Temperature-Independent Lifetime and Thermometer Operated in a Biological Window of Upconverting NaErF4 Nanocrystals
Abstract
:1. Introduction
2. Experiment Section
2.1. Synthesis of NaErF4 Core-Only NCs
2.2. Synthesis of NaErF4@NaGdF4 Core–shell NCs
2.3. Characterization and Spectral Measurements
3. Results and Discussion
3.1. Characterizations
3.2. UC luminescence Properties
3.3. Anomalous Variation of Lifetime Versus Temperature
3.4. Temperature Sensing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wen, S.H.; Zhou, J.J.; Zheng, K.Z.; Bednarkiewicz, A.; Liu, X.G.; Jin, D.Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Drees, C.; Raj, A.N.; Kurre, R.; Busch, K.B.; Haase, M.; Piehler, J. Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angew. Chem. Int. Ed. Engl. 2016, 55, 11668–11672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Huang, L.; Li, Z.J.; Ma, G.L.; Zhou, Y.B.; Han, G. Illuminating cell signaling with near-infrared light-responsive nanomaterials. ACS Nano 2016, 10, 3881–3885. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Wang, Z.; Cheong, H.; Wang, Y.; Zhang, R.; Lin, J.; Zheng, Y.; Gao, M.; Xing, B. Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, S. Perspectives for upconverting nanoparticles. ACS Nano 2017, 11, 10644–10653. [Google Scholar] [CrossRef]
- Chan, E.M. Combinatorial approaches for developing upconverting nanomaterials: High-throughput screening, modeling, and applications. Chem. Soc. Rev. 2015, 44, 1653–1679. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.H.; Wang, J.; Xu, J.; Chen, H.Y.; Zhang, C.; Hong, M.H.; Liu, X.G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, B.Y.; Jin, D.Y.; Liu, X.G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936. [Google Scholar] [CrossRef]
- Boyer, J.C.; van Veggel, F.C.J.M. Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.A.; Liu, X.G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. Engl. 2010, 122, 7618–7622. [Google Scholar] [CrossRef]
- Viger, M.L.; Live, L.S.; Therrien, O.D.; Boudreau, D. Reduction of self-quenching in fluorescent silica-coated silver nanoparticles. Plasmonics 2008, 3, 33–40. [Google Scholar] [CrossRef]
- Chen, G.Y.; Agren, H.; Ohulchanskyy, T.Y.; Prasad, P.N. Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713. [Google Scholar] [CrossRef] [PubMed]
- Gargas, D.J.; Chan, E.M.; Ostrowski, A.D.; Aloni, S.; Altoe, M.V.P.; Barnard, E.S.; Sanii, B.; Urban, J.J.; Milliron, D.J.; Cohen, B.E. Engineering bright sub-10 nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, L.; Strek, W.; Bednarkiewicz, A.; Hreniak, D. Bright upconversion emission of Nd3+ in LiLa1-xNdxP4O12 nanocrystalline powders. Opt. Mater. 2011, 33, 1492–1494. [Google Scholar] [CrossRef]
- Li, X.M.; Wang, R.; Zhang, F.; Zhao, D.Y. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 2014, 14, 3634–3639. [Google Scholar] [CrossRef]
- Johnson, N.J.J.; He, S.; Diao, S.; Chan, E.M.; Dai, H.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282. [Google Scholar] [CrossRef]
- Zuo, J.; Li, Q.Q.; Bai, X.; Li, C.X.; Chang, Y.L.; Zhang, Y.L.; Liu, X.M.; Tu, L.P.; Zhang, H.; Kong, X.G. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 2017, 9, 7941–7946. [Google Scholar] [CrossRef]
- Chen, Q.S.; Xie, X.J.; Huang, B.L.; Liang, L.L.; Han, S.Y.; Yi, Z.G.; Wang, Y.; Li, Y.; Fan, D.Y.; Huang, L.; et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem. Int. Ed. 2017, 56, 7605–7609. [Google Scholar] [CrossRef]
- Shang, Y.F.; Hao, S.W.; Lv, W.Q.; Chen, T.; Tian, L.; Lei, Z.T.; Yang, C.H. Confining excitation energy of Er3+-sensitized upconversion nanoparticles through introducing various energy trapping centers. J. Mater. Chem. C 2018, 6, 3869–3875. [Google Scholar] [CrossRef]
- Liu, L.; Lu, K.L.; Yan, D.; Zhao, E.; Li, H.; Shahzad, M.; Zhang, Y. Concentration dependent optical transition probabilities in ultra-small upconversion nanocrystals. Opt. Express 2018, 26, 23471–23479. [Google Scholar] [CrossRef]
- Liu, L.; Lu, K.L.; Xu, L.; Tang, D.; Liu, C.; Shahzad, M.; Yan, D.; Khan, F.; Zhao, E.; Li, H. Highly efficient upconversion luminescence of Er heavily doped nanocrystals through 1530, nm excitation. Opt. Lett. 2019, 44, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhao, Y.J.; Zhang, R.; Liu, Y.; Liu, D.; Goldys, E.M.; Yang, X.; Xi, P.; Sunna, A.; Lu, J.; et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 2013, 8, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Guo, Z.; Yuan, W.; Kong, M.; Liu, Y.; Gao, Y.; Feng, W.; Wang, F.; Zhou, J.; Jin, D.; et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photon. 2019, 8, 32–36. [Google Scholar] [CrossRef]
- Yu, W.; Xu, W.; Song, H.; Zhang, S. Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: Influence of particle size and crystalline phase. Dalton Trans. 2014, 43, 6139–6147. [Google Scholar] [CrossRef] [PubMed]
- Vetrone, F.; Naccache, R.; Zamarrón, A.; de la Fuente, A.J.; Sanz-Rodríguez, F.; Maestro, L.M.; Rodríguez, E.M.; Jaque, D.; García Solé, J.; Capobianco, J. Temperature sensing using fluorescent nanothermometers. ACS Nano 2010, 4, 3254–3258. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Z.; Lei, P.; Yu, Y.; Yao, S.; Song, S.; Liu, X.; Su, Y.; Dong, L.; Feng, J.; et al. α-NaYb(Mn)F4:Er3+/Tm3+@NaYF4 UCNPs as “band-shape” luminescent nanothermometers over a wide temperature range. ACS Appl. Mater. Inter. 2015, 7, 20813–20819. [Google Scholar] [CrossRef]
- Tang, W.; Wang, S.; Li, Z.; Su, Y.; Zheng, L.; Zhang, R.; Yang, B.; Cao, W.; Yu, M. Ultrahigh-sensitive optical temperature sensing based on ferroelectric Pr3+-doped (K0.5Na0.5)NbO3. Appl. Phys. Lett. 2016, 108, 1–6. [Google Scholar] [CrossRef]
- Lu, H.; Hao, H.; Shi, G.; Gao, Y.; Wang, R.; Song, Y.; Wang, Y.; Zhang, X. Optical temperature sensing in β-NaLuF4:Yb3+/Er3+/Tm3+ based on thermal, quasi-thermal and non-thermal coupling levels. RSC Adv. 2016, 6, 55307–55311. [Google Scholar] [CrossRef]
- Wang, F.; Deng, R.R.; Liu, X.G. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 2014, 9, 1634–1644. [Google Scholar] [CrossRef]
- Pandozzi, F.; Vetrone, F.; Boyer, J.C.; Naccache, R.; Capobianco, J.A.; Speghini, A.; Bettinelli, M. A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals. J. Phys. Chem. B 2005, 109, 17400–17405. [Google Scholar] [CrossRef]
- Li, L.; Xu, W.; Zheng, L.; Qin, F.; Zhou, Y.; Liang, Z.; Zhang, Z.; Cao, W. Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+. Opt. Express 2016, 24, 13244–13249. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.A.; Pokhrel, M.; Sardar, D.K. Intense visible and near infrared upconversion in M2O2S:Er (M = Y, Gd, La) phosphor under 1550, nm excitation. Mater. Lett. 2012, 68, 395–398. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Jacinto, C.; Vermelho, M.V.D.; Gouveia, E.A.; de Araujo, M.T.; Udo, P.T.; Astrath, N.G.C.; Baesso, M.L. Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses. Appl. Phys. Lett. 2007, 91, 1–4. [Google Scholar] [CrossRef]
- Miyakawa, T.; Dexter, D.L. Phonon sidebands, multiphonon relaxation of excited states, and photon-assisted energy transfer between ions in solids. Phys. Rev. B 1970, 1, 2961–2969. [Google Scholar] [CrossRef]
- Weber, M.J. Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys. Rev. 1967, 157, 262–272. [Google Scholar] [CrossRef]
- Yao, L.; Li, Y.; Xu, D.; Lin, H.; Peng, Y.; Yang, S.; Zhang, Y. Upconversion luminescence enhancement and lifetime based thermometry of Na(Gd/Lu)F4 solid solutions. New J. Chem. 2019, 43, 3848–3855. [Google Scholar] [CrossRef]
- Janjua, R.A.; Gao, C.; Dai, R.; Sui, Z.; Raja, M.A.A.; Wang, Z.; Zhen, X.; Zhang, Z. Na+-driven nucleation of NaYF4:Yb, Er nanocrystals and effect of temperature on their structural transformations and luminescent properties. J. Phys. Chem. C 2018, 122, 23242–23250. [Google Scholar] [CrossRef]
- Cui, X.S.; Cheng, Y.; Lin, H.; Huang, F.; Wu, Q.P.; Wang, Y.S. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles. Nanoscale 2017, 9, 13794–13799. [Google Scholar] [CrossRef]
- Janjua, R.A.; Farooq, U.; Dai, R.; Wang, Z.; Zhang, Z. Wide-range ratiometric upconversion luminescence thermometry based on non-thermally coupled levels of Er in high-temperature cubic phase NaYF4:Yb, Er. Opt. Lett. 2019, 44, 4678–4681. [Google Scholar] [CrossRef]
- Wang, F.; Deng, R.R.; Wang, J.; Wang, Q.X.; Han, Y.; Zhu, H.M.; Chen, X.Y.; Liu, X.G. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 2011, 10, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Wade, S.A.; Collins, S.F.; Baxter, G.W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743–4756. [Google Scholar] [CrossRef]
- Lu, H.; Hao, H.; Gao, Y.; Li, D.; Shi, G.; Song, Y.; Wang, Y.; Zhang, X. Optical sensing of temperature based on non-thermally coupled levels and upconverted white light emission of a Gd2 (WO4)3 phosphor co-doped with in Ho(III), Tm(III), and Yb (III). Microchim. Acta 2017, 184, 641–646. [Google Scholar] [CrossRef]
- Ma, Y.; Xiang, G.; Zhang, J.; Liu, Z.; Zhou, P.; Liu, W.; Tang, X.; Jiang, S.; Zhou, X.; Li, L.; et al. Upconversion properties and temperature sensing behaviors in visible and near-infrared region based on fluorescence intensity ratio in LuVO4:Yb3+/Er3+. J. Alloys Compd. 2018, 769, 325–331. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Bu, Y.; Liu, C.; Liu, T.; Yan, X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015, 5, 86219–86236. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Y.; Gou, J.; Ma, Z.; Li, G.; Man, Y.; Cheng, N. Sol-gel prepared Yb3+/Er3+ co-doped RE2O3 (RE=La, Gd, Lu) nanocrystals: Structural characterization and temperature-dependent upconversion behavior. J. Alloys Compd. 2018, 740, 229–236. [Google Scholar] [CrossRef]
- Geitenbeek, R.G.; Prins, P.T.; Albrecht, W. NaYF4:Er3+, Yb3+/SiO2 core/shell upconverting nanocrystals for luminescence thermometry up to 900 K. J. Phys. Chem. C 2017, 121, 3503–3510. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yue, Z.; Liu, Z. Dual-mode luminescent core-shell nanoarchitectures for highly sensitive optical nanothermometry. J. Alloys Compd. 2019, 787, 585–593. [Google Scholar] [CrossRef]
- Zheng, K.Z.; Song, W.Y.; He, G.H.; Yuan, Z.; Qin, W.P. Five-photon UV upconversion emissions of Er3+ for temperature sensing. Opt. Express 2015, 23, 7653–7658. [Google Scholar] [CrossRef]
- Du, P.; Deng, A.M.; Luo, L.; Yu, J.S. Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer. New J. Chem. 2017, 41, 13855–13861. [Google Scholar] [CrossRef]
- Hemmer, E.; Venkatachalam, N.; Hyodo, H.; Hattorib, A.; Ebinab, Y.; Kishimoto, H.; Soga, K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 2013, 5, 11339–11361. [Google Scholar] [CrossRef] [PubMed]
Excitation | Initial Level | Temperature-Dependent Lifetime (μs) | ||||
---|---|---|---|---|---|---|
300 K | 350 K | 400 K | 450 K | 500 K | ||
980 nm | 4F9/2 | 130 | 130 | 130 | 140 | 140 |
4I9/2 | 230 | 230 | 250 | 260 | 260 | |
1530 nm | 4F9/2 | 140 | 130 | 140 | 140 | 140 |
4I9/2 | 170 | 170 | 180 | 180 | 180 |
Materials | Transitions | Range (K) | Sa-max (K−1) (maximum) | Sr-max (% K−1) | Ref. |
---|---|---|---|---|---|
LuVO4:Yb/Er | 2H11/2/4S3/2 | 303–423 | 0.0083 (123 K) | 1.14 | [44] |
Y2O3:Er | 2H11/2/4S3/2 | 93–613 | 0.0044 (427K) | 0.98 | [45] |
Gd2O3:Yb/Er | 2H11/2/4S3/2 | 298–573 | 0.0078 (528 K) | 1.16 | [46] |
NaYF4:Yb/Er@SiO2 | 2H11/2/4S3/2 | 300–900 | N.A. | 1.02 | [47] |
NaGdF4:Yb/Er | 2H11/2/4S3/2 | 303–363 | 0.0025 (360 K) | 1.12 | [48] |
NaLuF4:Yb/Er | 4D7/2/4G9/2 | 303–523 | 0.0052 (303 K) | 0.43 | [49] |
NaYF4:Yb/Er | 2H11/2/4S3/2 | 303–743 | 0.0044 (637 K) | 0.46 | [50] |
NaErF4@NaGdF4 | 4I9/2/4S3/2 | 303–593 | 0.0149 (593 K) | 1.15 | This work |
2H11/2/4S3/2 | 0.0020 (544 K) | 0.48 | |||
4I9/2/4F9/2 | 0.0024 (303 K) | 0.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Yi, Y.; Xu, L.; Sun, X.; Liu, L.; Li, H. Temperature-Independent Lifetime and Thermometer Operated in a Biological Window of Upconverting NaErF4 Nanocrystals. Nanomaterials 2020, 10, 24. https://doi.org/10.3390/nano10010024
Lu K, Yi Y, Xu L, Sun X, Liu L, Li H. Temperature-Independent Lifetime and Thermometer Operated in a Biological Window of Upconverting NaErF4 Nanocrystals. Nanomaterials. 2020; 10(1):24. https://doi.org/10.3390/nano10010024
Chicago/Turabian StyleLu, Kailei, Yingxin Yi, Li Xu, Xianhao Sun, Lu Liu, and Hanyang Li. 2020. "Temperature-Independent Lifetime and Thermometer Operated in a Biological Window of Upconverting NaErF4 Nanocrystals" Nanomaterials 10, no. 1: 24. https://doi.org/10.3390/nano10010024
APA StyleLu, K., Yi, Y., Xu, L., Sun, X., Liu, L., & Li, H. (2020). Temperature-Independent Lifetime and Thermometer Operated in a Biological Window of Upconverting NaErF4 Nanocrystals. Nanomaterials, 10(1), 24. https://doi.org/10.3390/nano10010024