studies of these interactions were performed using the Langmuir technique. The prototype of the biological membrane was a thin monolayer composed of phospholipid molecules, DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The pronucleotides were 3′-azido-3′-deoxythymidine (AZT) analogs, formed by the phosphorylation of AZT to monophosphate (AZTMP) and containing various masking moieties that could increase their lipophilicity. Our results show the influence of the pronucleotide’s chemical structure on the fluidization of the model biomembrane. Changes in monolayer morphology in the presence of prodrugs were investigated by BAM microscopy. It was found that the incorporation of new groups into the structure of the drug as well as the concentration of AZT derivatives have a significant impact on the surface properties of the formed DPPC monolayer. Full article
(This article belongs to the Section Bioactive Lipids)
Show Figures

Figure 1

15 pages, 2312 KB  
Article
Synthesis of Substituted 1,2,4-Triazole-3-Thione Nucleosides Using E. coli Purine Nucleoside Phosphorylase
by Ilya V. Fateev, Sobirdjan A. Sasmakov, Jaloliddin M. Abdurakhmanov, Abdukhakim A. Ziyaev, Shukhrat Sh. Khasanov, Farkhod B. Eshboev, Oybek N. Ashirov, Valeriya D. Frolova, Barbara Z. Eletskaya, Olga S. Smirnova, Maria Ya. Berzina, Alexandra O. Arnautova, Yulia A. Abramchik, Maria A. Kostromina, Alexey L. Kayushin, Konstantin V. Antonov, Alexander S. Paramonov, Valeria L. Andronova, Georgiy A. Galegov, Roman S. Esipov, Shakhnoz S. Azimova, Anatoly I. Miroshnikov and Irina D. Konstantinovaadd Show full author list remove Hide full author list
Biomolecules 2024, 14(7), 745; https://doi.org/10.3390/biom14070745 - 24 Jun 2024
Cited by 4 | Viewed by 3040
Abstract
1,2,4-Triazole derivatives have a wide range of biological activities. The most well-known drug that contains 1,2,4-triazole as part of its structure is the nucleoside analogue ribavirin, an antiviral drug. Finding new nucleosides based on 1,2,4-triazole is a topical task. The aim of this [...] Read more.
1,2,4-Triazole derivatives have a wide range of biological activities. The most well-known drug that contains 1,2,4-triazole as part of its structure is the nucleoside analogue ribavirin, an antiviral drug. Finding new nucleosides based on 1,2,4-triazole is a topical task. The aim of this study was to synthesize ribosides and deoxyribosides of 1,2,4-triazole-3-thione derivatives and test their antiviral activity against herpes simplex viruses. Three compounds from a series of synthesized mono- and disubstituted 1,2,4-triazole-3-thione derivatives were found to be substrates for E. coli purine nucleoside phosphorylase. Of six prepared nucleosides, the riboside and deoxyriboside of 3-phenacylthio-1,2,4-triazole were obtained at good yields. The yields of the disubstituted 1,2,4-triazol-3-thiones were low due to the effect of bulky substituents at the C3 and C5 positions on the selectivity of enzymatic glycosylation for one particular nitrogen atom in the triazole ring. The results of cytotoxic and antiviral studies on acyclovir-sensitive wild-type strain HSV-1/L2(TK+) and acyclovir-resistant strain (HSV-1/L2/RACV) in Vero E6 cell culture showed that the incorporation of a thiobutyl substituent into the C5 position of 3-phenyl-1,2,4-triazole results in a significant increase in the cytotoxicity of the base and antiviral activity. The highest antiviral activity was observed in the 3-phenacylthio-1-(β-D-ribofuranosyl)-1,2,4-triazole and 5-butylthio-1-(2-deoxy-β-D-ribofuranosyl)-3-phenyl-1,2,4-triazole nucleosides, with their selectivity indexes being significantly higher than that of ribavirin. It was also found that with the increasing lipophilicity of the nucleosides, the activity and toxicity of the tested compounds increased. Full article
Show Figures

Figure 1

44 pages, 15060 KB  
Review
Synthesis of Fluorinated Nucleosides/Nucleotides and Their Antiviral Properties
by Yugandhar Kothapalli, Ransom A. Jones, Chung K. Chu and Uma S. Singh
Molecules 2024, 29(10), 2390; https://doi.org/10.3390/molecules29102390 - 19 May 2024
Cited by 6 | Viewed by 7487
Abstract
The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters [...] Read more.
The FDA has approved several drugs based on the fluorinated nucleoside pharmacophore, and numerous drugs are currently in clinical trials. Fluorine-containing nucleos(t)ides offer significant antiviral and anticancer activity. The insertion of a fluorine atom, either in the base or sugar of nucleos(t)ides, alters its electronic and steric parameters and transforms the lipophilicity, pharmacodynamic, and pharmacokinetic properties of these moieties. The fluorine atom restricts the oxidative metabolism of drugs and provides enzymatic metabolic stability towards the glycosidic bond of the nucleos(t)ide. The incorporation of fluorine also demonstrates additional hydrogen bonding interactions in receptors with enhanced biological profiles. The present article discusses the synthetic methodology and antiviral activities of FDA-approved drugs and ongoing fluoro-containing nucleos(t)ide drug candidates in clinical trials. Full article
Show Figures

Figure 1

27 pages, 5115 KB  
Article
NMR Metabolomics and Chemometrics of Commercial Varieties of Phaseolus vulgaris L. Seeds from Italy and In Vitro Antioxidant and Antifungal Activity
by Vadym Samukha, Francesca Fantasma, Gilda D’Urso, Claudio Caprari, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Maria Giovanna Chini, Giuseppe Bifulco and Maria Iorizzi
Plants 2024, 13(2), 227; https://doi.org/10.3390/plants13020227 - 13 Jan 2024
Cited by 5 | Viewed by 4295
Abstract
The metabolite fingerprinting of four Italian commercial bean seed cultivars, i.e., Phaseolus Cannellino (PCANN), Controne (PCON), Vellutina (PVEL), and Occhio Nero (PON), were investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis. The hydroalcoholic and organic extract analysis disclosed more than [...] Read more.
The metabolite fingerprinting of four Italian commercial bean seed cultivars, i.e., Phaseolus Cannellino (PCANN), Controne (PCON), Vellutina (PVEL), and Occhio Nero (PON), were investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis. The hydroalcoholic and organic extract analysis disclosed more than 32 metabolites from various classes, i.e., carbohydrates, amino acids, organic acids, nucleosides, alkaloids, and fatty acids. PVEL, PCON, and PCANN varieties displayed similar chemical profiles, albeit with somewhat different quantitative results. The PON metabolite composition was slightly different from the others; it lacked GABA and pipecolic acid, featured a higher percentage of malic acid than the other samples, and showed quantitative variations of several metabolites. The lipophilic extracts from all four cultivars demonstrated the presence of omega-3 and omega-6 unsaturated fatty acids. After the determination of the total phenolic, flavonoids, and condensed tannins content, in vitro antioxidant activity was then assessed using the DPPH scavenging activity, the ABTS scavenging assay, and ferric-reducing antioxidant power (FRAP). Compared to non-dark seeds (PCON, PCANN), brown seeds (PVEL, PON) featured a higher antioxidant capacity. Lastly, only PON extract showed in vitro antifungal activity against the sclerotia growth of S. rolfsii, by inhibiting halo growth by 75%. Full article
(This article belongs to the Special Issue Spectra Analysis and Plants Research 2.0)
Show Figures

Figure 1

37 pages, 7557 KB  
Article
Alkyl Derivatives of Perylene Photosensitizing Antivirals: Towards Understanding the Influence of Lipophilicity
by Igor E. Mikhnovets, Jiří Holoubek, Irina S. Panina, Jan Kotouček, Daniil A. Gvozdev, Stepan P. Chumakov, Maxim S. Krasilnikov, Mikhail Y. Zhitlov, Evgeny L. Gulyak, Alexey A. Chistov, Timofei D. Nikitin, Vladimir A. Korshun, Roman G. Efremov, Vera A. Alferova, Daniel Růžek, Luděk Eyer and Alexey V. Ustinov
Int. J. Mol. Sci. 2023, 24(22), 16483; https://doi.org/10.3390/ijms242216483 - 18 Nov 2023
Cited by 4 | Viewed by 2909
Abstract
Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. [...] Read more.
Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel–Crafts acylation and Wolff–Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen. Full article
(This article belongs to the Special Issue Current Advances in Novel Antiviral Drugs)
Show Figures

Figure 1

13 pages, 3248 KB  
Article
Assessment of Purity, Stability, and Pharmacokinetics of NGP-1, a Novel Prodrug of GS441254 with Potential Anti-SARS-CoV-2 Activity, Using Liquid Chromatography
by Chen Sun, Bo Liu, Fengzhi Zhou, Qianqian Zheng, Chunmei Dai, Wei Wei, Guochao Liao and Yuqi Sun
Molecules 2023, 28(15), 5634; https://doi.org/10.3390/molecules28155634 - 25 Jul 2023
Cited by 2 | Viewed by 2735
Abstract
SARS-CoV-2 is a highly contagious and pathogenic virus that first appeared in late December 2019 and caused a global pandemic in a short period. The virus is a single-stranded RNA virus belonging to the Coronaviridae family. Numerous treatments have been developed and tested [...] Read more.
SARS-CoV-2 is a highly contagious and pathogenic virus that first appeared in late December 2019 and caused a global pandemic in a short period. The virus is a single-stranded RNA virus belonging to the Coronaviridae family. Numerous treatments have been developed and tested in response to the pandemic, particularly antiviral drugs. Among them, GS441524 (GS441), a nucleoside antiviral drug, has demonstrated promising results in inhibiting SARS-CoV-2. Nevertheless, the limited oral bioavailability of GS441 restricts its application to patients with the virus. In this study, a novel prodrug of GS441 (NGP-1) with an isobutyl ester and cyclic carbonate structure was designed and synthesized. Its purity and the stability in different artificial digestive juices of NGP-1 was determined with HPLC-DAD methods. The pharmacokinetics of NGP-1 and GS441 were studied in rats via gavage administration. A new LC-MS/MS method was developed to quantitatively analyze GS441 in plasma samples. The results showed that the ka, Cmax, and MRT of converted GS441 from NGP-1 were 5.9, 3, and 2.5 times greater than those of GS441 alone. The Frel of NGP-1 was approximately four-fold that of GS441, with an AUC0–∞ of 9716.3 h·ng mL−1. As a prodrug of GS441, NGP-1 increased its lipophilicity, absorption, and bioavailability, indicating that it holds promise in improving the clinical efficacy of anti-SARS-CoV-2 medications. Full article
Show Figures

Graphical abstract

20 pages, 5104 KB  
Article
The Lipophilic Purine Nucleoside—Tdp1 Inhibitor—Enhances DNA Damage Induced by Topotecan In Vitro and Potentiates the Antitumor Effect of Topotecan In Vivo
by Irina A. Chernyshova, Aleksandra L. Zakharenko, Nikolay N. Kurochkin, Nadezhda S. Dyrkheeva, Tatyana E. Kornienko, Nelly A. Popova, Valeriy P. Nikolin, Ekaterina S. Ilina, Timofey D. Zharkov, Maxim S. Kupryushkin, Vladimir E. Oslovsky, Mikhail S. Drenichev and Olga I. Lavrik
Molecules 2023, 28(1), 323; https://doi.org/10.3390/molecules28010323 - 31 Dec 2022
Cited by 7 | Viewed by 2846
Abstract
The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, [...] Read more.
The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3–22.0 μM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects. Full article
(This article belongs to the Special Issue New Anticancer Agents Based on Natural Products)
Show Figures

Figure 1

33 pages, 6055 KB  
Article
RETRACTED: Synthesis and Evaluation of Anti-HIV Activity of Mono- and Di-Substituted Phosphonamidate Conjugates of Tenofovir
by Aaminat Qureshi, Louise A. Ouattara, Naglaa Salem El-Sayed, Amita Verma, Gustavo F. Doncel, Muhammad Iqbal Choudhary, Hina Siddiqui and Keykavous Parang
Molecules 2022, 27(14), 4447; https://doi.org/10.3390/molecules27144447 - 12 Jul 2022
Cited by 3 | Viewed by 3791 | Retraction
Abstract
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the [...] Read more.
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97–99% inhibition) at 10–100 ng/mL but was more potent than TAF when compared at molar concentration. Full article
(This article belongs to the Special Issue Antiviral Agents for RNA-Virus Infection)
Show Figures

Graphical abstract

17 pages, 1280 KB  
Article
Synthesis and Biological Evaluation of 5′-O-Fatty Acyl Ester Derivatives of 3′-Fluoro-2′,3′-dideoxythymidine as Potential Anti-HIV Microbicides
by Hitesh K. Agarwal, Bhupender S. Chhikara, Guofeng Ye, Sitaram Bhavaraju, Ajay Dixit, Anil Kumar, Gustavo F. Doncel and Keykavous Parang
Molecules 2022, 27(10), 3352; https://doi.org/10.3390/molecules27103352 - 23 May 2022
Cited by 1 | Viewed by 4106
Abstract
A number of 5′-O-fatty acyl derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3′-azido-2′,3′-dideoxythymidine (AZT), [...] Read more.
A number of 5′-O-fatty acyl derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3′-azido-2′,3′-dideoxythymidine (AZT), 5′-O-(12-azidododecanoyl) (5), 5′-O-myristoyl (6), and 5′-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 μM, 1.1 μM, and <0.2 μM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 μM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either β-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines. Full article
(This article belongs to the Special Issue Antiviral Agents for RNA-Virus Infection)
Show Figures

Graphical abstract

17 pages, 4964 KB  
Article
In Vitro and In Silico Studies of Human Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) Inhibition by Stereoisomeric Forms of Lipophilic Nucleosides: The Role of Carbohydrate Stereochemistry in Ligand-Enzyme Interactions
by Nadezhda S. Dyrkheeva, Irina A. Chernyshova, Georgy A. Ivanov, Yuri B. Porozov, Anastasia A. Zenchenko, Vladimir E. Oslovsky, Alexandra L. Zakharenko, Darina I. Nasyrova, Galina N. Likhatskaya, Sergey N. Mikhailov, Olga I. Lavrik and Mikhail S. Drenichev
Molecules 2022, 27(8), 2433; https://doi.org/10.3390/molecules27082433 - 9 Apr 2022
Cited by 3 | Viewed by 3109
Abstract
Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7–6.7 μM. It was shown that D-lipophilic nucleoside derivatives [...] Read more.
Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7–6.7 μM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition. Full article
(This article belongs to the Special Issue Fragment-to-Lead Optimization in Drug Discovery)
Show Figures

Graphical abstract

13 pages, 8467 KB  
Article
Inhibition of Tyrosyl-DNA Phosphodiesterase 1 by Lipophilic Pyrimidine Nucleosides
by Alexandra L. Zakharenko, Mikhail S. Drenichev, Nadezhda S. Dyrkheeva, Georgy A. Ivanov, Vladimir E. Oslovsky, Ekaterina S. Ilina, Irina A. Chernyshova, Olga I. Lavrik and Sergey N. Mikhailov
Molecules 2020, 25(16), 3694; https://doi.org/10.3390/molecules25163694 - 13 Aug 2020
Cited by 11 | Viewed by 3003
Abstract
Inhibition of DNA repair enzymes tyrosyl-DNA phosphodiesterase 1 and poly(ADP-ribose)polymerases 1 and 2 in the presence of pyrimidine nucleoside derivatives was studied here. New effective Tdp1 inhibitors were found in a series of nucleoside derivatives possessing 2′,3′,5′-tri-O-benzoyl-d-ribofuranose and 5-substituted [...] Read more.
Inhibition of DNA repair enzymes tyrosyl-DNA phosphodiesterase 1 and poly(ADP-ribose)polymerases 1 and 2 in the presence of pyrimidine nucleoside derivatives was studied here. New effective Tdp1 inhibitors were found in a series of nucleoside derivatives possessing 2′,3′,5′-tri-O-benzoyl-d-ribofuranose and 5-substituted uracil moieties and have half-maximal inhibitory concentrations (IC50) in the lower micromolar and submicromolar range. 2′,3′,5′-Tri-O-benzoyl-5-iodouridine manifested the strongest inhibitory effect on Tdp1 (IC50 = 0.6 μM). A decrease in the number of benzoic acid residues led to a marked decline in the inhibitory activity, and pyrimidine nucleosides lacking lipophilic groups (uridine, 5-fluorouridine, 5-chlorouridine, 5-bromouridine, 5-iodouridine, and ribothymidine) did not cause noticeable inhibition of Tdp1 (IC50 > 50 μM). No PARP1/2 inhibitors were found among the studied compounds (residual activity in the presence of 1 mM substances was 50–100%). Several O-benzoylated uridine and cytidine derivatives strengthened the action of topotecan on HeLa cervical cancer cells. Full article
Show Figures

Graphical abstract

23 pages, 1525 KB  
Article
Synthesis and Biological Evaluation of Lipophilic Nucleoside Analogues as Inhibitors of Aminoacyl-tRNA Synthetases
by Manesh Nautiyal, Bharat Gadakh, Steff De Graef, Luping Pang, Masroor Khan, Yi Xun, Jef Rozenski and Arthur Van Aerschot
Antibiotics 2019, 8(4), 180; https://doi.org/10.3390/antibiotics8040180 - 9 Oct 2019
Cited by 3 | Viewed by 5261
Abstract
Emerging antibiotic resistance in pathogenic bacteria and reduction of compounds in the existing antibiotics discovery pipeline is the most critical concern for healthcare professionals. A potential solution aims to explore new or existing targets/compounds. Inhibition of bacterial aminoacyl-tRNA synthetase (aaRSs) could be one [...] Read more.
Emerging antibiotic resistance in pathogenic bacteria and reduction of compounds in the existing antibiotics discovery pipeline is the most critical concern for healthcare professionals. A potential solution aims to explore new or existing targets/compounds. Inhibition of bacterial aminoacyl-tRNA synthetase (aaRSs) could be one such target for the development of antibiotics. The aaRSs are a group of enzymes that catalyze the transfer of an amino acid to their cognate tRNA and therefore play a pivotal role in translation. Thus, selective inhibition of these enzymes could be detrimental to microbes. The 5′-O-(N-(L-aminoacyl)) sulfamoyladenosines (aaSAs) are potent inhibitors of the respective aaRSs, however due to their polarity and charged nature they cannot cross the bacterial membranes. In this work, we increased the lipophilicity of these existing aaSAs in an effort to promote their penetration through the bacterial membrane. Two strategies were followed, either attaching a (permanent) alkyl moiety at the adenine ring via alkylation of the N6-position or introducing a lipophilic biodegradable prodrug moiety at the alpha-terminal amine, totaling eight new aaSA analogues. All synthesized compounds were evaluated in vitro using either a purified Escherichia coli aaRS enzyme or in presence of total cellular extract obtained from E. coli. The prodrugs showed comparable inhibitory activity to the parent aaSA analogues, indicating metabolic activation in cellular extracts, but had little effect on bacteria. During evaluation of the N6-alkylated compounds against different microbes, the N6-octyl containing congener 6b showed minimum inhibitory concentration (MIC) of 12.5 µM against Sarcina lutea while the dodecyl analogue 6c displayed MIC of 6.25 µM against Candida albicans. Full article
(This article belongs to the Special Issue Chemical Tools for Antibiotics Research)
Show Figures

Graphical abstract

12 pages, 101 KB  
Article
Interactions of Tenofovir, Lamivudine, Abacavir and Didanosine in Primary Human Cells
by Omar Janneh and Saye H. Khoo
Pharmaceutics 2011, 3(2), 326-337; https://doi.org/10.3390/pharmaceutics3020326 - 22 Jun 2011
Cited by 7 | Viewed by 7114
Abstract
Certain triple nucleoside/tide reverse transcriptase inhibitor (NRTI) regimens containing tenofovir (TDF) have been associated with rapid early treatment failure. The mechanism is unknown, but may be at the level of drug transport. We measured the lipophilicity of the drugs [3H]-lamivudine (3TC), [...] Read more.
Certain triple nucleoside/tide reverse transcriptase inhibitor (NRTI) regimens containing tenofovir (TDF) have been associated with rapid early treatment failure. The mechanism is unknown, but may be at the level of drug transport. We measured the lipophilicity of the drugs [3H]-lamivudine (3TC), -didanosine (ddI), -TDF and -ABC. Peripheral blood mononuclear cells (PBMCs) were used to evaluate drug–drug interactions at the level of drug transport. PBMCs were measured for the expression of P-glycoprotein (P-gp), multidrug resistance-associated protein-1 (MRP-1) and breast cancer resistance protein (BCRP) by flow cytometry. The rank order of the lipophilicity of the drugs were ABC>>>3TC³ddI>TDF. The accumulation of [3H]-3TC, -ddI and -TDF were temperature sensitive (suggesting facilitated transport), in contrast to [3H]-ABC. ABC reduced the accumulation of [3H]-3TC, and cell fractionation experiments suggested this was mainly in membrane-bound [3H]-3TC. ABC/TDF and ABC/ddI increased the accumulation of [3H]-3TC and 3TC/TDF also increased the accumulation of [3H]-TDF. In contrast, none of the NRTI/NtRTI incubations (alone or in combination) altered the accumulation of [3H]-ABC and -ddI. PBMC expression of P-gp, MRP1 and BCRP were detected, but none correlated with the accumulation of the drugs. The high failure rates seen with TDF, ABC and 3TC are not fully explained by an interaction at transporter level. Full article
Show Figures

Back to TopTop