Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (882)

Search Parameters:
Keywords = light gradient boost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5284 KB  
Article
Performance Prediction of Condensation Dehumidification System Utilizing Natural Cold Resources in Cold Climate Regions Using Physical-Based Model and Stacking Ensemble Learning Models
by Ping Zheng, Jicheng Zhang, Qiuju Xie, Chaofan Ma and Xuan Li
Agriculture 2026, 16(2), 185; https://doi.org/10.3390/agriculture16020185 (registering DOI) - 11 Jan 2026
Abstract
Maintaining optimal humidity in livestock buildings during winter is a major challenge in cold climate regions due to the conflict between moisture-removing ventilation and the need for heat preservation. To address this issue, a novel condensation dehumidification system is proposed that utilizes the [...] Read more.
Maintaining optimal humidity in livestock buildings during winter is a major challenge in cold climate regions due to the conflict between moisture-removing ventilation and the need for heat preservation. To address this issue, a novel condensation dehumidification system is proposed that utilizes the natural low temperature of cold winters. An integrated energy consumption model, coupling moisture and thermal balances, was developed to evaluate room temperature drop, dehumidification rate (DR), and the internal circulation coefficient of performance (IC-COP). The model was calibrated and validated with experimental data comprising over 150 operational cycles under varied operation conditions, including initial temperature differences (ranging from −20 to −5 °C), air flow rates (0.6–1.5 m/s), refrigerant flow rates (3–7 L/min), and high-humidity conditions (>90% RH). Correlation analysis showed that higher indoor humidity improved both DR and IC-COP. Four machine learning models—Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Random Forest (RF), and Multilayer Perceptron (MLP)—were developed and compared with a stacking ensemble learning model. Results demonstrated that the stacking model achieved superior prediction accuracy, with the best R2 reaching 0.908, significantly outperforming individual models. This work provides an energy-saving dehumidification solution for enclosed livestock housing and a case study on the application of machine learning for energy performance prediction and optimization in agricultural environmental control. Full article
Show Figures

Figure 1

35 pages, 2985 KB  
Article
Decarbonizing Coastal Shipping: Voyage-Level CO2 Intensity, Fuel Switching and Carbon Pricing in a Distribution-Free Causal Framework
by Murat Yildiz, Abdurrahim Akgundogdu and Guldem Elmas
Sustainability 2026, 18(2), 723; https://doi.org/10.3390/su18020723 (registering DOI) - 10 Jan 2026
Abstract
Coastal shipping plays a critical role in meeting maritime decarbonization targets under the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII) and the European Union Emissions Trading System (EU ETS); however, operators currently lack robust tools to forecast route-specific carbon intensity and evaluate [...] Read more.
Coastal shipping plays a critical role in meeting maritime decarbonization targets under the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII) and the European Union Emissions Trading System (EU ETS); however, operators currently lack robust tools to forecast route-specific carbon intensity and evaluate the causal benefits of fuel switching. This study developed a distribution-free causal forecasting framework for voyage-level Carbon Dioxide (CO2) intensity using an enriched panel of 1440 real-world voyages across four Nigerian coastal routes (2022–2024). We employed a physics-informed monotonic Light Gradient Boosting Machine (LightGBM) model trained under a strict leave-one-route-out (LORO) protocol, integrated with split-conformal prediction for uncertainty quantification and Causal Forests for estimating heterogeneous treatment effects. The model predicted emission intensity on completely unseen corridors with a Mean Absolute Error (MAE) of 40.7 kg CO2/nm, while 90% conformal prediction intervals achieved 100% empirical coverage. While the global average effect of switching from heavy fuel oil to diesel was negligible (≈−0.07 kg CO2/nm), Causal Forests revealed significant heterogeneity, with effects ranging from −74 g to +29 g CO2/nm depending on route conditions. Economically, targeted diesel use becomes viable only when carbon prices exceed ~100 USD/tCO2. These findings demonstrate that effective coastal decarbonization requires moving beyond static baselines to uncertainty-aware planning and targeted, route-specific fuel strategies rather than uniform fleet-wide policies. Full article
(This article belongs to the Special Issue Sustainable Maritime Logistics and Low-Carbon Transportation)
20 pages, 3312 KB  
Article
Wind Shear Prediction at Jeju International Airport Using a Tree-Based Machine Learning Algorithm
by Jae-Hyeok Seok, Hee-Wook Choi and Sang-Sam Lee
Forecasting 2026, 8(1), 4; https://doi.org/10.3390/forecast8010004 - 9 Jan 2026
Viewed by 32
Abstract
This study employed tree-based machine learning (ML) algorithms to predict low-level wind shear (LLWS) at Jeju International Airport (ICAO: RKPC). Hourly meteorological data from 47 observation stations across Jeju Island, collected between 2019 and 2023, were split into training (60%), validation (20%), and [...] Read more.
This study employed tree-based machine learning (ML) algorithms to predict low-level wind shear (LLWS) at Jeju International Airport (ICAO: RKPC). Hourly meteorological data from 47 observation stations across Jeju Island, collected between 2019 and 2023, were split into training (60%), validation (20%), and test (20%) sets to develop individual prediction models for lead times ranging from 1 to 6 h. A probabilistic prediction model was developed by assigning weights to individual models according to their true skill statistic performance. Validation using an independent 2024 dataset showed that the light gradient boosting machine-based probabilistic model exhibited the highest predictive performance, achieving an area under the receiver operating characteristic curve of 0.883. The Shapley additive explanation analysis identified wind components (U, V) as key variables, contributing over 50%, with the significance of pressure and temperature slightly increasing over long-term prediction times (4–6 h). In addition, spatial analysis revealed that nearby airport stations were more influential for short-term prediction times (1–2 h), whereas Mount Halla and offshore stations north of the airport gained greater influence for medium-to long-term prediction times (3–6 h). The ML-based LLWS prediction model offers high accuracy and interpretability, supporting stepwise warning systems and aiding aviation decision-making. Full article
(This article belongs to the Section AI Forecasting)
Show Figures

Figure 1

25 pages, 21050 KB  
Article
Predicting ESG Scores Using Machine Learning for Data-Driven Sustainable Investment
by Sanskruti Patel, Abhay Nath and Pranav Desai
Analytics 2026, 5(1), 7; https://doi.org/10.3390/analytics5010007 - 9 Jan 2026
Viewed by 69
Abstract
Environmental, social and governance (ESG) metrics increasingly inform sustainable investment yet suffer from inter-rater heterogeneity and incomplete reporting, limiting their utility for forward-looking allocation. In this study, we developed and validated a two-level stacked-ensemble machine-learning framework to predict total ESG risk scores for [...] Read more.
Environmental, social and governance (ESG) metrics increasingly inform sustainable investment yet suffer from inter-rater heterogeneity and incomplete reporting, limiting their utility for forward-looking allocation. In this study, we developed and validated a two-level stacked-ensemble machine-learning framework to predict total ESG risk scores for S&P 500 firms using a comprehensive feature set comprising pillar sub-scores, controversy measures, firm financials, categorical descriptors and geospatial environmental indicators. Data pre-processing combined median/mean imputation, one-hot encoding, normalization and rigorous feature engineering; models were trained with an 80:20 train–test split and hyperparameters tuned by k-fold cross-validation. The stacked ensemble substantially outperformed single-model baselines (RMSE = 1.006, MAE = 0.664, MAPE = 3.13%, R2 = 0.979, CV_RMSE_Mean = 1.383, CV_R2_Mean = 0.957), with LightGBM and gradient boosting as competitive comparators. Permutation importance and correlation analysis identified environmental and social components as primary drivers (environmental importance = 0.41; social = 0.32), with potential multicollinearity between component and aggregate scores. This study concludes that ensemble-based predictive analytics can produce reliable, actionable ESG estimates to enhance screening and prioritization in sustainable investment, while recommending human review for extreme predictions and further work to harmonize cross-provider score divergence. Full article
Show Figures

Figure 1

19 pages, 3791 KB  
Article
A Machine Learning Framework for Cognitive Impairment Screening from Speech with Multimodal Large Models
by Shiyu Chen, Ying Tan, Wenyu Hu, Yingxi Chen, Lihua Chen, Yurou He, Weihua Yu and Yang Lü
Bioengineering 2026, 13(1), 73; https://doi.org/10.3390/bioengineering13010073 - 8 Jan 2026
Viewed by 144
Abstract
Background: Early diagnosis of Alzheimer’s disease (AD) is essential for slowing disease progression and mitigating cognitive decline. However, conventional diagnostic methods are often invasive, time-consuming, and costly, limiting their utility in large-scale screening. There is an urgent need for scalable, non-invasive, and [...] Read more.
Background: Early diagnosis of Alzheimer’s disease (AD) is essential for slowing disease progression and mitigating cognitive decline. However, conventional diagnostic methods are often invasive, time-consuming, and costly, limiting their utility in large-scale screening. There is an urgent need for scalable, non-invasive, and accessible screening tools. Methods: We propose a novel screening framework combining a pre-trained multimodal large language model with structured MMSE speech tasks. An artificial intelligence-assisted multilingual Mini-Mental State Examination system (AAM-MMSE) was utilized to collect voice data from 1098 participants in Sichuan and Chongqing. CosyVoice2 was used to extract speaker embeddings, speech labels, and acoustic features, which were converted into statistical representations. Fourteen machine learning models were developed for subject classification into three diagnostic categories: Healthy Control (HC), Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). SHAP analysis was employed to assess the importance of the extracted speech features. Results: Among the evaluated models, LightGBM and Gradient Boosting classifiers exhibited the highest performance, achieving an average AUC of 0.9501 across classification tasks. SHAP-based analysis revealed that spectral complexity, energy dynamics, and temporal features were the most influential in distinguishing cognitive states, aligning with known speech impairments in early-stage AD. Conclusions: This framework offers a non-invasive, interpretable, and scalable solution for cognitive screening. It is suitable for both clinical and telemedicine applications, demonstrating the potential of speech-based AI models in early AD detection. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

23 pages, 3238 KB  
Article
Agricultural Injury Severity Prediction Using Integrated Data-Driven Analysis: Global Versus Local Explainability Using SHAP
by Omer Mermer, Yanan Liu, Charles A. Jennissen, Milan Sonka and Ibrahim Demir
Safety 2026, 12(1), 6; https://doi.org/10.3390/safety12010006 - 8 Jan 2026
Viewed by 70
Abstract
Despite the agricultural sector’s consistently high injury rates, formal reporting is often limited, leading to sparse national datasets that hinder effective safety interventions. To address this, our study introduces a comprehensive framework leveraging advanced ensemble machine learning (ML) models to predict and interpret [...] Read more.
Despite the agricultural sector’s consistently high injury rates, formal reporting is often limited, leading to sparse national datasets that hinder effective safety interventions. To address this, our study introduces a comprehensive framework leveraging advanced ensemble machine learning (ML) models to predict and interpret the severity of agricultural injuries. We use a unique, manually curated dataset of over 2400 agricultural incidents from AgInjuryNews, a public repository of news reports detailing incidents across the United States. We evaluated six ensemble models, including Gradient Boosting (GB), eXtreme Grading Boosting (XGB), Light Gradient Boosting Machine (LightGBM), Adaptive Boosting (AdaBoost), Histogram-based Gradient Boosting Regression Trees (HistGBRT), and Random Forest (RF), for their accuracy in classifying injury outcomes as fatal or non-fatal. A key contribution of our work is the novel integration of explainable artificial intelligence (XAI), specifically SHapley Additive exPlanations (SHAP), to overcome the “black-box” nature of complex ensemble models. The models demonstrated strong predictive performance, with most achieving an accuracy of approximately 0.71 and an F1-score of 0.81. Through global SHAP analysis, we identified key factors influencing injury severity across the dataset, such as the presence of helmet use, victim age, and the type of injury agent. Additionally, our application of local SHAP analysis revealed how specific variables like location and the victim’s role can have varying impacts depending on the context of the incident. These findings provide actionable, context-aware insights for developing targeted policy and safety interventions for a range of stakeholders, from first responders to policymakers, offering a powerful tool for a more proactive approach to agricultural safety. Full article
(This article belongs to the Special Issue Farm Safety, 2nd Edition)
Show Figures

Figure 1

20 pages, 733 KB  
Article
Explaining Logistics Performance, Economic Growth, and Carbon Emissions Through Machine Learning and SHAP Interpretability
by Maide Betül Baydar and Mustafa Mete
Sustainability 2026, 18(2), 585; https://doi.org/10.3390/su18020585 - 7 Jan 2026
Viewed by 118
Abstract
This study provides a multi-faceted and detailed perspective on the relationships between logistics performance, environmental degradation, and economic growth in 38 OECD countries, using each as an individual target variable. In the Analysis section, the relationship between logistics and environment is examined within [...] Read more.
This study provides a multi-faceted and detailed perspective on the relationships between logistics performance, environmental degradation, and economic growth in 38 OECD countries, using each as an individual target variable. In the Analysis section, the relationship between logistics and environment is examined within a broader context, taking economic indicators into account. This examination utilizes the machine learning algorithms Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). For each algorithm, the dataset is split into training and testing sets using three different ratios: 90:10, 80:20, and 70:30. A comprehensive performance evaluation is conducted on each of these splits by applying 5-fold and 10-fold cross-validation (CV). Considering economic indicators, the analysis section examines how the logistics-environment relationship is shaped in a broader context using the machine learning algorithms RF, XGBoost, and LightGBM. MSE, MAE, RMSE, MAPE, and R2 metrics are utilized to evaluate model performance, while MDA and SHAP are employed to assess feature importance. Furthermore, a bee swarm plot is leveraged for visualizing the results. The XGBoost algorithm can successfully predict carbon dioxide (CO2) emissions from transport and economic growth with high accuracy. However, the logistics performance model achieves high performance only with the LightGBM algorithm using a 90% train, 10% test split, and 5-fold CV setup. Based on the variable importance levels of the best-performing algorithm for each of the three target variables separately, the prediction of logistics performance is largely dependent on the economic growth predictor, and secondly, on the trade openness predictor. In predicting CO2 emissions from transport, economic growth is identified as the most effective predictor, while logistics performance and trade openness contribute the least to the prediction. The findings also reveal that transport-related emissions and environmental indicators are prominent in the prediction of economic growth, whereas logistics performance and trade openness play a supportive, yet secondary role. Full article
Show Figures

Figure 1

28 pages, 6311 KB  
Article
Machine Learning-Assisted Optimisation of the Laser Beam Powder Bed Fusion (PBF-LB) Process Parameters of H13 Tool Steel Fabricated on a Preheated to 350 C Building Platform
by Katsiaryna Kosarava, Paweł Widomski, Michał Ziętala, Daniel Dobras, Marek Muzyk and Bartłomiej Adam Wysocki
Materials 2026, 19(1), 210; https://doi.org/10.3390/ma19010210 - 5 Jan 2026
Viewed by 300
Abstract
This study presents the first application of Machine Learning (ML) models to optimise Powder Bed Fusion using Laser Beam (PBF-LB) process parameters for H13 steel fabricated on a 350 °C preheated building platform. A total of 189 cylindrical specimens were produced for training [...] Read more.
This study presents the first application of Machine Learning (ML) models to optimise Powder Bed Fusion using Laser Beam (PBF-LB) process parameters for H13 steel fabricated on a 350 °C preheated building platform. A total of 189 cylindrical specimens were produced for training and testing machine learning (ML) models using variable process parameters: laser power (250–350 W), scanning speed (1050–1300 mm/s), and hatch spacing (65–90 μm). Eight ML models were investigated: 1. Support Vector Regression (SVR), 2. Kernel Ridge Regression (KRR), 3. Stochastic Gradient Descent Regressor, 4. Random Forest Regressor (RFR), 5. Extreme Gradient Boosting (XGBoost), 6. Extreme Gradient Boosting with limited depth (XGBoost LD), 7. Extra Trees Regressor (ETR) and 8. Light Gradient Boosting Machine (LightGBM). All models were trained using the Fast Library for Automated Machine Learning & Tuning (FLAML) framework to predict the relative density of the fabricated samples. Among these, the XGBoost model achieved the highest predictive accuracy, with a coefficient of determination R2=0.977, mean absolute percentage error MAPE = 0.002, and mean absolute error MAE = 0.017. Experimental validation was conducted on 27 newly fabricated samples using ML predicted process parameters. Relative densities exceeding 99.6% of the theoretical value (7.76 g/cm3) for all models except XGBoost LD and KRR. The lowest MAE = 0.004 and the smallest difference between the ML-predicted and PBF-LB validated density were obtained for samples made with LightGBM-predicted parameters. Those samples exhibited a hardness of 604 ± 13 HV0.5, which increased to approximately 630 HV0.5 after tempering at 550 °C. The LightGBM optimised parameters were further applied to fabricate a part of a forging die incorporating internal through-cooling channels, demonstrating the efficacy of machine learning-guided optimisation in achieving dense, defect-free H13 components suitable for industrial applications. Full article
(This article belongs to the Special Issue Multiscale Design and Optimisation for Metal Additive Manufacturing)
Show Figures

Graphical abstract

27 pages, 7522 KB  
Article
Prediction of the Unconfined Compressive Strength of One-Part Geopolymer-Stabilized Soil Under Acidic Erosion: Comparison of Multiple Machine Learning Models
by Jidong Zhang, Guo Hu, Junyi Zhang and Jun Wu
Materials 2026, 19(1), 209; https://doi.org/10.3390/ma19010209 - 5 Jan 2026
Viewed by 120
Abstract
This study employed machine learning to investigate the mechanical behavior of one-part geopolymer (OPG)-stabilized soil subjected to acid erosion. Based on the unconfined compressive strength (UCS) data of acid-eroded OPG-stabilized soil, eight machine learning models, namely, Adaptive Boosting (AdaBoost), Decision Tree (DT), Extra [...] Read more.
This study employed machine learning to investigate the mechanical behavior of one-part geopolymer (OPG)-stabilized soil subjected to acid erosion. Based on the unconfined compressive strength (UCS) data of acid-eroded OPG-stabilized soil, eight machine learning models, namely, Adaptive Boosting (AdaBoost), Decision Tree (DT), Extra Trees (ET), Gradient Boosting (GB), Light Gradient Boosting Machine (LightGBM), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), along with hyper-parameter optimization by Genetic Algorithm (GA), were used to predict the degradation of the UCS of OPG-stabilized soils under different durations of acid erosion. The results showed that GA-SVM (R2 = 0.9960, MAE = 0.0289) and GA-XGBoost (R2 = 0.9961, MAE = 0.0282) achieved the highest prediction accuracy. SHAP analysis further revealed that solution pH was the dominant factor influencing UCS, followed by the FA/GGBFS ratio, acid-erosion duration, and finally, acid type. The 2D PDP combined with SEM images showed that the microstructure of samples eroded by HNO3 was marginally denser than that of samples eroded by H2SO4, yielding a slightly higher UCS. At an FA/GGBFS ratio of 0.25, abundant silica and hydration products formed a dense matrix and markedly improved acid resistance. Further increases in FA content reduced hydration products and caused a sharp drop in UCS. Extending the erosion period from 0 to 120 days and decreasing the pH from 4 to 2 enlarged the pore network and diminished hydration products, resulting in the greatest UCS reduction. The results of the study provide a new idea for applying the ML model in geoengineering to predict the UCS performance of geopolymer-stabilized soils under acidic erosion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 5970 KB  
Article
Evaluation of Multiple Influences on the Unconfined Compressive Strength of Fibre-Reinforced Backfill Using a GWO–LGBM Model
by Xin Chen, Yunmin Wang, Shengjun Miao, Shian Zhang, Zhi Yu and Linfeng Du
Materials 2026, 19(1), 200; https://doi.org/10.3390/ma19010200 - 5 Jan 2026
Viewed by 144
Abstract
Fibres can markedly enhance the uniaxial compressive strength (UCS) of cemented paste backfill (CPB). However, previous studies have mainly verified the effectiveness of polypropylene and straw fibres in improving the UCS of CPB experimentally, while systematic multi-factor evaluation remains limited. In this study, [...] Read more.
Fibres can markedly enhance the uniaxial compressive strength (UCS) of cemented paste backfill (CPB). However, previous studies have mainly verified the effectiveness of polypropylene and straw fibres in improving the UCS of CPB experimentally, while systematic multi-factor evaluation remains limited. In this study, laboratory experiments were conducted on polypropylene- and straw fibre-reinforced CPB to construct a reliable dataset. The factors influencing the intensity of uniaxial compressive strength were divided into four aspects (mixture proportions, physical properties of the cement–tailings mixture, chemical characteristics of tailings, and fibre properties), and four intelligent models were developed for effectiveness analysis and UCS prediction. SHapley Additive exPlanations (SHAP) were employed to quantify the contributions of individual features, and the findings were experimentally validated. The GWO–LGBM model outperformed the SVR, ANN, and LGBM models, achieving R2 = 0.907, RMSE = 0.78, MAE = 0.515, and MAPE = 0.157 for the training set, and R2 = 0.949, RMSE = 0.627, MAE = 0.38, and MAPE = 0.115 for the testing set, respectively. Feature analysis reveals that mixture proportions contribute the most to UCS, followed by the tailings’ physical properties, the fibre properties, and the tailings’ chemical characteristics. This study found that cement content and tailings gradation control CPB structural compactness and fibres enhance bonding between hydration products and tailings aggregates, while the chemical composition of the tailings plays an inert role, functioning mainly as an aggregate. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 1157 KB  
Article
A Dynamic Physics-Guided Ensemble Model for Non-Intrusive Bond Wire Health Monitoring in IGBTs
by Xinyi Yang, Zhen Hu, Yizhi Bo, Tao Shi and Man Cui
Micromachines 2026, 17(1), 70; https://doi.org/10.3390/mi17010070 - 1 Jan 2026
Viewed by 230
Abstract
Bond wire degradation represents the predominant failure mechanism in IGBT modules, accounting for approximately 70% of power converter failures and posing significant reliability challenges in modern power electronic systems. Existing monitoring techniques face inherent trade-offs between measurement accuracy, implementation complexity, and electromagnetic compatibility. [...] Read more.
Bond wire degradation represents the predominant failure mechanism in IGBT modules, accounting for approximately 70% of power converter failures and posing significant reliability challenges in modern power electronic systems. Existing monitoring techniques face inherent trade-offs between measurement accuracy, implementation complexity, and electromagnetic compatibility. This paper proposes a physics-constrained ensemble learning framework for non-intrusive bond wire health assessment via Vce-on prediction. The methodological innovation lies in the synergistic integration of multidimensional feature engineering, adaptive ensemble fusion, and domain-informed regularization. A comprehensive 16-dimensional feature vector is constructed from multi-physical measurements, including electrical, thermal, and aging parameters, with novel interaction terms explicitly modeling electro-thermal stress coupling. A dynamic weighting mechanism then adaptively fuses three specialized gradient boosting models (CatBoost for high-current, LightGBM for thermal-stress, and XGBoost for late-life conditions) based on context-aware performance assessment. Finally, the meta-learner incorporates a physics-based regularization term that enforces fundamental semiconductor properties, ensuring thermodynamic consistency. Experimental validation demonstrates that the proposed framework achieves a mean absolute error of 0.0066 V and R2 of 0.9998 in predicting Vce-on, representing a 48.4% improvement over individual base models while maintaining 99.1% physical constraint compliance. These results establish a paradigm-shifting approach that harmonizes data-driven learning with physical principles, enabling accurate, robust, and practical health monitoring for next-generation power electronic systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

17 pages, 18689 KB  
Article
Assessing the Impact of T-Mart Adjacency Effect Correction on Turbidity Retrieval from Landsat 8/9 and Sentinel-2 Imagery (Case Study: St. Lawrence River, Canada)
by Mohsen Ansari, Yulun Wu and Anders Knudby
Remote Sens. 2026, 18(1), 127; https://doi.org/10.3390/rs18010127 - 30 Dec 2025
Viewed by 191
Abstract
In inland waters, Atmospheric Correction (AC), including Adjacency Effect (AE) correction, is a major challenge for water quality retrieval using optical satellite data. This study evaluated three image pre-processing options for turbidity retrieval in the St. Lawrence River using Sentinel-2 (S2) and Landsat [...] Read more.
In inland waters, Atmospheric Correction (AC), including Adjacency Effect (AE) correction, is a major challenge for water quality retrieval using optical satellite data. This study evaluated three image pre-processing options for turbidity retrieval in the St. Lawrence River using Sentinel-2 (S2) and Landsat 8/9 (L8/9) imagery with the Light Gradient Boosting Machine (LightGBM) model: (1) No pre-processing, i.e., use of Top-of-Atmosphere (TOA) reflectance, (2) AC pre-processing, obtaining water-leaving reflectance (Rw) from AC for the Operational Land Imager lite (ACOLITE)’s Dark Spectrum Fitting (DSF) technique, and (3) AE pre-processing, correcting for the AE using T-Mart before obtaining Rw from DSF. Results demonstrated that AE pre-processing outperformed the other two options. For L8/9, AE pre-processing reduced the Root Mean Square Error (RMSE) and improved the median symmetric accuracy (ε) by 48.8% and 19.0%, respectively, compared with AC pre-processing, and by 48.5% and 50.7%, respectively, compared with No pre-processing. For S2, AE pre-processing performed better than AC pre-processing and also outperformed No pre-processing, reducing RMSE by 28.4% and ε by 50.8%. However, No pre-processing yielded the lowest absolute symmetric signed percentage bias (|β|) among all pre-processing options. Analysis indicated that AE pre-processing yielded superior performance within 0–300 m from shore than other options, where the AE influence is strongest. Turbidity maps generated using AE pre-processing were smoother and less noisy compared to the other pre-processing options, particularly in cloud-adjacent regions. Overall, our findings suggest that incorporating AE correction through T-Mart improves the performance of the LightGBM model for turbidity retrieval from both L8/9 and S2 imagery in the St. Lawrence River, compared to the alternative pre-processing options. Full article
(This article belongs to the Special Issue Recent Advances in Water Quality Monitoring)
Show Figures

Graphical abstract

33 pages, 95501 KB  
Article
IntegratingDeep Learning with Urban Greenery: Analyzing Visual Perception Through Street View Images in Tianjin, China
by Yu-Xiang Sun, Yuan-Yuan Sun, Qian Ji, Zi-Tong Zhao, Yan-Kui Yuan, Sheng-Bei Zhou and Feng-Liang Tang
Forests 2026, 17(1), 32; https://doi.org/10.3390/f17010032 - 26 Dec 2025
Viewed by 184
Abstract
Rapid urbanization has intensified the demand for street designs that reconcile ecological quality with positive human experiences, particularly in high-density cities such as Tianjin, China. Streets function as key interfaces where ecological processes, social activities and human perception intersect. However, existing research tends [...] Read more.
Rapid urbanization has intensified the demand for street designs that reconcile ecological quality with positive human experiences, particularly in high-density cities such as Tianjin, China. Streets function as key interfaces where ecological processes, social activities and human perception intersect. However, existing research tends to emphasize the amount of greenery while overlooking its structural characteristics, to treat perception as a psychological response decoupled from spatial context, and to make limited use of fine-grained functional data to examine how ecology and perception interact. This study develops an integrated analytical framework that combines the DeepLabV3+ model to extract the Urban Street Greenery Generalized Structure (USGGS) from Baidu Street View imagery with a vision transformer model trained on the Place Pulse 2.0 dataset to derive multidimensional perceptual metrics. Functional diversity is represented using point-of-interest (POI) data, and an enhanced Light Gradient Boosting Machine (LightGBM) model is employed to explore associations among greenery structure, perceived qualities and functional characteristics. Analyses of six urban districts in Tianjin indicate that ecological and perceived street qualities are closely related to the degree of coupling between vegetation structure and functional diversity. Streets characterized by multi-layered greenery and diverse, active functions tend to exhibit higher perceived aesthetics, safety and vitality, whereas streets with single-layer vegetation or functionally monotonous environments generally do not perform as well. Functional patterns appear to mediate relationships between greening and perception by shaping how ecological form is experienced through everyday social activities. Overall, the results suggest that closer coordination between ecological design and functional organization is important for fostering urban streets that combine environmental resilience with strong perceived appeal. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

25 pages, 5648 KB  
Article
Proposal for Two-Stage Machine Learning-Based Algorithm for Dried Moringa Leaves Quality Classification
by Putu Sugiartawan, Nobuo Funabiki, I Nyoman Darma Kotama, Amma Liesvarastranta Haz, Komang Candra Brata and Ni Wayan Wardani
Appl. Sci. 2026, 16(1), 239; https://doi.org/10.3390/app16010239 - 25 Dec 2025
Viewed by 293
Abstract
Nowadays, dried Moringa leaves (M. oleifera) are increasingly in demand due to their health benefits. High-quality ones have shown remarkable positive effects as antioxidants, antidiabetics, and anti-inflammatory agents. However, in the industry, the quality classification process into six categories is performed [...] Read more.
Nowadays, dried Moringa leaves (M. oleifera) are increasingly in demand due to their health benefits. High-quality ones have shown remarkable positive effects as antioxidants, antidiabetics, and anti-inflammatory agents. However, in the industry, the quality classification process into six categories is performed manually by farmers, which is time-consuming and error-prone. Particularly, the two highest categories of Class A and Class B are hard to distinguish, since they are visually similar. In this paper, to automate the classification process, we introduce a new high-resolution dataset, extract color and texture features using the Gray-Level Co-occurrence Matrix (GLCM) method, and present a two-stage classification method using the Light Gradient Boosting Machine (LightGBM) algorithm with them. The experimental results show that the proposal improved classification accuracy from 82% by the baseline algorithm to 90% while maintaining high processing efficiency, demonstrating its potential for real-time and scalable industrial applications in dried Moringa leaves quality grading. Full article
(This article belongs to the Special Issue Latest Research on Computer Vision and Image Processing)
Show Figures

Figure 1

44 pages, 15821 KB  
Article
Initial Results of Site-Specific Assessment of Cereal Leaf Beetle (Oulema melanopus L.) Damage Using RGB Images by UAV
by Fruzsina Enikő Sári-Barnácz, Jozsef Kiss, György Kerezsi, András Zoltán Szeredi, Zoltán Pálinkás and Mihály Zalai
Remote Sens. 2026, 18(1), 58; https://doi.org/10.3390/rs18010058 - 24 Dec 2025
Viewed by 277
Abstract
Cereal leaf beetle (CLB, Oulema melanopus L.) is an important pest that damages cereals. Insecticide use against CLB could be reduced with targeted treatments. Our aims were to develop a methodology to map CLB damage on cereal fields using remote sensing. We investigated [...] Read more.
Cereal leaf beetle (CLB, Oulema melanopus L.) is an important pest that damages cereals. Insecticide use against CLB could be reduced with targeted treatments. Our aims were to develop a methodology to map CLB damage on cereal fields using remote sensing. We investigated the suitability of four vegetation indices (VIs: the Visible Atmospherically Resistance Index (VARI), the Green Chromatic Coordinate (GCC), the Green Leaf Index (GLI), and the Normalized Green–Red Difference Index (NGRDI)) derived from RGB images (drone (UAV) imagery). Study sites were located in different regions of Hungary in 2024. Images were taken at different phenological stages of cereals. Suitability of VIs was analyzed with ANOVA and MANOVA. Machine learning models were developed to classify damaged field sections with random forest (RF) and Light Gradient Boosting Machine (LightGBM) algorithms. Results show that VARI, GCC, GLI, and NGRDI contain complementary features for early detection of CLB damage. Difference in sample points’ VI from field median is advantageous for the LGBM algorithm (F1damaged = 0.64–0.72), while the best RF models were obtained with more features (F1damaged = 0.66). Random test data splits had optimistic results (overall accuracy: RF = 0.63–0.80, LightGBM = 0.63–0.79) compared to spatially controlled test splits (overall accuracy: RF = 0.53–0.70, LightGBM = 0.53–0.62). Full article
Show Figures

Graphical abstract

Back to TopTop