Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = light-curing units (LCUs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2148 KiB  
Article
The Role of Rapid Curing on the Interrelationship Between Temperature Rise, Light Transmission, and Polymerisation Kinetics of Bulk-Fill Composites
by Danijela Marovic, Matej Par, Paulina Daničić, Ana Marošević, Gloria Bojo, Marta Alerić, Svenia Antić, Krunoslav Puljić, Ana Badovinac, Adrian C. Shortall and Zrinka Tarle
Int. J. Mol. Sci. 2025, 26(6), 2803; https://doi.org/10.3390/ijms26062803 - 20 Mar 2025
Viewed by 624
Abstract
The first seconds of light curing are crucial for the development of most properties of dental composites, especially for the 3s high-irradiance curing. This study investigated the influence of rapid high-irradiance curing on temporal development of temperature, transmittance and conversion of bulk-fill composites. [...] Read more.
The first seconds of light curing are crucial for the development of most properties of dental composites, especially for the 3s high-irradiance curing. This study investigated the influence of rapid high-irradiance curing on temporal development of temperature, transmittance and conversion of bulk-fill composites. Four materials were tested: Filtek One (FO), Tetric PowerFill (PFill), Tetric PowerFlow (PFlow) and SDR flow+ (SDR+) and cured with three curing units (LCU): Valo Cordles, Bluephase PowerCure and Translux Wave in 3s (3 W/cm2), 10s (1 W/cm2) and 20s (1 W/cm2) curing protocols. Light transmittance was measured at 2 and 4 mm, while temperature rise and polymerisation kinetics were evaluated at 4 mm depth during 5 min. Both light transmittance and temperature rise were greatest for SDR+ > PFlow > PFill > FO. The 20s curing protocol resulted in the highest degree of conversion (DC) for all materials and LCUs, but also contributed to the greatest temperature rise. Rapid curing with the 3s protocol caused the lowest temperature rise and the shortest time to reach maximum temperature. The polymerisation and temperature kinetics were strongly dependent on the material. The DC of PFill was statistically similar for 3s, 10s or 20s curing with BPC. Rapid curing is only recommended for materials developed for this purpose. Full article
Show Figures

Figure 1

19 pages, 1836 KiB  
Article
The Effect of Resin Type and Placement Technique on the Hardness of Resin-Based Composites Polymerized with LED and UV Light-Curing Units
by Ayse Nurcan Duman and Arife Dogan
Polymers 2025, 17(6), 774; https://doi.org/10.3390/polym17060774 - 14 Mar 2025
Viewed by 542
Abstract
The aim of this in vitro study is to evaluate the effect of resin type and placement technique on the hardness of resin-based composites (RBCs). A total of 300 samples consisting of five RBCs (Filtek Z250 microhybrid, Filtek P60 packable, Tetric Ceram hybrid, [...] Read more.
The aim of this in vitro study is to evaluate the effect of resin type and placement technique on the hardness of resin-based composites (RBCs). A total of 300 samples consisting of five RBCs (Filtek Z250 microhybrid, Filtek P60 packable, Tetric Ceram hybrid, Admira ORMOCER, and Tetric Flow flowable RBCs) were prepared. Each RBC was placed into Teflon molds with a 4 mm diameter and 2 or 8 mm depths with standard, bulk and incremental techniques and was polymerized by second-generation LED (Hilux Ledmax 1055, 229.153 mW/cm2) and UV (ELC-410, 26.106 mW/cm2) light-curing units (LCUs) in standard mode (n = 10). The Vickers hardness number (VHN) was measured from the top and bottom surfaces of the RBCs. Data were statistically analyzed with a one-way ANOVA. Multiple comparisons were made using the Tukey, Scheffe, and t-tests (p < 0.05). The VHN of the RBCs polymerized with LED and UV LCUs varied between 110.33 and 25.16 and between 104.86 and 34.20, respectively. The Tetric Flow RBC did not polymerize with the LCUs on either surface. The RBCs placed using the bulk technique could not polymerize with the UV LCU on the top surface, except for the Filtek P60 RBC, but showed a higher VHN on the bottom surface. These significant findings highlight that the hardness is specific to the RBC material and placement technique. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

18 pages, 1969 KiB  
Article
Evaluation of the Depth of Cure by Microhardness of Bulk-Fill Composites with Monowave and Polywave LED Light-Curing Units
by Socratis Thomaidis, Dimitris Kampouropoulos, Maria Antoniadou and Afrodite Kakaboura
Appl. Sci. 2024, 14(24), 11532; https://doi.org/10.3390/app142411532 - 11 Dec 2024
Cited by 1 | Viewed by 5445
Abstract
This study aimed to evaluate the depth of cure (DoC) of bulk-fill composite resins, measured by the bottom-to-top Vickers microhardness ratio, using different light-curing units (LCUs): single-wave LED, polywave LED, and halogen. Six bulk-fill composites—Tetric EvoCeram Bulk Fill, X-tra base, SonicFill, Venus Bulk [...] Read more.
This study aimed to evaluate the depth of cure (DoC) of bulk-fill composite resins, measured by the bottom-to-top Vickers microhardness ratio, using different light-curing units (LCUs): single-wave LED, polywave LED, and halogen. Six bulk-fill composites—Tetric EvoCeram Bulk Fill, X-tra base, SonicFill, Venus Bulk Fill, SDR, and Filtek Bulk Fill—were tested. Four LCUs, including one halogen (Elipar Trilight) and three LEDs (Demi Ultra, Valo, and Bluephase style), were employed for polymerization. Vickers hardness measurements were taken at depths of 1 mm to 5 mm. One- and two-way ANOVA (α = 0.05) were used for data analysis. The results revealed significant differences in microhardness and microhardness ratios among the composites at depths of 4 mm and beyond, depending on the LCU used. It was observed that most bulk-fill composites showed an adequate DoC up to 4 mm, but the effectiveness varied with different LCUs. Importantly, polywave LED LCUs did not exhibit a superior advantage in achieving depth of cure compared to monowave LED LCUs for composites containing multiple photoinitiators. These findings suggest that while several factors affect the DoC, the type of LCU plays a crucial role, and polywave LEDs may not offer additional benefits over monowave LEDs. Full article
(This article belongs to the Special Issue Research on Restorative Dentistry and Dental Biomaterials)
Show Figures

Figure 1

15 pages, 569 KiB  
Article
The Effect of the Resin Type and Filling Placement Techniques on the Degree of Conversion of Various Resin-Based Composites
by Ayse Nurcan Duman, Pinar Cevik and Arife Doğan
Appl. Sci. 2024, 14(23), 11215; https://doi.org/10.3390/app142311215 - 2 Dec 2024
Cited by 1 | Viewed by 769
Abstract
The degree of conversion (DC) is crucial in determining the mechanical and clinical performance of resin-based composites (RBCs). This in vitro study aimed to evaluate the effect of the resin type and placement technique on the DC of RBCs (micro-hybrid, packable, hybrid, ormocer-based [...] Read more.
The degree of conversion (DC) is crucial in determining the mechanical and clinical performance of resin-based composites (RBCs). This in vitro study aimed to evaluate the effect of the resin type and placement technique on the DC of RBCs (micro-hybrid, packable, hybrid, ormocer-based and flowable) polymerized with a second-generation LED light-curing unit (LCU). A total of 75 RBC samples were divided into three groups. Each RBC was placed into 4 mm diameter and 2 and 8 mm heigh Teflon molds with conventional standard, bulk, and incremental techniques (n = 5) and polymerized by LED LCU (229.153 mW/cm2) using the standard mode. After 24 h, DC was determined by FTIR spectrophotometry. The data were analyzed with two-way ANOVA and Tukey’s HSD test (p < 0.05). The DC of the RBCs varied between 62.8 and 29.2%. While the same DC was obtained for 2 mm samples at the top and the bottom surfaces, the DC of the 8 mm samples gradually diminished from the top surface to the bottom surface. Significant differences were observed in the DC of the RBCs. An optimal DC was obtained for packable, micro-hybrid and ormocer-based RBCs polymerized by LED LCU with the recommended curing times. Considering that the polymerization process is versatile, further in vitro studies are needed. Full article
Show Figures

Figure 1

16 pages, 1022 KiB  
Article
Effect of Shade and Light-Curing Intensity on Bulk-Fill Composite: Heat Generation and Chemo-Mechanical Properties (In Vitro Study)
by Hawkar Abdalla Hussein and Hawzhen Masoud M. Saeed
J. Compos. Sci. 2024, 8(7), 237; https://doi.org/10.3390/jcs8070237 - 24 Jun 2024
Viewed by 1701
Abstract
The aim of this study is to assess the effect of shade and light-curing intensity on the heat generation and degree of conversion of bulk-fill composite. A commercially available bulk-fill composite resin was used in this study. A total of 250 cylindrical specimens [...] Read more.
The aim of this study is to assess the effect of shade and light-curing intensity on the heat generation and degree of conversion of bulk-fill composite. A commercially available bulk-fill composite resin was used in this study. A total of 250 cylindrical specimens of each composite shade (n = 25/group) were prepared (125 for testing heat generation and 125 for testing degree of conversion, then cured using a monowave light-curing unit (LCU) with a single light intensity of 1470 mW/cm2 and a polywave LCU with three different light intensities (1200, 2000, and 3000 mW/cm2). Heat generation during polymerization was measured by five K-type thermocouples placed in each 1 mm layer from top to bottom. FTIR was used for evaluating the degree of conversion. Regarding heat generation, significant differences were seen in layers 4 and 5. Curing types and times also showed significant impacts on heat generation and the degree of conversion. Heat generation relates more to curing time than light intensity. Darker shades generate and retain more heat. Lighter shades exhibit higher degrees of conversion with longer curing. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

11 pages, 2682 KiB  
Article
Spatially Distributed Light Exposure: Impact on Light Transmission through CAD/CAM Resin-Based Composites of Different Thicknesses
by Nicoleta Ilie
J. Compos. Sci. 2023, 7(9), 391; https://doi.org/10.3390/jcs7090391 - 14 Sep 2023
Cited by 1 | Viewed by 1296
Abstract
This article reports the variation in incident and transmitted light through four different computer-aided-designed/computer-assisted-manufactured (CAD/CAM) resin-based composites (RBC) of thicknesses up to 4 mm after simulating clinically relevant but non-ideal curing conditions. A violet-blue light curing unit (LCU) was used to simulate 39 [...] Read more.
This article reports the variation in incident and transmitted light through four different computer-aided-designed/computer-assisted-manufactured (CAD/CAM) resin-based composites (RBC) of thicknesses up to 4 mm after simulating clinically relevant but non-ideal curing conditions. A violet-blue light curing unit (LCU) was used to simulate 39 different curing conditions for each material and thickness, setting an exposure distance of up to 7 mm in the vertical direction and an additional 13 horizontally varying positions that included a central position and up to 3 mm off-center positions in mesial, distal, buccal, and lingual directions. The data clearly indicate that exposure distance has a stronger influence on the measured light characteristics than the directional and offset deviations from the center position. Increasing exposure distance leveled the differences and should be limited to 3 mm. In all materials, the parameters of the transmitted light follow the pattern of variation of the incident light. The attenuation of light while passing RBCs is high and increases exponentially with thickness to 95–96% of the incident light for 4-millimeter-thick samples. Significant differences in light transmission were observed between the materials, which are well related to chemical composition and refractive index differences between filler and organic matrix. Violet light is still measurable after passing through 4-millimeter-thick RBC layers, but its proportion relative to blue light is drastically reduced. Full article
(This article belongs to the Special Issue Application of Composite Biomaterials in Dentistry)
Show Figures

Figure 1

10 pages, 2290 KiB  
Article
Effects of Infection Control Barriers on Light Output from a Dental Light-Curing Unit Used in Various Positions
by Jitte van der Zee, Andrew Tawse-Smith and Sunyoung Ma
Oral 2023, 3(2), 166-175; https://doi.org/10.3390/oral3020015 - 3 Apr 2023
Cited by 1 | Viewed by 2383
Abstract
Light-curing units (LCUs) are often subject to clinician-determined factors such as infection control barriers (ICBs) and different positionings of the light tip that may reduce their radiant exposure. The objective of this study was to investigate the individual and cumulative effects of ICBs [...] Read more.
Light-curing units (LCUs) are often subject to clinician-determined factors such as infection control barriers (ICBs) and different positionings of the light tip that may reduce their radiant exposure. The objective of this study was to investigate the individual and cumulative effects of ICBs and LCU positioning on light output. One LCU was used, in combination with five different ICBs and five different distances and angles. ICBs were also tested when placed correctly to manufacturers’ guidelines, and with creases or seams obstructing the light tip. All variables were tested in isolation and in combination with other variables. Measurements were taken from a laboratory-grade spectrometer, giving values of radiant exposure, irradiance and spectral emission. All ICBs, angles and distances showed significant reductions in light output compared to the control (p < 0.001). With increasing angle and distance, the light output was decreased further, with the greatest reduction of 80.6% from the control seen at 40° and 8 mm with an incorrectly placed ICB. When used with an ICB, an increasing angle also showed a protective relationship on the light output. When ICBs are used or when an increase in distance/angle is unavoidable, clinicians should consider compensating for the loss in radiant exposure by increasing curing times. Full article
Show Figures

Figure 1

11 pages, 1320 KiB  
Article
Investigating the Cytotoxicity of Dual-Cure Bulk-Fill Resin Materials on L929 Cells
by Safiye Selin Koymen, Nazmiye Donmez, Vildan Betul Yenigun, Fatemeh Bahadori and Abdurrahim Kocyigit
Prosthesis 2022, 4(3), 447-457; https://doi.org/10.3390/prosthesis4030036 - 15 Aug 2022
Cited by 8 | Viewed by 3065
Abstract
The aim of this in vitro study was to investigate cytotoxic effects of dual-cure bulk-fill resin materials polymerized with a third-generation LED light-curing unit (LCU) on L929 fibroblast cells in terms of morphology and viability. Three novel dual-cure, flowable bulk-fill materials (Fill-Up!™), a [...] Read more.
The aim of this in vitro study was to investigate cytotoxic effects of dual-cure bulk-fill resin materials polymerized with a third-generation LED light-curing unit (LCU) on L929 fibroblast cells in terms of morphology and viability. Three novel dual-cure, flowable bulk-fill materials (Fill-Up!™), a bioactive material (ACTIVA™ BioACTIVE-RESTORATIVE™), and a dual-cure bulk-fill composite material (HyperFIL® HAp) polymerized by LED LCU (VALO™ Cordless) were tested. Each material was placed in plastic rings (4 mm × 5 mm) in a single layer. Unpolymerized rings filled with each material were placed in direct contact with cells and then polymerized. After polymerization, the removed medium was readded to wells. In this study, four control groups were performed: the medium-free control group, medium control group, physical control group, and light applied control group. Three samples were prepared from each group. After 24 h, the morphology of cells was examined and a WST-1 test was performed. The percentage of cell viability (PCV) of each group was calculated. The experiment was repeated three times. Data were analyzed by a Kruskal–Wallis Test and a Mann–Whitney U test. p < 0.05 was considered significant. The PCV of all groups were found to be significantly lower than the medium control group (p < 0.05). The lowest PCV was obtained in HyperFIL® Hap, while highest was in the Fill-Up!™. In the morphology of cells related to the experimental groups, it was observed that the spindle structures of cells were disrupted due to cytotoxicity; cells became rounded and intercellular space increased. There were no significant differences between the control groups (p > 0.05). All control groups showed acceptable PCV (>70%) and cells were spindle-like, similar to the original fibroblast cells. It can be suggested that clinicians should pay attention when applying dual-cure bulk-fill materials in deep cavities, or they should use a liner material under these materials. Full article
(This article belongs to the Special Issue Bioactive Materials for Dental and Maxillofacial Repair)
Show Figures

Figure 1

15 pages, 6110 KiB  
Article
Depth of Cure, Hardness, Roughness and Filler Dimension of Bulk-Fill Flowable, Conventional Flowable and High-Strength Universal Injectable Composites: An In Vitro Study
by Francesco Saverio Ludovichetti, Patrizia Lucchi, Giulia Zambon, Luca Pezzato, Rachele Bertolini, Nicoletta Zerman, Edoardo Stellini and Sergio Mazzoleni
Nanomaterials 2022, 12(12), 1951; https://doi.org/10.3390/nano12121951 - 7 Jun 2022
Cited by 25 | Viewed by 4527
Abstract
(1) Objective: To evaluate and compare the depth of cure (DOC) of two bulk-fill flowable composites (Filtek Bulk Fill Flowable Restorative and Tetric EvoFlow Bulk Fill), two conventional flowable composites (Filtek Supreme XTE Flowable Restorative and G-ænial Flo X) and one high-strength universal [...] Read more.
(1) Objective: To evaluate and compare the depth of cure (DOC) of two bulk-fill flowable composites (Filtek Bulk Fill Flowable Restorative and Tetric EvoFlow Bulk Fill), two conventional flowable composites (Filtek Supreme XTE Flowable Restorative and G-ænial Flo X) and one high-strength universal injectable composite (G-ænial Universal Injectable). (2) Methods: specimens were placed in a stainless-steel mold with an orifice of 4 mm in diameter and 10 mm in depth and light-cured for 20 s using a light emitting diode (LED) light-curing unit (LCU) with an irradiance of 1000 mW/cm2; depth of cure was assessed using the ISO 4049 scrape technique, and the absolute length of the specimen of cured composite was measured in millimeters with a digital caliper. The same procedure was repeated with 14 samples for each material under investigation, for a total number of 70 test bodies. Material roughness and hardness results were also investigated using, respectively, a 3D laser confocal microscope (LEXT OLS 4100; Olympus) at ×5 magnification and a Vickers diamond indenter (Vickers microhardness tester, Shimadzu®, Kyoto, Japan) under 10-N load and a 30 s dwell time. SEM images at 3000 and 9000 magnification were collected in order to study the materials’ filler content. Statistical analysis were performed by a commercial statistical software package (SPSS) and data were analyzed using multiple comparison Dunnett’s test. (3) Results: The average DOC of both bulk-fill composites was more than 4 mm, as a range of 3.91 and 4.53 mm with an average value of 4.24 and 4.12 mm, while that of the conventional flowable composites was much lower, as a range of 2.47 and 2.90 mm with an average value of 2.58 and 2.84 mm; DOC of the high-strength injectable composite was greater than the one of traditional composites, but not to the level of bulk-fill materials, as a range of 2.82 and 3.01 mm with an average value of 3.02 mm. Statistical analysis revealed significant differences (p-values < 0.05) in the depth of cure between bulk fill flowable composites and other composites, while there was no difference (p-values > 0.05) between the materials of the same type. (4) Conclusions: Bulk-fill flowable composites showed significantly higher depth of cure values than both traditional flowable composites and high-strength injectable composites. Full article
Show Figures

Figure 1

13 pages, 3282 KiB  
Article
Curing through Ceramics: Influence of Different Light-Curing Units and Curing Modes on Bond Strength
by Evonne Mei Jing Phua, John Neil Waddell and Joanne Jung Eun Choi
Oral 2022, 2(1), 62-74; https://doi.org/10.3390/oral2010008 - 17 Feb 2022
Cited by 4 | Viewed by 3844
Abstract
Objectives: To measure and compare the bond strength between three different types of ceramics and resin cement, as well as the degree of conversion of resin cement after using different light-curing units and curing modes. Methods: Three types of ceramics—Leucite-reinforced (Empress CAD), Lithium [...] Read more.
Objectives: To measure and compare the bond strength between three different types of ceramics and resin cement, as well as the degree of conversion of resin cement after using different light-curing units and curing modes. Methods: Three types of ceramics—Leucite-reinforced (Empress CAD), Lithium disilicate (Emax CAD), and Zirconia (Emax ZirCAD)—of varying thicknesses (1.5 mm and 2.0 mm) were bonded to a light-cure resin cement (Variolink Esthetic LC). Light-curing was carried out using a monowave LCU (3M Elipar DeepCure-S LED Curing Light with irradiance of 1470 mW/cm2) and with polywave LCU (Ivoclar Bluephase PowerCure) using High, Turbo, and 3 s curing modes, respectively (1200, 2100, 3000 mW/cm2). A chevron-notch bond strength test (total n = 288) was conducted to calculate the fracture energy and interfacial bond strength (J/m2). The degree of cure (%DC) of the residual resin cement on debonded surfaces was measured using Fourier Transform Infrared Spectroscopy (FTIR). Collected data were statistically analysed under SPSS ver. 27 by conducting an ANOVA and Bonferroni post hoc test. The mode of failure was established using a scanning electron microscope (SEM). Results: A significant difference in interfacial bond strength was found between the three types of ceramic material groups (p < 0.01). Cement cured through Empress that was 2 mm thick showed the highest bond strength (1.36 ± 0.46 J/m2), while the lowest was observed (0.26 ± 0.07 J/m2) in 2 mm Emax CAD using the 3 s mode. The use of different LCUs and curing modes had a significant influence on the %DC of resin cement seen in all groups, except 2 mm Emax ZirCAD. The dominant mode of failure for Empress, EmaxCAD, and EmaxZirCAD were cohesive, adhesive, and mixed, respectively. Conclusions: The type of ceramic and its thickness can significantly affect bond strength, and the results showed that polywave LCU is more effective than monowave LCU when curing through ceramics. Full article
Show Figures

Figure 1

12 pages, 2136 KiB  
Article
Effect of Light-Sources and Thicknesses of Composite Onlays on Micro-Hardness of Luting Composites
by Francesco De Angelis, Mirco Vadini, Mario Capogreco, Camillo D’Arcangelo and Maurizio D’Amario
Materials 2021, 14(22), 6849; https://doi.org/10.3390/ma14226849 - 13 Nov 2021
Cited by 5 | Viewed by 2193
Abstract
The aim of this study was to compare three different light-curing-units (LCUs) and determine their effectiveness in the adhesive cementation of indirect composite restorations when a light-curing resin cement is used. Two resin composites were selected: Enamel Plus HRI (Micerium) and AURA (SDI). [...] Read more.
The aim of this study was to compare three different light-curing-units (LCUs) and determine their effectiveness in the adhesive cementation of indirect composite restorations when a light-curing resin cement is used. Two resin composites were selected: Enamel Plus HRI (Micerium) and AURA (SDI). Three thicknesses (3 mm, 4 mm and 5 mm) were produced and applied as overlays and underlays for each resin composite. A standardized composite layer was placed between underlay and overlay surfaces. Light curing of the resin-based luting composites was attained through the overlay filters using LCUs for different exposure times. All specimens were allocated to experimental groups according to the overlay thickness, curing unit and curing time. Vickers Hardness (VH) notches were carried out on each specimen. Data were statistically evaluated. The curing unit, curing time and overlay thickness were significant factors capable of influencing VH values. The results showed significantly decreased VH values with increasing specimen thickness (p < 0.05). Significant differences in VH values were found amongst the LCUs for the various exposure times (p < 0.05). According to the results, a time of cure shorter than 80 s (with a conventional quartz–tungsten–halogen LCU) or shorter than 40 s (with a high-power light-emitting diode (LED) LCU) is not recommended. The only subgroup achieving clinically acceptable VH values after a short 20 s curing time included the 3 mm-thick overlays made out of the AURA composite, when the high-power LED LCU unit was used (VH 51.0). Composite thickness has an intense effect on polymerization. In clinical practice, light-cured resin cements may result in insufficient polymerization for high thickness and inadequate times. High-intensity curing lights can attain the sufficient polymerization of resin cements through overlays in a significantly shorter time than conventional halogen light. Full article
(This article belongs to the Special Issue Mechanical Behavior of Dental Materials)
Show Figures

Figure 1

15 pages, 3575 KiB  
Article
Improper Light Curing of Bulkfill Composite Drives Surface Changes and Increases S. mutans Biofilm Growth as a Pathway for Higher Risk of Recurrent Caries around Restorations
by Haifa Maktabi, Maria Salem Ibrahim, Abdulrahman A. Balhaddad, Qoot Alkhubaizi, Isadora Martini Garcia, Fabrício Mezzomo Collares, Howard Strassler, Ana Paula P. Fugolin, Carmem S. Pfeifer and Mary Anne S. Melo
Dent. J. 2021, 9(8), 83; https://doi.org/10.3390/dj9080083 - 30 Jul 2021
Cited by 22 | Viewed by 4371
Abstract
How dentists cure a resin-based material has deleterious effects on the material’s properties and its interaction with surrounding dental tissues. Biofilm accumulation has been implicated in the pathogenesis of carious lesions around dental restorations, with its composition manifesting expressed dysbiosis in patients suffering [...] Read more.
How dentists cure a resin-based material has deleterious effects on the material’s properties and its interaction with surrounding dental tissues. Biofilm accumulation has been implicated in the pathogenesis of carious lesions around dental restorations, with its composition manifesting expressed dysbiosis in patients suffering from dental caries. To evaluate the influence of varying radiant exposure on the degree of conversion (DC%), Streptococcus mutans biofilm growth, and surface roughness of bulk-fill composites under different light-curing conditions. Two light-curing units (LCU) at 600 and 1000 mW/cm2 were used to simulate curing conditions with different angulations (∢20° and ∢35°) or 2 mm-distance displacements of the LCU tip. The radiant exposure (RE) was assessed, and the composites were analyzed for DC%. Biofilm formation was induced over the bulk-fill composites and analyzed via colony-forming units counting and scanning electron microscopy (SEM). The surface roughness was analyzed via a profilometer and SEM after biofilm formation. Curing conditions with different angulation or displacement decreased RE compared to the “optimal condition”. The moderately (∢35°) angulated LCU tip and low (600 mW/cm2) radiant emittance significantly reduced the DC% (p < 0.05). The difference in DC% between the top and bottom of the composites ranged from 8 to 11% for 600 mW/cm2 and 10 to 20% for 1000 mW/cm2. Greater S. mutans biofilm and surface changes were found in composites with non-optimal RE delivery (e.g., tip displacement and angulation) (p < 0.05). Inadequate polymerization of bulk-fill composites was associated with more biofilm accumulation and surface topography changes. Overall, non-optimally performed curing procedures reduced the amount of delivered RE, which led to low DC%, more biofilm formation, and higher surface roughness. The improper light-curing of bulk-fill composites compromises their physicochemical and biological properties, which could lead to inferior clinical performance and reduced restorative treatments’ longevity. Full article
Show Figures

Figure 1

30 pages, 684 KiB  
Review
High-Power LED Units Currently Available for Dental Resin-Based Materials—A Review
by Rita Almeida, Patricia Manarte-Monteiro, Joana Domingues, Carlos Falcão, Mariano Herrero-Climent, Blanca Ríos-Carrasco and Bernardo Ferreira Lemos
Polymers 2021, 13(13), 2165; https://doi.org/10.3390/polym13132165 - 30 Jun 2021
Cited by 19 | Viewed by 4308
Abstract
The pursuit of less time-consuming procedures led to the development of high-power light-curing-units (LCU) to light-cure dental-resin-based-materials. This review aims to describe high-power light-emitting-diode (LED)-LCUs, by a bibliometric systematization of in vitro and in vivo studies. The research-question, by PICO model, aimed to [...] Read more.
The pursuit of less time-consuming procedures led to the development of high-power light-curing-units (LCU) to light-cure dental-resin-based-materials. This review aims to describe high-power light-emitting-diode (LED)-LCUs, by a bibliometric systematization of in vitro and in vivo studies. The research-question, by PICO model, aimed to assess the current knowledge on dentistry-based high-power LED-LCUs by analyzing to what extent their use can promote adverse events on materials and patients’ oral condition when compared to low-power LED-LCUs, on daily dental practice. PubMed and B-on database search focused on high-power (≥2000 mW/cm2) LED-LCUs outputs. Studies assessing performance of high-power LED-LCUs for light-curing dental-resin-based-materials were included. From 1822 screened articles, 21 fulfilled the inclusion criteria. Thirty-two marketed units with high levels of radiant emittance (≥2000 mW/cm2 up to 6000 mW/cm2) were identified. Most output values vary on 2000–3000 mW/cm2. The highest output found was 6000 mW/cm2, in FlashMaxP3. Reports suggest that light-curing protocols with lower emittance irradiance and longer exposure outperforms all other combination, however in some clinical procedures high-power LED-LCUs are advocated when compared to low-power LED-LCUs. Moreover, long time exposures and over-curing can be dangerous to the biological vital pulp, and other oral tissues. Evidence showing that high-power LCUs are the best clinical option is still very scarce. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 2478 KiB  
Review
Utilizing Light Cure Units: A Concise Narrative Review
by Fatin A. Hasanain and Hani M. Nassar
Polymers 2021, 13(10), 1596; https://doi.org/10.3390/polym13101596 - 15 May 2021
Cited by 17 | Viewed by 8753
Abstract
The use of photo-curable resin composite restorations is an essential treatment modality in modern dental practice. The success and longevity of these restorations depend on achieving predictable and effective polymerization. Understanding the dynamics of the polymerization and the effect of light cure units [...] Read more.
The use of photo-curable resin composite restorations is an essential treatment modality in modern dental practice. The success and longevity of these restorations depend on achieving predictable and effective polymerization. Understanding the dynamics of the polymerization and the effect of light cure units (LCUs) on this process is paramount. The goal of this concise narrative review is to provide a simplified presentation of basic principles of composite chemistry, polymerization reactions, and photo-curing with relevant terminologies. Clinical guidelines for choosing and maintaining LCUs, as well as safety precautions and factors under the control of the clinician are listed. Finally, clinical recommendations of LCUs’ usage and monitoring are included to aid practitioners in achieving predictable polymerization during the placement of direct resin composite restorations. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Figure 1

10 pages, 1578 KiB  
Article
Pulp Temperature Rise Induced by Light-Emitting Diode Light-Curing Units Using an Ex Vivo Model
by Alexandra Vinagre, João C. Ramos, Clara Rebelo, José Francisco Basto, Ana Messias, Nélia Alberto and Rogério Nogueira
Materials 2019, 12(3), 411; https://doi.org/10.3390/ma12030411 - 29 Jan 2019
Cited by 22 | Viewed by 4420
Abstract
The aim of this research was to compare the pulp temperature (PT) rise induced by four light-emitting diode light-curing units (LED LCUs) (Bluephase 20i, Demi Ultra, SPEC 3, and Valo) in different curing modes. Immediately after extraction, the pulp chamber of 11 premolars [...] Read more.
The aim of this research was to compare the pulp temperature (PT) rise induced by four light-emitting diode light-curing units (LED LCUs) (Bluephase 20i, Demi Ultra, SPEC 3, and Valo) in different curing modes. Immediately after extraction, the pulp chamber of 11 premolars was accessed from the palatal cervical third of the crown for insertion of fiber Bragg grating (FBG) sensors for temperature measurement and kept in a 37.0° water bath. The teeth were then submitted to a random sequence of curing modes with four irradiations at 30 s intervals. Care was taken to ensure complete pulp temperature reset between curing modes. The curing modes were classified as high-energy (above 80 J/cm2) or low-energy (below 40 J/cm2) according to the total energy density delivered. Statistical analysis was performed with repeated ANOVA measures and Pearson’s correlation for the association between energy density and temperature variation. The significance level was set to 0.05. All curing units promoted a statistically significant PT rise (p < 0.01). After four emissions, the PT rise was higher than 5.0 °C for the high-energy curing modes. The low-energy modes induced approximately a 2.5 °C rise. A strong positive correlation was found between energy density and PT increase (R = 0.715; p = 0.01). Exposure of intact premolars to LED LCUs induced significant and cumulative PT rise. Curing modes emitting high energy densities produced higher PT variations. Radiant exposure was positively correlated to PT variation. Full article
(This article belongs to the Collection Dental Biomaterials)
Show Figures

Figure 1

Back to TopTop