Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,330)

Search Parameters:
Keywords = lineage diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2127 KiB  
Article
Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS
by Dakai Liu, Harlan Pietz, George D. Rodriguez, Yuexiu Wu, Yihan Cao, Vishnu Singh, Hui Li, Eric Konadu, Keither K. James, Calvin Lui, Bright Varghese, Mingyu Shao, Gary Chen, Andrew Schreiner, Jiankun Tong, Carl Urban, Nishant Prasad, Ameer Hassoun, Manish Sharma and William Harry Rodgers
Microorganisms 2025, 13(8), 1821; https://doi.org/10.3390/microorganisms13081821 - 4 Aug 2025
Viewed by 169
Abstract
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral [...] Read more.
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral lineages. The isolates analyzed for rare mutations belonged to three lineages: B.1.1.7 (Alpha), B.1.526 (Iota), and B.1.623. We identified 16 rare mutations (global incidence <1000) in non-structural protein genes, including nsp2, nsp3, nsp4, nsp6, nsp8, nsp13, nsp14, ORF7a, and ORF8. Three of these mutations—located in nsp2, nsp13, and ORF8—have been reported in fewer than 100 individuals worldwide. We also detected five rare mutations in structural proteins (S, M, and N), including two—one in M and one in N—previously reported in fewer than 100 cases globally. We present clinical profiles of three patients, each infected with genetically distinct viral isolates from the three lineages studied. Furthermore, we illustrate a local transmission chain inferred from unique mutation patterns identified in the Omicron genome. These findings underscore the importance of whole-genome sequencing for detecting rare mutations, tracking community spread, and identifying emerging variants with clinical and public health significance. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

20 pages, 1773 KiB  
Article
Make Acetylcholine Great Again! Australian Skinks Evolved Multiple Neurotoxin-Proof Nicotinic Acetylcholine Receptors in Defiance of Snake Venom
by Uthpala Chandrasekara, Marco Mancuso, Glenn Shea, Lee Jones, Jacek Kwiatkowski, Dane Trembath, Abhinandan Chowdhury, Terry Bertozzi, Michael G. Gardner, Conrad J. Hoskin, Christina N. Zdenek and Bryan G. Fry
Int. J. Mol. Sci. 2025, 26(15), 7510; https://doi.org/10.3390/ijms26157510 - 4 Aug 2025
Viewed by 689
Abstract
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the [...] Read more.
Many vertebrates have evolved resistance to snake venom as a result of coevolutionary chemical arms races. In Australian skinks (family Scincidae), who often encounter venomous elapid snakes, the frequency, diversity, and molecular basis of venom resistance have been unexplored. This study investigated the evolution of neurotoxin resistance in Australian skinks, focusing on mutations in the muscle nicotinic acetylcholine receptor (nAChR) α1 subunit’s orthosteric site that prevent pathophysiological binding by α-neurotoxins. We sampled a broad taxonomic range of Australian skinks and sequenced the nAChR α1 subunit gene. Key resistance-conferring mutations at the toxin-binding site (N-glycosylation motifs, proline substitutions, arginine insertions, changes in the electrochemical state of the receptor, and novel cysteines) were identified and mapped onto the skink organismal phylogeny. Comparisons with other venom-resistant taxa (amphibians, mammals, and reptiles) were performed, and structural modelling and binding assays were used to evaluate the impact of these mutations. Multiple independent origins of α-neurotoxin resistance were found across diverse skink lineages. Thirteen lineages evolved at least one resistance motif and twelve additional motifs evolved within these lineages, for a total of twenty-five times of α-neurotoxic venoms resistance. These changes sterically or electrostatically inhibit neurotoxin binding. Convergent mutations at the orthosteric site include the introduction of N-linked glycosylation sites previously known from animals as diverse as cobras and mongooses. However, an arginine (R) substitution at position 187 was also shown to have evolved on multiple occasions in Australian skinks, a modification previously shown to be responsible for the Honey Badger’s iconic resistance to cobra venom. Functional testing confirmed this mode of resistance in skinks. Our findings reveal that venom resistance has evolved extensively and convergently in Australian skinks through repeated molecular adaptations of the nAChR in response to the enormous selection pressure exerted by elapid snakes subsequent to their arrival and continent-wide dispersal in Australia. These toxicological findings highlight a remarkable example of convergent evolution across vertebrates and provide insight into the adaptive significance of toxin resistance in snake–lizard ecological interactions. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

32 pages, 1447 KiB  
Article
Haplotypes of Echinococcus granulosus sensu stricto in Chile and Their Comparison Through Sequences of the Mitochondrial cox1 Gene with Haplotypes from South America and Other Continents
by Nicole Urriola-Urriola, Gabriela Rossi-Vargas and Yenny Nilo-Bustios
Parasitologia 2025, 5(3), 40; https://doi.org/10.3390/parasitologia5030040 - 1 Aug 2025
Viewed by 187
Abstract
Cystic echinococcosis is a zoonosis caused by the cestode Echinococcus granulosus sensu stricto. Population genetic studies and phylogeographic patterns are essential to understanding the transmission dynamics of this parasite under varying environmental conditions. In this study, the genetic diversity of E. granulosus [...] Read more.
Cystic echinococcosis is a zoonosis caused by the cestode Echinococcus granulosus sensu stricto. Population genetic studies and phylogeographic patterns are essential to understanding the transmission dynamics of this parasite under varying environmental conditions. In this study, the genetic diversity of E. granulosus s.s. was evaluated using 46 hydatid cyst samples obtained from sheep, goats, cattle, and humans across three regions of Chile: Coquimbo, La Araucanía, and Magallanes. Mitochondrial cox1 gene sequences were analyzed and compared with reference sequences reported from South America, Europe, Africa, Asia, and Oceania. In Chile, the EG01 haplotype was the predominant haplotype. A total of four haplotypes were identified, with low haplotype diversity (Hd = 0.461 ± 0.00637) and low nucleotide diversity (π = 0.00181 ± 0.00036). The haplotype network displayed a star-like configuration, with the EG01 genotype at the center, suggesting a potentially ancestral or widely distributed lineage. In Coquimbo (Tajima’s D = −0.93302, p = 0.061; Fu’s Fs = −0.003, p = 0.502) and Magallanes (Tajima’s D = −0.17406, p = 0.386; Fu’s Fs = −0.121, p = 0.414), both neutrality tests were non-significant, indicating no strong evidence for recent population expansion or selection. Star-like haplotype network patterns were also observed in populations from Europe, the Middle East, Asia, Africa, and Oceania, with the EG01 genotype occupying the central position. The population genetic structure of Echinococcus granulosus s.s. in Chile demonstrates considerable complexity, with EG01 as the predominant haplotype. Further comprehensive studies are required to assess the intraspecific genetic variability of E. granulosus s.s. throughout Chile and to determine whether this variability influences the key biological traits of the parasite. This structure may prove even more complex when longer fragments are analyzed, which could allow for the detection of finer-scale microdiversity among isolates from different hosts. We recommended that future cystic echinococcosis control programs take into account the genetic variability of E. granulosus s.s. strains circulating in each endemic region, to better understand their epidemiological, immunological, and possibly pathological differences. Full article
Show Figures

Figure 1

18 pages, 7210 KiB  
Article
Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae)
by Jingyu Liang, Shujing Wang, Jingyao Zhang, Juhong Chen, Siying Fu, Zhen Ye, Huai-Jun Xue, Yanfei Li and Wenjun Bu
Insects 2025, 16(8), 797; https://doi.org/10.3390/insects16080797 - 1 Aug 2025
Viewed by 303
Abstract
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid [...] Read more.
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid discovery of cryptic diversity. The subgenus Tliponius (Hemiptera: Coreidae: Homoeocerus) has several species and three broadly distributed species across China. In this study, we selected as many geographical sample sites of widely distributed species as possible and conducted species identification based on integrated taxonomy of morphological, mitochondrial and SNP data for 28 individuals within Tliponius. Our results revealed a cryptic lineage previously subsumed under the polytypic H. unipunctatus in Yunnan Province and described as Homoeocerus (Tliponius) dianensis Liang, Li & Bu sp. nov. The presence of seven distinct species within Tliponius was supported by species delimitation and divided into two clades: (H. dilatatus + (H. marginellus + (H. unipunctatus + H. dianensis sp. nov.))) and (H. yunnanensis + (H. laevilineus + H. marginiventris). Based on our findings, extensive sampling of widespread species is highly important for the accuracy of species delimitation and the discovery of cryptic species. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 365
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

11 pages, 1419 KiB  
Article
Genetic Evidence of Yersinia pestis from the First Pandemic
by Swamy R. Adapa, Karen Hendrix, Aditya Upadhyay, Subhajeet Dutta, Andrea Vianello, Gregory O’Corry-Crowe, Jorge Monroy, Tatiana Ferrer, Elizabeth Remily-Wood, Gloria C. Ferreira, Michael Decker, Robert H. Tykot, Sucheta Tripathy and Rays H. Y. Jiang
Genes 2025, 16(8), 926; https://doi.org/10.3390/genes16080926 (registering DOI) - 31 Jul 2025
Viewed by 822
Abstract
Background/Objectives: The Plague of Justinian marked the beginning of the First Pandemic (541–750 CE), yet no genomic evidence of Yersinia pestis has previously been recovered from the Eastern Mediterranean, where the outbreak was first recorded. This study aimed to determine whether Y. pestis [...] Read more.
Background/Objectives: The Plague of Justinian marked the beginning of the First Pandemic (541–750 CE), yet no genomic evidence of Yersinia pestis has previously been recovered from the Eastern Mediterranean, where the outbreak was first recorded. This study aimed to determine whether Y. pestis was present in a mid-6th to early 7th century mass grave in Jerash, Jordan, and to characterize its genome within the broader context of First Pandemic strains. Methods: We analyzed samples from multiple individuals recovered from the Jerash mass grave. Initial screening for potential pathogen presence was conducted using proteomics. Select samples were subjected to ancient DNA extraction and whole genome sequencing. Comparative genomic and phylogenetic analyses were conducted to assess strain identity and evolutionary placement. Results: Genomic sequencing recovered Y. pestis DNA from five individuals, revealing highly similar genomes. All strains clustered tightly with other First Pandemic lineages but were notably recovered from a region geographically close to the pandemic’s historical epicenter for the first time. The near-identical genomes across diverse individuals suggest an outbreak of a single circulating lineage at the time of this outbreak. Conclusions: This study provides the first genomic evidence of Y. pestis in the Eastern Mediterranean during the First Pandemic, linking archaeological findings with pathogen genomics near the origin point of the Plague of Justinian. Summary Sentence: Genomic evidence links Y. pestis to the First Pandemic in an ancient city. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3686 KiB  
Article
Beauty or the Beast? A Puzzling Modification of the Clypeus and Mandibles on the Eocene Ant
by Dmitry Zharkov, Dmitry Dubovikoff and Evgeny Abakumov
Insects 2025, 16(8), 794; https://doi.org/10.3390/insects16080794 - 31 Jul 2025
Viewed by 429
Abstract
Some Cretaceous ants belonging to the stem group of Formicidae exhibit bizarre morphology. This wide range of unusual adaptive features is primarily related to the mouthparts and clypeus. The researchers were perplexed by their specific ecology, as modern ant lineages do not exhibit [...] Read more.
Some Cretaceous ants belonging to the stem group of Formicidae exhibit bizarre morphology. This wide range of unusual adaptive features is primarily related to the mouthparts and clypeus. The researchers were perplexed by their specific ecology, as modern ant lineages do not exhibit anything similar. Here, we report and describe a new genus based on an extraordinary and mysterious alate ant from Late Eocene Baltic amber. Undoubtedly, the new ant is classified within the subfamily Formicinae (one of the crown groups), yet it displays a highly specialised morphology and an unusual array of features that are not observed in any extant ant lineages. Neither recent nor extinct ants have such a combination of features. While the exact phylogenetic placement of the new ant remains uncertain, we offer a discussion of its potential affinities based on our constrained phylogenetic analyses. We propose that †Eridanomyrma gen. n. should be considered in the new tribe †Eridanomyrmini trib. n. This new taxon highlights the adaptive diversity of a highly specialised, extinct lineage of Eocene crown-group ants. We also present a 3D model based on X-ray computed microtomography (µCT). Full article
(This article belongs to the Special Issue Fossil Insects: Diversity and Evolutionary History)
Show Figures

Figure 1

16 pages, 3339 KiB  
Article
Accurate Identification of Native Asian Honey Bee Populations in Jilong (Xizang, China) by Population Genomics and Deep Learning
by Zhiyu Liu, Yongqiang Xu, Wei Sun, Bing Yang, Tenzin Nyima, Zhuoma Pubu, Xin Zhou, Wa Da and Shiqi Luo
Insects 2025, 16(8), 788; https://doi.org/10.3390/insects16080788 - 31 Jul 2025
Viewed by 273
Abstract
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate [...] Read more.
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate the population structure and lineage differentiation of A. cerana within this ecologically distinct region. In this study, we collected A. cerana specimens from 12 geographically disparate locations across various altitudinal gradients within the Jilong Valley, and also integrated publicly available sequencing data of A. cerana from various regions across mainland Asia. In total, our analysis encompassed sequencing data from 296 individuals. Population structure analyses based on SNP data revealed that A. cerana in Jilong represents a genetically distinct population that differs markedly from other regional A. cerana populations in terms of genetic lineage, although its subspecies identity remains to be confirmed. Through screening based on FST values, we identified SNP loci that contribute significantly to distinguishing between Jilong and non-Jilong A. cerana. Using these loci, the convolutional neural network model TraceNet was trained, which demonstrated specific recognition capabilities for Jilong versus non-Jilong A. cerana. This further confirmed the universality and efficiency of TraceNet in identifying honey bee lineages. These findings contribute valuable insights for the identification and conservation of A. cerana germplasm resources in specific geographical regions. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 1204 KiB  
Article
The Great Wanderer: The Phylogeographic History of the Bicolor Pyramid Ant (Dorymyrmex bicolor Wheeler, 1906) in Central Veracruz, Mexico
by Maria Gómez-Lazaga and Alejandro Espinosa de los Monteros
Insects 2025, 16(8), 785; https://doi.org/10.3390/insects16080785 - 31 Jul 2025
Viewed by 264
Abstract
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in [...] Read more.
The goal of phylogeography is to explain how microevolutionary forces shape the gene pool of a lineage into the geography. In this study we have evaluated the amount of genetic variation in 13 populations of Dorymyrmex bicolor distributed in a mountainous region in Central Veracruz, Mexico. To do so, we sequenced fragments from the mitochondrial COI, COII, and nuclear LWRh genes. Segregated sites were found only at the mitochondrial markers, recovering a total of 21 different haplotypes. The nucleotide diversity ranged from 0 to 0.5% at the different sampling sites. Phylogenetic and spatial analyses of molecular variance revealed a weak but significant phylogeographic structure associated with lowland and mountainous zones. Molecular clock analysis suggests that radiation in the mountain area started 7500 years ago, whereas lineage radiation in the lowland started more recently, around 2700 years ago. The phylogeographic structure is incipient, with nests from lowlands more closely related to mountain nests than to other lowland nests, and vice versa. This seems to be consistent with a model of incomplete lineage sorting. The obtained patterns appear to be the result of restricted gene flow mediated by a complex topographic landscape that has been shaped by a dynamic geologic history. Full article
(This article belongs to the Special Issue Ant Population Genetics, Phylogeography and Phylogeny)
Show Figures

Figure 1

16 pages, 2207 KiB  
Article
Mitogenomic Insights into Adaptive Evolution of African Ground Squirrels in Arid Environments
by Yamin Xing, Xibao Wang, Yao Chen, Yongquan Shang, Haotian Cai, Liangkai Wang and Xiaoyang Wu
Diversity 2025, 17(8), 538; https://doi.org/10.3390/d17080538 - 31 Jul 2025
Viewed by 222
Abstract
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with [...] Read more.
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with genus-specific traits. Key features include Xerus rutilus’s elongated ATP6 (680 vs. 605 bp), truncated ATP8ATP6 spacers (4 vs. 43 bp), and tRNA-Pro control regions with 78.1–78.3% AT content. Their nucleotide composition diverged from that of related sciurids, marked by reduced T (25.78–26.9%) and extreme GC skew (−0.361 to −0.376). Codon usage showed strong Arg-CGA bias (RSCU = 3.78–3.88) and species-specific elevations in Xerus rutilus’s UGC-Cys (RSCU = 1.83 vs. 1.17). Phylogenetics positioned Xerus as sister to Ratufa bicolor (Bayesian PP = 0.928; ML = 1.0), aligning with African biogeographic isolation. Critically, we identified significant signatures of positive selection in key mitochondrial genes linked to arid adaptation. Positive selection signals in ND4 (ω = 1.8 × background), ND1, and ATP6 (p < 0.0033) correspond to enhanced proton gradient efficiency and ATP synthesis–molecular adaptations likely crucial for optimizing energy metabolism under chronic water scarcity and thermoregulatory stress in desert environments. Distinct evolutionary rates were observed across mitochondrial genes and complexes: Genes encoding Complex I subunits (ND2, ND6) and Complex III (Cytb) exhibited accelerated evolution in arid-adapted lineages, while genes encoding Complex IV subunits (COXI) and Complex V (ATP8) remained highly conserved. These findings resolve the Xerus mitogenomic diversity, demonstrating adaptive plasticity balancing arid-energy optimization and historical diversification while filling critical genomic gaps for this xeric-adapted lineage. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

11 pages, 1958 KiB  
Article
Morphological Diversity of Moroccan Honey Bees (Apis mellifera L. 1758): Insights from a Geometric Morphometric Study of Wing Venation in Honey Bees from Different Climatic Regions
by Salma Bakhchou, Abdessamad Aglagane, Adam Tofilski, Fouad Mokrini, Omar Er-Rguibi, El Hassan El Mouden, Julita Machlowska, Siham Fellahi and El Hassania Mohssine
Diversity 2025, 17(8), 527; https://doi.org/10.3390/d17080527 - 29 Jul 2025
Viewed by 241
Abstract
The morphological diversity of Moroccan honey bees (Apis mellifera) was investigated using geometric morphometrics to assess wing venation patterns among three populations representing three climatic zones: desert, semiarid, and Mediterranean. A total of 193 honey bee samples were analyzed and compared [...] Read more.
The morphological diversity of Moroccan honey bees (Apis mellifera) was investigated using geometric morphometrics to assess wing venation patterns among three populations representing three climatic zones: desert, semiarid, and Mediterranean. A total of 193 honey bee samples were analyzed and compared to historical reference samples from the Morphometric Bee Data Bank in Oberursel, representing the three subspecies: A. m. intermissa, A. m. sahariensis, and A. m. major. Principal component analysis and linear discriminant analysis revealed significant, yet overlapping morphological differences among the climatic groups. Spatial modeling showed a significant southwest–northeast clinal gradient in wing morphology. Almost all samples were assigned to the African evolutionary lineage, except one, suggesting a dominant African genetic background. Interestingly, all three populations showed greater morphological affinity to A. m. intermissa than to A. m. sahariensis, which could indicate introgression or limitations in the current reference dataset. These discrepancies highlight the necessity of revising subspecies boundaries using updated morphometric and genomic approaches. These findings improve our understanding of honey bee biodiversity in Morocco and provide valuable information for conservation and breeding programs. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

13 pages, 2021 KiB  
Brief Report
Recombinants Are the Key Drivers of Recent PRRSV-2 Evolution
by Clarissa Pellegrini Ferreira, Lucina Galina-Pantoja, Mark Wagner and Declan C. Schroeder
Pathogens 2025, 14(8), 743; https://doi.org/10.3390/pathogens14080743 - 29 Jul 2025
Viewed by 294
Abstract
Porcine reproductive and respiratory syndrome virus remains one of the most economically significant pathogens in swine production, with PRRSV-2 being the dominant variant in the United States. While lineage classification has traditionally relied on ORF5 sequencing, recent studies suggest that this single-gene approach [...] Read more.
Porcine reproductive and respiratory syndrome virus remains one of the most economically significant pathogens in swine production, with PRRSV-2 being the dominant variant in the United States. While lineage classification has traditionally relied on ORF5 sequencing, recent studies suggest that this single-gene approach may overlook key evolutionary events such as recombination. In this study, we performed whole-genome sequencing and phylogenetic analysis of seven PRRSV-2 isolates collected in the U.S. between 2006 and 2024. Using reference-guided assembly, lineage assignment, and recombination detection with RDP5 and SIMplot, we identified discordant phylogenetic placements between ORF5 and whole genomes in four of the seven isolates. These discordances were explained by multiple recombination events affecting different genomic regions, particularly ORF2–ORF7. In contrast, three isolates showed phylogenetic concordance and no strong evidence of recombination. Our findings demonstrate that recombination plays a significant role in shaping PRRSV-2 evolution and highlight the limitations of ORF5-based lineage classification. Whole-genome surveillance is therefore essential to accurately track viral diversity, detect recombinant strains, and inform control strategies. This work underscores the need for a broader adoption of full-genome analysis in routine PRRSV surveillance and research. Full article
Show Figures

Figure 1

16 pages, 265 KiB  
Review
TIGR-Tas and the Expanding Universe of RNA-Guided Genome Editing Systems: A New Era Beyond CRISPR-Cas
by Douglas M. Ruden
Genes 2025, 16(8), 896; https://doi.org/10.3390/genes16080896 - 28 Jul 2025
Viewed by 365
Abstract
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide [...] Read more.
The recent discovery of TIGR-Tas (Tandem Interspaced Guide RNA-Targeting Systems) marks a major advance in the field of genome editing, introducing a new class of compact, programmable DNA-targeting systems that function independently of traditional CRISPR-Cas pathways. TIGR-Tas effectors use a novel dual-spacer guide RNA (tigRNA) to recognize both strands of target DNA without requiring a protospacer adjacent motif (PAM). These Tas proteins introduce double-stranded DNA cuts with characteristic 8-nucleotide 3′ overhangs and are significantly smaller than Cas9, offering delivery advantages for in vivo editing. Structural analyses reveal homology to box C/D snoRNP proteins, suggesting a previously unrecognized evolutionary lineage of RNA-guided nucleases. This review positions TIGR-Tas at the forefront of a new wave of RNA-programmable genome-editing technologies. In parallel, I provide comparative insight into the diverse and increasingly modular CRISPR-Cas systems, including Cas9, Cas12, Cas13, and emerging effectors like Cas3, Cas10, CasΦ, and Cas14. While the CRISPR-Cas universe has revolutionized molecular biology, TIGR-Tas systems open a complementary and potentially more versatile path for programmable genome manipulation. I discuss mechanistic distinctions, evolutionary implications, and potential applications in human cells, synthetic biology, and therapeutic genome engineering. Full article
(This article belongs to the Special Issue Advances in Developing Genomics and Computational Approaches)
Show Figures

Graphical abstract

12 pages, 943 KiB  
Article
Detection and Molecular Characterization of Rift Valley Fever Virus in Apparently Healthy Cattle in Uganda
by Eugene Arinaitwe, Kaitlyn Waters, Bonto Faburay, Gladys K. Nakanjako, David Kalenzi Atuhaire, Mathias Afayoa, Frank Norbert Mwiine and Joseph Erume
Pathogens 2025, 14(7), 720; https://doi.org/10.3390/pathogens14070720 - 20 Jul 2025
Viewed by 496
Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by the Rift Valley fever virus (RVFV), affecting humans, livestock, and wild ruminants. This study aimed to characterize and assess the genetic diversity of RVFV strains circulating among livestock in Uganda. Blood samples were [...] Read more.
Rift Valley fever (RVF) is a zoonotic disease caused by the Rift Valley fever virus (RVFV), affecting humans, livestock, and wild ruminants. This study aimed to characterize and assess the genetic diversity of RVFV strains circulating among livestock in Uganda. Blood samples were collected between January 2021 and May 2024 from apparently healthy cattle, goats, and sheep in four districts. The samples were first screened for RVFV antibodies using ELISA; antibody-positive samples were subsequently tested for viral RNA using reverse transcriptase quantitative PCR (RT-qPCR). The PCR-positive samples underwent targeted amplicon sequencing, and phylogenetic analyses of the small (S) and large (L) genome segments were conducted to determine viral lineages. Of the 833 ELISA-positive samples, 10 (all from cattle) tested positive for RVFV RNA using RT-qPCR. Consensus sequences were successfully generated for six S segments and one L genome segment. A phylogenetic analysis revealed that all sequences belonged to lineage C, showing close genetic similarity to RVFV strains previously identified in Uganda, Kenya, Sudan, Madagascar, and Saudi Arabia. Limited genetic diversity was observed at both the nucleotide and amino acid levels. The detection of RVFV in apparently healthy cattle suggests ongoing, low-level viral circulation in Uganda. These findings offer important insights for guiding RVF surveillance, control, and policymaking in the country. Full article
(This article belongs to the Section Emerging Pathogens)
Show Figures

Figure 1

16 pages, 3471 KiB  
Article
Reconstruction of Pleistocene Evolutionary History of the Root Vole Alexandromys oeconomus (Cricetidae, Rodentia) in Northern Asia
by Tatyana V. Petrova, Andrey A. Lissovsky, Semyon Yu. Bodrov, Aivar V. Kuular, Nikolay I. Putintsev, Munkhtsog Bariushaa and Natalia I. Abramson
Diversity 2025, 17(7), 497; https://doi.org/10.3390/d17070497 - 20 Jul 2025
Viewed by 242
Abstract
Previous phylogeographic study of the root vole (Alexandromys oeconomus) revealed four mitochondrial cytochrome b lineages—North and Central European, North (=Central) Asian and Beringian. Three of them were studied in detail, while the North Asian lineage, which occupies the most extensive territory [...] Read more.
Previous phylogeographic study of the root vole (Alexandromys oeconomus) revealed four mitochondrial cytochrome b lineages—North and Central European, North (=Central) Asian and Beringian. Three of them were studied in detail, while the North Asian lineage, which occupies the most extensive territory and is considered to be the place of origin for the species, was understudied. In the framework of the current study, we obtained 95 new sequences (34 localities) from the wide territory of Northern Asia and in total, examined 940 specimens from 181 localities throughout the species’ distribution range. The North Asian lineage was found to be more diverse than the Beringian and the European lineages. Southern Siberia and especially the Altai–Sayan region displayed the highest haplotype and nucleotide diversity, suggesting the region’s role as a genetic diversity hotspot. We suppose that the expansion of the North Asian lineage started from Western Transbaikalia. Its representatives colonised the territory from the Urals to the northern shore of the Okhotsk Sea, and then spread in the opposite direction, to Southern Siberia. As a result, a mixture of haplogroups is observed in the Altai–Sayan region. According to the BEAST analysis calibrated with the first A. oeconomus records, the MRCA of North Asian and Beringian lineages is dated back to ~0.82 Mya, and the first divergence within the North Asian lineage may have occurred ~0.6 Mya. When compared with colonisation times of other representatives of the Arvicolinae subfamily, our dating seems to be overestimated. In this regard, molecular data for dated fossil remains of the root vole are essential for subsequent studies. Full article
Show Figures

Graphical abstract

Back to TopTop