Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = lifetime thermometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3154 KB  
Article
Lanthanide Tris-Acetylacetonate Complexes for Luminescent Thermometry: From Isolated Compounds to Hybrid Prussian Blue Core–Silica Shell Nanoparticles
by Aurore Larquey, Gautier Félix, Saad Sene, Joulia Larionova and Yannick Guari
Inorganics 2025, 13(9), 304; https://doi.org/10.3390/inorganics13090304 - 11 Sep 2025
Viewed by 1447
Abstract
Precise remote temperature sensing at the micro- and nanoscale is a growing necessity in modern science and technology. We report a series of luminescent tris-acetylacetonate lanthanide complexes, Ln(acac)3(H2O)2 (Ln = Eu (1Eu), Tb (1Tb), [...] Read more.
Precise remote temperature sensing at the micro- and nanoscale is a growing necessity in modern science and technology. We report a series of luminescent tris-acetylacetonate lanthanide complexes, Ln(acac)3(H2O)2 (Ln = Eu (1Eu), Tb (1Tb), Yb (1Yb)); acac = acetylacetonate), operating as self-referenced thermometers in the 290–350 K range, both in the solid state and when embedded in hybrid nanoparticles. Among the investigated systems, the Eu3+ complex exhibits excellent lifetime-based thermometric performance, achieving a maximum relative sensitivity (Srmax) of 2.9%·K−1 at 340 K with a temperature uncertainty (δT) as low as 0.02 K and an average temperature uncertainty (δT¯) of 0.5 K, placing it among the most effective ratiometric lanthanide-based luminescent thermometers reported to date. The Yb3+ analog enables intensity-based thermometry in the near-infrared domain with a good sensitivity Srmax = 0.5%·K−1 at 293 K, δT = 0.5 K at 303 K, and δT¯ = 1.6 K. These molecular thermometers were further incorporated into the shell of Prussian Blue@SiO2 core–shell nanoparticles. Among the resulting hybrids, PB@SiO2-acac/(1Tb/1Eu) (with a Tb/Eu ratio of 2/8) stood out by enabling ratiometric temperature sensing based on the Eu3+5D07F2 lifetime, with satisfactory parameters (Srmax = 0.9%·K−1, δT = 0.21 K at 303 K, and δT¯ = 1.1 K). These results highlight the potential of simple coordination complexes and their nanohybrids for advanced luminescent thermometry applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 10576 KB  
Article
Dy3+ and Mn4+ Ions Co-Doped Stannate Phosphors for Applications in Dual-Mode Optical Thermometry
by Zaifa Yang, Zhide Wang, Yi Su, Wenyue Zhang and Yu Zheng
Molecules 2025, 30(7), 1569; https://doi.org/10.3390/molecules30071569 - 31 Mar 2025
Cited by 3 | Viewed by 752
Abstract
In order to break through the limitations of the application of traditional temperature measurement technology, non-contact optical temperature sensing material with good sensitivity is one of the current research hotspots. Herein, a series of Dy3+ and Mn4+ co-doping Mg3Ga [...] Read more.
In order to break through the limitations of the application of traditional temperature measurement technology, non-contact optical temperature sensing material with good sensitivity is one of the current research hotspots. Herein, a series of Dy3+ and Mn4+ co-doping Mg3Ga2SnO8 fluorescent materials were prepared successfully, and the crystal structure, phase purity, and morphology of the synthesized phosphors were comprehensively investigated, as well as their photoluminescence properties, energy transfer, and high-temperature thermal stability. The two pairs of independent thermally coupled energy levels of Dy3+ ions and Mn4+ ions in Mg3Ga2SnO8 are utilized to realize the dual-mode optical temperature detection with excellent performance. On the one hand, based on the different ionic energy level transitions of 4F9/26H13/2 and 2Eg4A2g responding differently to temperature, two emission bands of 577 nm and 668 nm were chosen to construct the fluorescence intensity ratio thermometry, and the maximum sensitivity of 1.82 %K−1 was achieved at 473 K. On the other hand, based on the strong temperature dependence of the lifetime of Mn4+ in Mg3Ga2SnO8:0.06Dy3+,0.009Mn4+, fluorescence lifetime thermometry was constructed and a maximum sensitivity of 2.75 %K−1 was achieved at 473 K. Finally, the Mg3Ga2SnO8: 0.06Dy3+,0.009Mn4+ sample realizes dual-mode optical temperature measurement with high sensitivity and a wide temperature detection range, indicating that the sample has promising applications in optical temperature measurement. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 3594 KB  
Article
Structure–Dopant Concentration Relations in Europium-Doped Yttrium Molybdate and Peak-Sharpening for Luminescence Temperature Sensing
by Tamara Gavrilović, Aleksandar Ćirić, Mina Medić, Zoran Ristić, Jovana Periša, Željka Antić and Miroslav D. Dramićanin
Materials 2024, 17(17), 4267; https://doi.org/10.3390/ma17174267 - 28 Aug 2024
Cited by 1 | Viewed by 1538
Abstract
A set of Eu3+-doped molybdates, Y2−xEuxMo3O12 (x = 0.04; 0.16; 0.2; 0.4; 0.8; 1; 1.6; 2), was synthesized using a solid-state technique and their properties studied as a function of Eu3+ concentration. X-ray diffraction showed [...] Read more.
A set of Eu3+-doped molybdates, Y2−xEuxMo3O12 (x = 0.04; 0.16; 0.2; 0.4; 0.8; 1; 1.6; 2), was synthesized using a solid-state technique and their properties studied as a function of Eu3+ concentration. X-ray diffraction showed that the replacement of Y3+ with larger Eu3+ resulted in a transformation from orthorhombic (low doping concentrations) through tetragonal (high doping concentrations), reaching monoclinic structure for full replacement in Eu2Mo3O12. The intensity of typical Eu3+ red emission slightly increases in the orthorhombic structure then rises significantly with dopant concentration and has the highest value for the tetragonal Y2Mo3O12:80mol% Eu3+. Further, the complete substitution of Y3+ with Eu3+ in the case of monoclinic Eu2Mo3O12 leads to decreased emission intensity. Lifetime follows a similar trend; it is lower in the orthorhombic structure, reaching slightly higher values for the tetragonal structure and showing a strong decrease for monoclinic Eu2Mo3O12. Temperature-sensing properties of the sample with the highest red Eu3+ emission, Y2Mo3O12:80mol% Eu3+, were analyzed by the luminescence intensity ratio method. For the first time, the peak-sharpening algorithm was employed to separate overlapping peaks in luminescence thermometry, in contrast to the peak deconvolution method. The Sr (relative sensitivity) value of 2.8 % K−1 was obtained at room temperature. Full article
Show Figures

Figure 1

13 pages, 7339 KB  
Article
Improving the Two-Color Temperature Sensing Using Machine Learning Approach: GdVO4:Sm3+ Prepared by Solution Combustion Synthesis (SCS)
by Jovana Z. Jelic, Aleksa Dencevski, Mihailo D. Rabasovic, Janez Krizan, Svetlana Savic-Sevic, Marko G. Nikolic, Myriam H. Aguirre, Dragutin Sevic and Maja S. Rabasovic
Photonics 2024, 11(7), 642; https://doi.org/10.3390/photonics11070642 - 6 Jul 2024
Cited by 6 | Viewed by 1781
Abstract
The gadolinium vanadate doped with samarium (GdVO4:Sm3+) nanopowder was prepared by the solution combustion synthesis (SCS) method. After synthesis, in order to achieve full crystallinity, the material was annealed in air atmosphere at 900 °C. Phase identification in the [...] Read more.
The gadolinium vanadate doped with samarium (GdVO4:Sm3+) nanopowder was prepared by the solution combustion synthesis (SCS) method. After synthesis, in order to achieve full crystallinity, the material was annealed in air atmosphere at 900 °C. Phase identification in the post-annealed powder samples was performed by X-ray diffraction, and morphology was investigated by high-resolution scanning electron microscope (SEM) and transmission electron microscope (TEM). Photoluminescence characterization of emission spectrum and time resolved analysis was performed using tunable laser optical parametric oscillator excitation and streak camera. In addition to samarium emission bands, a weak broad luminescence emission band of host VO43− was also observed by the detection system. In our earlier work, we analyzed the possibility of using the host luminescence for two-color temperature sensing, improving the method by introducing the temporal dependence in line intensity ratio measurements. Here, we showed that further improvements are possible by using the machine learning approach. To facilitate the initial data assessment, we incorporated Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) clustering of GdVO4:Sm3+ spectra at various temperatures. Good predictions of temperature were obtained using deep neural networks. Performance of the deep learning network was enhanced by data augmentation technique. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

19 pages, 7766 KB  
Article
Spectral-Kinetic Characterization of YF3: Eu3+ and YF3: (Eu3+, Nd3+) Nanoparticles for Optical Temperature Sensing
by Ekaterina I. Oleynikova, Oleg A. Morozov, Stella L. Korableva and Maksim S. Pudovkin
Photonics 2024, 11(6), 577; https://doi.org/10.3390/photonics11060577 - 20 Jun 2024
Cited by 2 | Viewed by 1755
Abstract
YF3: (Eu3+, Nd3+) nanoparticles (orthorhombic phase, D~130 nm) were synthesized via the co-precipitation method, with subsequent hydrothermal treatment and annealing. The Eu3+ τdecay linearly descends with the increase of temperature in the 80–320 K range. [...] Read more.
YF3: (Eu3+, Nd3+) nanoparticles (orthorhombic phase, D~130 nm) were synthesized via the co-precipitation method, with subsequent hydrothermal treatment and annealing. The Eu3+ τdecay linearly descends with the increase of temperature in the 80–320 K range. The τdecay (T) slope values of the annealed YF3: Eu3+ (2.5 and 5.0 mol.%) nanoparticles were the highest (110·10−4 and 67·10−4, μs/K) in the whole 80–320 K range, respectively. Thus, these samples were chosen for further doping with Nd3+. The maximum Sa and Sr values based on the LIR (IEu/INd) function were 0.067 K−1 (at 80 K) and 0.86%·K−1 (at 154 K), respectively. As mentioned above, the single-doped YF3: Eu3+ (2.5%) nanoparticles showed the linearly decreasing τdecay (T) function (5D07F1 emission). The main idea of Nd3+ co-doping was to increase this slope value (as well as the sensitivity) by increasing the rate of τdecay (T) descent via the addition of one more temperature-dependent channel of 5D0 excited state depopulation. Indeed, we managed to increase the slope (Sa) to 180·10−4 K−1 at 80 K. This result is one of the highest compared to the world analogs. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

12 pages, 1920 KB  
Article
Yb2+-Doped Silicate Glasses as Optical Sensor Materials for Cryogenic Thermometry
by Hicham El Hamzaoui, Igor Razdobreev, Monika Cieslikiewicz-Bouet, Andy Cassez, Vincent Andrieux and Mohamed Bouazaoui
Sensors 2024, 24(1), 248; https://doi.org/10.3390/s24010248 - 31 Dec 2023
Viewed by 1668
Abstract
Optical sensors constitute attractive alternatives to resistive probes for the sensing and monitoring of temperature (T). In this work, we investigated, in the range from 2 to 300 K, the thermal behavior of Yb2+ ion photoluminescence (PL) in glass hosts [...] Read more.
Optical sensors constitute attractive alternatives to resistive probes for the sensing and monitoring of temperature (T). In this work, we investigated, in the range from 2 to 300 K, the thermal behavior of Yb2+ ion photoluminescence (PL) in glass hosts for cryogenic thermometry. To that end, two kinds of Yb2+-doped preforms, with aluminosilicate and aluminophosphosilicate core glasses, were made using the modified chemical vapor deposition (MCVD) technique. The obtained preforms were then elongated, at about 2000 °C, to canes with an Yb2+-doped core of about 500 µm. Under UV excitation and independently of the core composition, all samples of preforms and their corresponding canes presented a wide visible emission band attributed to Yb2+ ions. Furthermore, PL kinetics measurements, recorded at two emission wavelengths (502 and 582 nm) under 355 nm pulsed excitation, showed an increase, at very low T, followed by a decrease in lifetime until room temperature (RT). A modified two-level model was proposed to interpret such a decay time dependence versus T. Based on the fit of lifetime data with this model, the absolute (Sa) and relative (Sr) sensitivities were determined for each sample. For both the preform and its corresponding cane, the aluminophosphosilicate glass composition featured the highest performances in the cryogenic domain, with values exceeding 28.3 µsK−1 and 94.4% K−1 at 30 K for Sa and Sr, respectively. The aluminophosphosilicate preform also exhibited the wider T operating range of 10–300 K. Our results show that Yb2+-doped silicate glasses are promising sensing materials for optical thermometry applications in the cryogenic domain. Full article
Show Figures

Figure 1

12 pages, 2595 KB  
Article
Applicability and Limitations of Fluorescence Intensity-Based Thermometry Using a Palette of Organelle Thermometers
by Takeru Yamazaki, Xiao Liu, Young-Tae Chang and Satoshi Arai
Chemosensors 2023, 11(7), 375; https://doi.org/10.3390/chemosensors11070375 - 4 Jul 2023
Cited by 8 | Viewed by 3585
Abstract
Fluorescence thermometry is a microscopy technique in which a fluorescent temperature sensor records temperature changes as alterations of fluorescence signals. Fluorescence lifetime imaging (FLIM) is a promising method for quantitative analysis of intracellular temperature. Recently, we developed small-molecule thermometers, termed Organelle Thermo Greens, [...] Read more.
Fluorescence thermometry is a microscopy technique in which a fluorescent temperature sensor records temperature changes as alterations of fluorescence signals. Fluorescence lifetime imaging (FLIM) is a promising method for quantitative analysis of intracellular temperature. Recently, we developed small-molecule thermometers, termed Organelle Thermo Greens, that target various organelles and achieved quantitative temperature mapping using FLIM. Despite its highly quantitative nature, FLIM-based thermometry cannot be used widely due to expensive instrumentation. Here, we investigated the applicability and limitations of fluorescence intensity (FI)-based analysis, which is more commonly used than FLIM-based thermometry. Temperature gradients generated by artificial heat sources and physiological heat produced by brown adipocytes were visualized using FI- and FLIM-based thermometry. By comparing the two thermometry techniques, we examined how the shapes of organelles and cells affect the accuracy of the temperature measurements. Based on the results, we concluded that FI-based thermometry could be used for “qualitative”, rather than quantitative, thermometry under the limited condition that the shape change and the dye leakage from the target organelle were not critical. Full article
Show Figures

Figure 1

20 pages, 9873 KB  
Article
Fluorescent Microscopy of Hot Spots Induced by Laser Heating of Iron Oxide Nanoparticles
by Anastasia Ryabova, Daria Pominova, Inessa Markova, Aleksey Nikitin, Petr Ostroverkhov, Polina Lasareva, Alevtina Semkina, Ekaterina Plotnikova, Natalia Morozova, Igor Romanishkin, Kirill Linkov, Maksim Abakumov, Andrey Pankratov, Rudolf Steiner and Victor Loschenov
Photonics 2023, 10(7), 705; https://doi.org/10.3390/photonics10070705 - 21 Jun 2023
Cited by 6 | Viewed by 2562
Abstract
Determination of the iron oxide nanoparticles (IONPs) local temperature during laser heating is important in the aspect of laser phototherapy. We have carried out theoretical modeling of IONPs local electromagnetic (EM) field enhancement and heating under the laser action near individual IONPs and [...] Read more.
Determination of the iron oxide nanoparticles (IONPs) local temperature during laser heating is important in the aspect of laser phototherapy. We have carried out theoretical modeling of IONPs local electromagnetic (EM) field enhancement and heating under the laser action near individual IONPs and ensembles of IONPs with different sizes, shapes and chemical phases. For experimental determination of IONPs temperature, we used fluorescence thermometry with rhodamine B (RhB) based on its lifetime. Depending on the IONPs shape and their location in space, a significant change in the spatial distribution of the EM field near the IONPs surface is observed. The local heating of IONPs in an ensemble reaches sufficiently high values; the relative change is about 35 °C for Fe2O3 NPs. Nevertheless, all the studied IONPs water colloids showed heating by no more than 10 °C. The heating temperature of the ensemble depends on the thermal conductivity of the medium, on which the heat dissipation depends. During laser scanning of a cell culture incubated with different types of IONPs, the temperature increase, estimated from the shortening of the RhB fluorescence lifetime, reaches more than 100 °C. Such “hot spots” within lysosomes, where IONPs predominantly reside, lead to severe cellular stress and can be used for cell therapy. Full article
(This article belongs to the Special Issue Fluorescence Microscopy)
Show Figures

Figure 1

12 pages, 3151 KB  
Article
Nd3+, Yb3+:YF3 Optical Temperature Nanosensors Operating in the Biological Windows
by Maksim Pudovkin, Ekaterina Oleynikova, Airat Kiiamov, Mikhail Cherosov and Marat Gafurov
Materials 2023, 16(1), 39; https://doi.org/10.3390/ma16010039 - 21 Dec 2022
Cited by 13 | Viewed by 2503
Abstract
This work is devoted to the study of thermometric performances of Nd3+ (0.1 or 0.5 mol.%), Yb3+ (X%):YF3 nanoparticles. Temperature sensitivity of spectral shape is related to the phonon-assisted nature of energy transfer (PAET) between Nd3+ and Yb3+ [...] Read more.
This work is devoted to the study of thermometric performances of Nd3+ (0.1 or 0.5 mol.%), Yb3+ (X%):YF3 nanoparticles. Temperature sensitivity of spectral shape is related to the phonon-assisted nature of energy transfer (PAET) between Nd3+ and Yb3+). However, in the case of single-doped Nd3+ (0.1 or 0.5 mol.%):YF3 nanoparticles, luminescence decay time (LDT) of 4F3/2 level of Nd3+ in Nd3+ (0.5 mol.%):YF3 decreases with the temperature decrease. In turn, luminescence decay time in Nd3+ (0.1 mol.%):YF3 sample remains constant. It was proposed, that at 0.5 mol.% the cross-relaxation (CR) between Nd3+ ions takes place in contradistinction from 0.1 mol.% Nd3+ concentration. The decrease of LDT with temperature is explained by the decrease of distances between Nd3+ with temperature that leads to the increase of cross-relaxation efficiency. It was suggested, that the presence of both CR and PAET processes in the studied system (Nd3+ (0.5 mol.%), Yb3+ (X%):YF3) nanoparticles provides higher temperature sensitivity compared to the systems having one process (Nd3+ (0.1 mol.%), Yb3+ (X%):YF3). The experimental results confirmed this suggestion. The maximum relative temperature sensitivity was 0.9%·K−1 at 80 K. Full article
(This article belongs to the Collection Luminescent Materials)
Show Figures

Graphical abstract

20 pages, 4080 KB  
Article
Polymeric Nanoparticles with Embedded Eu(III) Complexes as Molecular Probes for Temperature Sensing
by Kirill M. Kuznetsov, Vadim A. Baigildin, Anastasia I. Solomatina, Ekaterina E. Galenko, Alexander F. Khlebnikov, Victor V. Sokolov, Sergey P. Tunik and Julia R. Shakirova
Molecules 2022, 27(24), 8813; https://doi.org/10.3390/molecules27248813 - 12 Dec 2022
Cited by 8 | Viewed by 2877
Abstract
Three novel luminescent Eu(III) complexes, Eu1Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from [...] Read more.
Three novel luminescent Eu(III) complexes, Eu1Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from 18.3 to 31.6%, excited-state lifetimes in the range of 243–1016 ms at 20 °C, and lifetime temperature sensitivity of 0.9%/K (Eu1), 1.9%/K (Eu2), and 1.7%/K (Eu3). The chromophores were embedded into biocompatible latex nanoparticles (NPs_Eu1NPs_Eu3) that prevented emission quenching and kept the photophysical characteristics of emitters unchanged with the highest temperature sensitivity of 1.3%/K (NPs_Eu2). For this probe cytotoxicity, internalization dynamics and localization in CHO-K1 cells were studied together with lifetime vs. temperature calibration in aqueous solution, phosphate buffer, and in a mixture of growth media and fetal bovine serum. The obtained data were then averaged to give the calibration curve, which was further used for temperature estimation in biological samples. The probe was stable in physiological media and displayed good reproducibility in cycling experiments between 20 and 40 °C. PLIM experiments with thermostated CHO-K1 cells incubated with NPs_Eu2 indicated that the probe could be used for temperature estimation in cells including the assessment of temperature variations upon chemical shock (sample treatment with mitochondrial uncoupling reagent). Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry)
Show Figures

Graphical abstract

22 pages, 4560 KB  
Article
Influence of Tartrate Ligand Coordination over Luminescence Properties of Chiral Lanthanide-Based Metal–Organic Frameworks
by Uxua Huizi-Rayo, Xuban Gastearena, Ana M. Ortuño, Juan M. Cuerva, Antonio Rodríguez-Diéguez, Jose Angel García, Jesus Ugalde, Jose Manuel Seco, Eider San Sebastian and Javier Cepeda
Nanomaterials 2022, 12(22), 3999; https://doi.org/10.3390/nano12223999 - 13 Nov 2022
Cited by 4 | Viewed by 3473
Abstract
The present work reports on a detailed discussion about the synthesis, characterization, and luminescence properties of three pairs of enantiopure 3D metal–organic frameworks (MOFs) with general formula {[Ln2(L/D-tart)3(H2O)2]·3H2O}n (3D_Ln-L/D, where [...] Read more.
The present work reports on a detailed discussion about the synthesis, characterization, and luminescence properties of three pairs of enantiopure 3D metal–organic frameworks (MOFs) with general formula {[Ln2(L/D-tart)3(H2O)2]·3H2O}n (3D_Ln-L/D, where Ln = Sm(III), Eu(III) or Gd(III), and L/D-tart = L- or D-tartrate), and ten pairs of enantiopure 2D coordination polymers (CPs) with general formula [Ln(L/D-Htart)2(OH)(H2O)2]n (2D_Ln-L/D, where Ln = Y(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III) or Yb(III), and L/D-Htart = hydrogen L- or D-tartrate) based on single-crystal X-ray structures. Enantiopure nature of the samples has been further corroborated by Root Mean Square Deviation (RMSD) as well as by circular dichroism (CD) spectra. Solid-state emission spectra of Eu(III), Tb(III), and Dy(III)-based compounds confirm the occurrence of ligand-to-metal charge transfers in view of the characteristic emissions for these lanthanide ions, and emission decay curves were also recorded to estimate the emission lifetimes for the reported compounds. A complete theoretical study was accomplished to better understand the energy transfers occurring in the Eu-based counterparts, which allows for explaining the different performances of 3D-MOFs and 2D-layered compounds. As inferred from the colorimetric diagrams, emission characteristics of Eu-based 2D CPs depend on the temperature, so their luminescent thermometry has been determined on the basis of a ratiometric analysis between the ligand-centered and Eu-centered emission. Finally, a detailed study of the polarized luminescence intensity emitted by the samples is also accomplished to support the occurrence of chiro-optical activity. Full article
Show Figures

Graphical abstract

14 pages, 7565 KB  
Article
Impact of Methane and Hydrogen-Enriched Methane Pilot Injection on the Surface Temperature of a Scaled-Down Burner Nozzle Measured Using Phosphor Thermometry
by Henrik Feuk, Francesco Pignatelli, Arman Subash, Ruike Bi, Robert-Zoltán Szász, Xue-Song Bai, Daniel Lörstad and Mattias Richter
Int. J. Turbomach. Propuls. Power 2022, 7(4), 29; https://doi.org/10.3390/ijtpp7040029 - 1 Nov 2022
Cited by 6 | Viewed by 3005
Abstract
The surface temperature of a burner nozzle using three different pilot hardware configurations was measured using lifetime phosphor thermometry with the ZnS:Ag phosphor in a gas turbine model combustor designed to mimic the Siemens DLE (Dry Low Emission) burner. The three pilot hardware [...] Read more.
The surface temperature of a burner nozzle using three different pilot hardware configurations was measured using lifetime phosphor thermometry with the ZnS:Ag phosphor in a gas turbine model combustor designed to mimic the Siemens DLE (Dry Low Emission) burner. The three pilot hardware configurations included a non-premixed pilot injection setup and two partially premixed pilot injections where one had a relatively higher degree of premixing. For each pilot hardware configuration, the combustor was operated with either methane or hydrogen-enriched methane (H2/CH4: 50/50 in volume %). The local heating from pilot flames was much more significant for hydrogen-enriched methane compared with pure methane due to the pilot flames being in general more closely attached to the pilot nozzles with hydrogen-enriched methane. For the methane fuel, the average surface temperature of the burner nozzle was approximately 40 K higher for the partially premixed pilot injection configuration with a lower degree of mixing as compared to the non-premixed pilot injection configuration. In contrast, with the hydrogen-enriched methane fuel, the differences in surface temperature between the different pilot injection hardware configurations were much smaller due to the close-to-nozzle frame structure. Full article
Show Figures

Graphical abstract

12 pages, 2592 KB  
Article
Luminescence of Mn4+ in a Zero-Dimensional Organic–Inorganic Hybrid Phosphor [N(CH3)4]2ZrF6 for Dual-Mode Temperature Sensing
by Jing Wang, Jitao Lu, Yahong Wu and Mingjun Song
Materials 2022, 15(19), 6543; https://doi.org/10.3390/ma15196543 - 21 Sep 2022
Cited by 9 | Viewed by 2322
Abstract
Searching for new low-dimensional organic–inorganic hybrid phosphors is of great significance due to their unique optical properties and wide applications in the optoelectronic field. In this work, we report a Mn4+ doped zero-dimensional organic–inorganic hybrid phosphor [N(CH3)4]2 [...] Read more.
Searching for new low-dimensional organic–inorganic hybrid phosphors is of great significance due to their unique optical properties and wide applications in the optoelectronic field. In this work, we report a Mn4+ doped zero-dimensional organic–inorganic hybrid phosphor [N(CH3)4]2ZrF6, which was synthesized by a wet chemical method. The crystal structure, thermal stability, and optical properties were systemically investigated by means of XRD, SEM, TG-DTA, FTIR, DRS, emission spectra, excitation spectra, as well as decay curves. Narrow red emission with high color purity can be observed from [N(CH3)4]2ZrF6:Mn4+ phosphor, which maintains effective emission intensity even at room temperature, indicating its potential practical application in WLEDs. In the temperature range of 13–295 K, anti-Stokes and Stokes sidebands of Mn4+ ions exhibit different temperature responses. By applying the emission intensity ratio of anti-Stokes vs. Stokes sidebands as temperature readout, an optical thermometer with a maximum absolute sensitivity of 2.13% K−1 and relative sensitivity of 2.47% K−1 can be obtained. Meanwhile, the lifetime Mn4+ ions can also be used for temperature sensing with a maximum relative sensitivity of 0.41% K−1, demonstrating its potential application in optical thermometry. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

10 pages, 3682 KB  
Communication
Photoluminescence and Energy Transfer in Double- and Triple-Lanthanide-Doped YVO4 Nanoparticles
by Vassiliy A. Medvedev, Ilya E. Kolesnikov, Pavel K. Olshin, Mikhail D. Mikhailov, Alina A. Manshina and Daria V. Mamonova
Materials 2022, 15(7), 2637; https://doi.org/10.3390/ma15072637 - 3 Apr 2022
Cited by 5 | Viewed by 2799
Abstract
Optical materials doped with several lanthanides are unique in their properties and are widely used in various fields of science and technology. The study of these systems provides solutions for noncontact thermometry, bioimaging, sensing technology, and others. In this paper, we report on [...] Read more.
Optical materials doped with several lanthanides are unique in their properties and are widely used in various fields of science and technology. The study of these systems provides solutions for noncontact thermometry, bioimaging, sensing technology, and others. In this paper, we report on the demonstration of YVO4 nanoparticles doped with one, two, and three different rare earth ions (Tm3+, Er3+, and Nd3+). We discuss the morphology, structural properties, and luminescence behavior of particles. Luminescence decay kinetics reveal the energy transfer efficiency (up to 78%) for different ions under the selective excitation of individual ions. Thus, we found that the energy transition from Tm3+ is more favorable than from Er3+ while we did not observe any significant energy rearrangement in the samples under the excitation of Nd3+. The observed strong variation of REI lifetimes makes the suggested nanoparticles promising for luminescent labeling, anticounterfeiting, development of data storage systems, etc. Full article
(This article belongs to the Special Issue Optical Properties and Applications of Nanocrystals)
Show Figures

Graphical abstract

12 pages, 2868 KB  
Article
Temperature-Independent Lifetime and Thermometer Operated in a Biological Window of Upconverting NaErF4 Nanocrystals
by Kailei Lu, Yingxin Yi, Li Xu, Xianhao Sun, Lu Liu and Hanyang Li
Nanomaterials 2020, 10(1), 24; https://doi.org/10.3390/nano10010024 - 20 Dec 2019
Cited by 36 | Viewed by 3934
Abstract
Lifetime of lanthanide luminescence basically decreases with increasing the ambient temperature. In this work, we developed NaErF4 core–shell nanocrystals with compensation of the lifetime variation with temperature. Upconversion lifetime of various emissions remains substantially unchanged as increasing the ambient temperature, upon 980/1530 [...] Read more.
Lifetime of lanthanide luminescence basically decreases with increasing the ambient temperature. In this work, we developed NaErF4 core–shell nanocrystals with compensation of the lifetime variation with temperature. Upconversion lifetime of various emissions remains substantially unchanged as increasing the ambient temperature, upon 980/1530 nm excitation. The concentrated dopants, leading to extremely strong interactions between them, are responsible for the unique temperature-independent lifetime. Besides, upconversion mechanisms of NaErF4 core-only and core–shell nanocrystals under 980 and 1530 nm excitations were comparatively investigated. On the basis of luminescent ratiometric method, we demonstrated the optical thermometry using non-thermally coupled 4F9/2 and 4I9/2 emissions upon 1530 nm excitation, favoring the temperature monitoring in vivo due to both excitation and emissions fall in the biological window. The formed NaErF4 core–shell nanocrystals with ultra-small particle size, highly efficient upconversion luminescence, unique temperature-independent lifetimes, and thermometry operated in a biological window, are versatile in applications such as anti-counterfeiting, time-domain manipulation, and biological thermal probes. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

Back to TopTop