Detection and Molecular Characterization of Rift Valley Fever Virus in Apparently Healthy Cattle in Uganda
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. RNA Extraction
2.4. Reverse Transcriptase Quantitative PCR (RT-qPCR)
2.5. Next-Generation Sequencing
2.6. Sequence Data and Phylogenetic Analyses
3. Results
3.1. Serological and Molecular Detection of RVFV in Livestock
3.2. Next-Generation Targeted Amplicon Sequencing of RVFV Samples
3.3. Phylogenetic Analysis of the S and L Segments of RVFV Samples from Cattle in Uganda
3.4. Genetic Variation In S Segments of RVFV Samples from Cattle in Uganda
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tinto, B.; Quellec, J.; Cêtre-Sossah, C.; Dicko, A.; Salinas, S.; Simonin, Y. Rift Valley fever in West Africa: A zoonotic disease with multiple socio-economic consequences. One Health 2023, 17, 100583. [Google Scholar] [CrossRef] [PubMed]
- Faburay, B.; LaBeaud, A.D.; McVey, D.S.; Wilson, W.C.; Richt, J.A. Current status of rift valley fever vaccine development. Vaccines 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Linthicum, K.J.; Britch, S.C.; Anyamba, A. Rift Valley Fever: An Emerging Mosquito-Borne Disease. Annu. Rev. Entomol. 2016, 61, 395–415. [Google Scholar] [CrossRef]
- Nakouné, E.; Kamgang, B.; Berthet, N.; Manirakiza, A.; Kazanji, M. Rift Valley Fever Virus Circulating among Ruminants, Mosquitoes and Humans in the Central African Republic. PLoS Neglected Trop. Dis. 2016, 10, e0005082. [Google Scholar] [CrossRef]
- Shoemaker, T.; Boulianne, C.; Vincent, M.J.; Pezzanite, L.; Al-Qahtani, M.M.; Al-Mazrou, Y.; Khan, A.S.; Rollin, P.E.; Swanepoel, R.; Ksiazek, T.G.; et al. Genetic Analysis of Viruses Associated with Emergence of Rift Valley Fever in Saudi Arabia and Yemen, 2000–2001. Emerg. Infect. Dis. 2002, 8, 1415. [Google Scholar] [CrossRef]
- Shoemaker, T.R.; Nyakarahuka, L.; Balinandi, S.; Ojwang, J.; Tumusiime, A.; Mulei, S.; Kyondo, J.; Lubwama, B.; Sekamatte, M.; Namutebi, A.; et al. First laboratory-confirmed outbreak of human and animal rift valley fever virus in Uganda in 48 years. Am. J. Trop. Med. Hyg. 2019, 100, 659–671. [Google Scholar] [CrossRef]
- Lumley, S.; Horton, D.L.; Marston, D.A.; Johnson, N.; Ellis, R.J.; Fooks, A.R.; Hewson, R. Complete genome sequence of Rift Valley fever virus strain Lunyo. Genome Announc. 2016, 4, 10–1128. [Google Scholar] [CrossRef]
- Birungi, D.; Aceng, F.L.; Bulage, L.; Nkonwa, I.H.; Mirembe, B.B.; Biribawa, C.; Okethwangu, D.; Opio, N.D.; Monje, F.; Muwanguzi., D.; et al. Sporadic Rift Valley Fever Outbreaks in Humans and Animals in Uganda, October 2017–January 2018. J. Environ. Public Health 2021, 2021, 8881191. [Google Scholar] [CrossRef]
- Grobbelaar, A.A.; Weyer, J.; Leman, P.A.; Kemp, A.; Paweska, J.T.; Swanepoel, R. Molecular epidemiology of rift valley fever virus. Emerg. Infect. Dis. 2011, 17, 2270. [Google Scholar] [CrossRef]
- Bird, B.H.; Khristova, M.L.; Rollin, P.E.; Ksiazek, T.G.; Nichol, S.T. Complete Genome Analysis of 33 Ecologically and Biologically Diverse Rift Valley Fever Virus Strains Reveals Widespread Virus Movement and Low Genetic Diversity due to Recent Common Ancestry. J. Virol. 2007, 81, 2805–2816. [Google Scholar] [CrossRef]
- Ikegami, T. Molecular biology and genetic diversity of Rift Valley fever virus. Antivir. Res. 2012, 95, 293–310. [Google Scholar] [CrossRef]
- Won, S.; Ikegami, T.; Peters, C.J.; Makino, S. NSm Protein of Rift Valley Fever Virus Suppresses Virus-Induced Apoptosis. J. Virol. 2007, 81, 13335–13345. [Google Scholar] [CrossRef]
- Gerrard, S.R.; Bird, B.H.; Albariño, C.G.; Nichol, S.T. The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology 2007, 359, 459–465. [Google Scholar] [CrossRef]
- Kroeker, A.L.; Babiuk, S.; Pickering, B.S.; Richt, J.A.; Wilson, W.C. Livestock Challenge Models of Rift Valley Fever for Agricultural Vaccine Testing. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Billecocq, A.; Spiegel, M.; Vialat, P.; Kohl, A.; Weber, F.; Bouloy, M.; Haller, O. NSs Protein of Rift Valley Fever Virus Blocks Interferon Production by Inhibiting Host Gene Transcription. J. Virol. 2004, 78, 9798–9806. [Google Scholar] [CrossRef] [PubMed]
- Juma, J.; Fonseca, V.; Konongoi, S.L.; van Heusden, P.; Roesel, K.; Sang, R.; Bett; Christoffels, A.; de Oliveira, T.; Samuel, O.O. Genomic surveillance of Rift Valley fever virus: From sequencing to lineage assignment. BMC Genom. 2022, 23, 520. [Google Scholar] [CrossRef] [PubMed]
- Nyakarahuka, L.; Kyondo, J.; Telford, C.; Whitesell, A.; Tumusiime, A.; Mulei, S.; Baluku, J.; Cossaboom, C.M.; Cannon, D.L.; Montgomery, J.M. A Countrywide Seroepidemiological Survey of Rift Valley Fever in Livestock, Uganda, 2017. Am. J. Trop. Med. Hyg. 2023, 109, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Tchouassi, D.P.; Okiro, R.O.K.; Sang, R.; Cohnstaedt, L.W.; McVey, D.S.; Torto, B. Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya. Parasites and Vectors. Parasites Vectors 2016, 9, 184. [Google Scholar] [CrossRef]
- Pepin, M.; Bouloy, M.; Bird, B.H.; Kemp, A.; Paweska, J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet. Res. 2010, 41, 61. [Google Scholar] [CrossRef]
- Weingartl, H.M.; Miller, M.; Nfon, C.; Wilson, W.C. Development of a rift valley fever virus viremia challenge model in sheep and goats. Vaccine 2014, 32, 2337–2344. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Shi, W.; Tan, S.; Pan, Y.; Cui, S.; Zhang, Q.; Dou, X.; Lv, Y.; Li, X. The first imported case of Rift Valley fever in China reveals a genetic reassortment of different viral lineages. Emerg. Microbes Infect. 2017, 6, e4. [Google Scholar] [CrossRef] [PubMed]
- Baba, M.; Masiga, D.K.; Sang, R.; Villinger, J. Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa? Emerg. Microbes Infect. 2016, 5, e58. [Google Scholar] [CrossRef] [PubMed]
- Sall, A.A.; De, P.M.; Zanotto, A.; Sene, O.K.; Zeller, H.G.; Digoutte, J.P.; Thiongane, Y.; Bouloy, M. Genetic Reassortment of Rift Valley Fever Virus in Nature. J. Virol. 1999, 73, 8196–8200. [Google Scholar] [CrossRef] [PubMed]
- Maluleke, M.R.; Phosiwa, M.; van Schalkwyk, A.; Michuki, G.; Lubisi, B.A.; Kegakilwe, P.S.; Kemp, S.J.; Majiwa, P.A. A comparative genome analysis of Rift Valley Fever virus isolates from foci of the disease outbreak in South Africa in 2008–2010. PLoS Neglected Trop. Dis. 2019, 13, e0006576. [Google Scholar] [CrossRef]
- Nsengimana, I.; Juma, J.; Roesel, K.; Gasana, M.N.; Ndayisenga, F.; Muvunyi, C.M.; Hakizimana, E.; Hakizimana, J.N.; Eastwood, G.; Chengula, A.A.; et al. Genomic Epidemiology of Rift Valley Fever Virus Involved in the 2018 and 2022 Outbreaks in Livestock in Rwanda. Viruses 2024, 16, 1148. [Google Scholar] [CrossRef]
- Bird, B.H.; Githinji, J.W.K.; Macharia, J.M.; Kasiiti, J.L.; Muriithi, R.M.; Gacheru, S.G.; Musaa, J.O.; Towner, J.S.; Reeder, S.A.; Oliver, J.B.; et al. Multiple Virus Lineages Sharing Recent Common Ancestry Were Associated with a Large Rift Valley Fever Outbreak among Livestock in Kenya during 2006–2007. J. Virol. 2008, 82, 11152–11166. [Google Scholar] [CrossRef]
- Onwongá, A.A.; Oyola, S.O.; Juma, J.; Konongoi, S.; Nyamota, R.; Mwangi, R.; Muli, C.; Dobi, P.; Bett, B.B.; Ongus, J.R. Genome characterization of Rift Valley fever virus isolated from cattle, goats and sheep during interepidemic periods in Kenya. BMC Vet. Res. 2024, 20, 376. [Google Scholar] [CrossRef]
- Lumley, S.; Horton, D.L.; Hernandez-Triana, L.L.M.; Johnson, N.; Fooks, A.R.; Hewson, R. Rift valley fever virus: Strategies for maintenance, survival and vertical transmission in mosquitoes. J. Gen. Virol. 2017, 95, 875–887. [Google Scholar] [CrossRef]
- Lapa, D.; Pauciullo, S.; Ricci, I.; Garbuglia, A.R.; Maggi, F.; Scicluna, M.T.; Tofani, S. Rift Valley Fever Virus: An Overview of the Current Status of Diagnostics. Biomedicines 2024, 12, 540. [Google Scholar] [CrossRef]
- Rissmann, M.; Eiden, M.; Mamy, B.O.E.L.; Isselmou, K. Serological and genomic evidence of Rift Valley fever virus during inter-epidemic periods in Mauritania. Epidemiol. Infect. 2017, 145, 1058–1068. [Google Scholar] [CrossRef]
Species | District | IgG Tested | IgG+ (%) | IgM Tested | IgM+ (%) | PCR Tested | PCR+ (%) |
---|---|---|---|---|---|---|---|
Cattle | Gomba | 597 | 202 (33.8%) | 202 | 4 (2.0%) | 202 | 2 (1.0%) |
Isingiro | 412 | 107 (26.1%) | 107 | 1 (0.9%) | 107 | 0 (0.0%) | |
Kiruhura | 518 | 123 (23.7%) | 123 | 8 (6.5%) | 123 | 4 (3.3%) | |
Nakasongola | 436 | 191 (43.8%) | 191 | 6 (3.1%) | 191 | 4 (2.1%) | |
Subtotal | 1963 | 623 (31.7%) | 623 | 19 (3.0%) | 623 | 10 (1.6%) | |
Goats | Gomba | 243 | 38 (15.6%) | 38 | 0 (0.0%) | 38 | 0 (0.0%) |
Isingiro | 436 | 85 (19.5%) | 85 | 12 (14.1%) | 85 | 0 (0.0%) | |
Kiruhura | 368 | 19 (5.2%) | 19 | 1 (5.3%) | 19 | 0 (0.0%) | |
Nakasongola | 235 | 25 (10.6%) | 25 | 0 (0.0%) | 25 | 0 (0.0%) | |
Subtotal | 1282 | 167 (13.0%) | 167 | 13 (7.8%) | 167 | 0 (0.0%) | |
Sheep | Gomba | 71 | 1 (1.4%) | 1 | 0 (0.0%) | 1 | 0 (0.0%) |
Isingiro | 234 | 19 (8.1%) | 19 | 0 (0.0%) | 19 | 0 (0.0%) | |
Kiruhura | 144 | 13 (9.0%) | 13 | 0 (0.0%) | 13 | 0 (0.0%) | |
Nakasongola | 91 | 10 (11.0%) | 10 | 0 (0.0%) | 10 | 0 (0.0%) | |
Subtotal | 540 | 43 (8.0%) | 43 | 0 (0.0%) | 43 | 0 (0.0%) | |
Overall Total | 3785 | 833 (22.0%) | 833 | 32 (3.8%) | 833 | 10 (1.2%) |
Field Sample ID | District | Age (yrs.) | Sex | Breed | Sample Type | Ct Value |
---|---|---|---|---|---|---|
Ngabo | Kiruhura | >2 | F | Friesian Cross | Whole Blood | 29.91 |
Lantana | Kiruhura | >2 | F | Friesian Cross | Whole Blood | 41.7 |
TF47 Kabara | Kiruhura | >2 | F | Ankole | Saliva/Epithelial tissue | 19.48 |
194 | Kiruhura | >2 | F | Ankole | Serum | 26.75 |
123 | Kiruhura | <1 | F | Ankole | Serum | 25.9 |
NAK/1/23 | Nakasongola | <1 | M | Boran | Whole Blood | 35.62 |
NAK/1/31 | Nakasongola | >1 | M | Boran | Whole Blood | 37.15 |
NAK/1/40 | Nakasongola | >1 | M | Boran | Whole Blood | 26.55 |
GMB/003/04C | Gomba | >2 | F | Friesian Cross | Serum | 40.04 |
GMB/004/04C | Gomba | >2 | F | Friesian Cross | Serum | 34.48 |
Samples | Segment | Total No. of Reads | Total No. of Target Reads Mapped | % of Target Reads Mapped | Average Coverage | GenBank Accession Numbers |
---|---|---|---|---|---|---|
Lantana Uganda 2022 | S | 338,801 | 325,609 | 96.11 | 34,387.1 | PV562141 |
TF47 Uganda 2022 | S | 327,164 | 312,561 | 95.54 | 33,254.7 | PV562142 |
194 Uganda 2022 | S | 891,577 | 883,631 | 99.11 | 80,925.2 | PV562143 |
123 Uganda 2022 | S | 424,999 | 421,844 | 99.26 | 41,029.9 | PV562144 |
NAK/1/31 Uganda 2022 | S | 488,934 | 485,470 | 99.29 | 49,587.9 | PV562145 |
NAK/1/40 Uganda 2022 | S | 368,564 | 365,504 | 99.17 | 33,484.9 | PV562146 |
L | 1,937,608 | 1,359,265 | 70.15 | 17,699.4 | PV562147 |
Sample | Segment | Nearest Segment (% Identity NT) a | Lineage |
---|---|---|---|
Lantana Uganda 2022 | S | DVS-321 Kenya 2021 (99.70%) | C |
TF47 Kabara Uganda 2022 | S | DVS-321 Kenya 2021 (99.70%) | C |
194 Uganda 2022 | S | DVS-321 Kenya 2021 (99.70%) | C |
123 Uganda 2022 | S | Sudan86 Sudan (99.17%) | C |
NAK/1/31 Uganda 2022 | S | DVS-321 Kenya 2021 (99.70%) | C |
NAK/1/40 Uganda 2022 | S | DVS-321 Kenya 2021 (99.70%) | C |
L | DVS-321 Kenya 2021 (99.75%) | C |
Protein | Position | Samples | |||||
---|---|---|---|---|---|---|---|
Lantana Uganda 2022 | TF47 Kabara Uganda 2022 | 194 Uganda 2022 | 123 Uganda 2022 | NAK/1/31 Uganda 2022 | NAK/1/40 Uganda 2022 | ||
NSs | 33 | F | F | F | Y | F | F |
133 | S | S | S | N | S | S | |
152 | A | A | A | T | A | A | |
217 | A | A | A | T | A | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arinaitwe, E.; Waters, K.; Faburay, B.; Nakanjako, G.K.; Atuhaire, D.K.; Afayoa, M.; Mwiine, F.N.; Erume, J. Detection and Molecular Characterization of Rift Valley Fever Virus in Apparently Healthy Cattle in Uganda. Pathogens 2025, 14, 720. https://doi.org/10.3390/pathogens14070720
Arinaitwe E, Waters K, Faburay B, Nakanjako GK, Atuhaire DK, Afayoa M, Mwiine FN, Erume J. Detection and Molecular Characterization of Rift Valley Fever Virus in Apparently Healthy Cattle in Uganda. Pathogens. 2025; 14(7):720. https://doi.org/10.3390/pathogens14070720
Chicago/Turabian StyleArinaitwe, Eugene, Kaitlyn Waters, Bonto Faburay, Gladys K. Nakanjako, David Kalenzi Atuhaire, Mathias Afayoa, Frank Norbert Mwiine, and Joseph Erume. 2025. "Detection and Molecular Characterization of Rift Valley Fever Virus in Apparently Healthy Cattle in Uganda" Pathogens 14, no. 7: 720. https://doi.org/10.3390/pathogens14070720
APA StyleArinaitwe, E., Waters, K., Faburay, B., Nakanjako, G. K., Atuhaire, D. K., Afayoa, M., Mwiine, F. N., & Erume, J. (2025). Detection and Molecular Characterization of Rift Valley Fever Virus in Apparently Healthy Cattle in Uganda. Pathogens, 14(7), 720. https://doi.org/10.3390/pathogens14070720