Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = leucine dehydrogenase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 977 KiB  
Review
Branched-Chain Amino Acids in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential
by Hui-Yu Huang, Shu-Ping Tsao and Tu-Hsueh Yeh
Int. J. Mol. Sci. 2025, 26(14), 6992; https://doi.org/10.3390/ijms26146992 - 21 Jul 2025
Viewed by 366
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra, resulting in motor symptoms such as bradykinesia, tremor, rigidity, and postural instability, as well as a wide variety of non-motor manifestations. Branched-chain amino [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the substantia nigra, resulting in motor symptoms such as bradykinesia, tremor, rigidity, and postural instability, as well as a wide variety of non-motor manifestations. Branched-chain amino acids (BCAAs)—leucine, isoleucine, and valine—are essential nutrients involved in neurotransmitter synthesis, energy metabolism, and cellular signaling. Emerging evidence suggests that BCAA metabolism is intricately linked to the pathophysiology of PD. Dysregulation of BCAA levels has been associated with energy metabolism, mitochondrial dysfunction, oxidative stress, neuroinflammation, and altered neurotransmission. Furthermore, the branched-chain ketoacid dehydrogenase kinase (BCKDK), a key regulator of BCAA catabolism, has been implicated in PD through its role in modulating neuronal energetics and redox homeostasis. In this review, we synthesize current molecular, genetic, microbiome, and clinical evidence on BCAA dysregulation in PD to provide an integrative perspective on the BCAA–PD axis and highlight directions for future translational research. We explored the dualistic role of BCAAs as both potential neuroprotective agents and metabolic stressors, and critically examined the therapeutic prospects and limitations of BCAA supplementation and BCKDK targeting. Full article
(This article belongs to the Special Issue Molecular Research in Parkinson's Disease)
Show Figures

Graphical abstract

17 pages, 4468 KiB  
Article
Integrated Amino Acid Profiling and 4D-DIA Proteomics Reveal Protein Quality Divergence and Metabolic Adaptation in Cordyceps Species
by Chuyu Tang, Yuejun Fan, Tao Wang, Jie Wang, Mengjun Xiao, Min He, Xiyun Chang, Yuling Li and Xiuzhang Li
J. Fungi 2025, 11(5), 365; https://doi.org/10.3390/jof11050365 - 8 May 2025
Viewed by 841
Abstract
To explore the differences in protein quality among classic medicinal entomopathogenic fungi and to evaluate their metabolic adaptability, we analyzed the amino acid composition and proteomic characteristics of Cordyceps sinensis (CS), Cordyceps militaris (CM), and Cordyceps cicadae (CC). Quantitative analysis showed CM contained [...] Read more.
To explore the differences in protein quality among classic medicinal entomopathogenic fungi and to evaluate their metabolic adaptability, we analyzed the amino acid composition and proteomic characteristics of Cordyceps sinensis (CS), Cordyceps militaris (CM), and Cordyceps cicadae (CC). Quantitative analysis showed CM contained the highest crude protein and lysine, methionine, threonine, and valine. CS adapted to high-altitude hypoxia and exhibited lower protein but elevated leucine, isoleucine, and histidine contents, which may contribute to membrane stabilization and oxidative stress resistance. CC displayed higher non-essential amino acids such as arginine, proline, and tyrosine, reflecting active nitrogen metabolism. Four-dimensional data-independent acquisition (4D-DIA) proteomics identified 495 differentially expressed proteins (DEPs). Compared with CS, CM and CC displayed upregulated glutamate oxaloacetate transaminases 2 (GOT2), glutamate dehydrogenase (GDH), and argininosuccinate synthase 1 (ASS1) coordinately regulate nitrogen flux through the alanine-aspartate-glutamate metabolic network and urea cycle, supporting metabolic intermediate replenishment for energy metabolism. The upregulation of branched-chain keto acid dehydrogenase E1 subunit alpha (BCKDHA) and acyl-CoA dehydrogenase short/branched chain (ACADSB) in CM and CC facilitated the integration of branched-chain amino acid catabolism with the TCA cycle, explaining species-specific differences in protein content. This study presents the first application of 4D-DIA proteomics to compare CS, CM, and CC, providing insights into quality divergence mechanisms in medicinal fungi. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

26 pages, 1674 KiB  
Review
Branched-Chain Amino Acids and Inflammation Management in Endurance Sports: Molecular Mechanisms and Practical Implications
by Miaomiao Xu, Danting Hu, Xiaoguang Liu, Zhaowei Li and Liming Lu
Nutrients 2025, 17(8), 1335; https://doi.org/10.3390/nu17081335 - 12 Apr 2025
Viewed by 4147
Abstract
Endurance athletes frequently experience muscle damage and inflammation due to prolonged, high-intensity exercise, which can impair recovery and hinder performance. This review examines the role of branched-chain amino acid (BCAA) supplementation in muscle repair, inflammation modulation, and immune regulation. BCAAs—particularly leucine and isoleucine—activate [...] Read more.
Endurance athletes frequently experience muscle damage and inflammation due to prolonged, high-intensity exercise, which can impair recovery and hinder performance. This review examines the role of branched-chain amino acid (BCAA) supplementation in muscle repair, inflammation modulation, and immune regulation. BCAAs—particularly leucine and isoleucine—activate key molecular pathways, including the mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK), to promote muscle protein synthesis and enhance energy metabolism. They also attenuate inflammatory responses by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways, reducing levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). In addition, BCAAs influence immune function via mechanistic target of rapamycin complex 1 (mTORC1) signaling, enhance autophagy, and mitigate exercise-induced apoptosis. These molecular effects result in reduced muscle soreness, lower muscle damage biomarker levels (e.g., creatine kinase, lactate dehydrogenase), and improved recovery. Practical considerations such as optimal dosage, timing, and co-supplementation with carbohydrates, proteins, or omega-3s are also addressed. While BCAAs show promise as a nutritional strategy for enhancing recovery and controlling inflammation in endurance athletes, further research is needed to refine personalized protocols and clarify long-term effects. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

21 pages, 2431 KiB  
Article
The Involvement of Amino Acid Metabolism in the Mechanisms of Salt Tolerance Adaptation in Medicago sativa and Medicago truncatula
by Sicong Shen, Ling Pan, Junhao Li, Jing Wang, Irshad Ahmad, Huhu Liu, Yuyu Bai, Bowen Kang, Juncheng Yin, Yang Gao, Yiwen Lu and Xiaoshan Wang
Plants 2025, 14(6), 929; https://doi.org/10.3390/plants14060929 - 15 Mar 2025
Viewed by 1018
Abstract
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula ( [...] Read more.
Amino acid metabolism constitutes a major metabolic pathway in plants, playing an important role in the modulation of plant responses to stress. In this study, we investigated the amino acid metabolism responses of M. sativa (Medicago sativa L.) and M. truncatula (Medicago truncatula L.) plants under salt stress using transcriptomic and proteomic approaches to elucidate their salt stress tolerance mechanisms in relation to the regulation of amino acid homeostasis. Transcriptome and proteome sequencing followed by Kyoto Gene and Genome Encyclopedia enrichment analysis revealed 34 differentially expressed genes and 45 differentially expressed proteins involved in valine, leucine, and isoleucine degradation, tyrosine metabolism, and glutathione metabolism. Significant differences were observed in the expression of glutathione S-transferase (GST) within the glutathione metabolic pathway between M. sativa and M. truncatula. The induction of valine, leucine, and isoleucine metabolism, aldehyde dehydrogenases (ALDHs), and alanine-glyoxylate aminotransferases (AGXTs), involved in intracellular reactive oxygen species scavenging, also significantly differed under salt stress. Significant differences were identified in the expression of tyrosine decarboxylases (TDCs) involved in tyrosine metabolism, which are responsible for tyramine biosynthesis and can enhance plant tolerance to salt stress. This study delved into the effects of amino acid metabolism on the salt tolerance mechanisms of M. sativa and M. truncatula, which is crucial in guiding the future breeding of salt-tolerant alfalfa varieties. Full article
(This article belongs to the Special Issue Mechanism of Drought and Salinity Tolerance in Crops)
Show Figures

Figure 1

34 pages, 2265 KiB  
Review
Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders
by Tomoki Bo and Junichi Fujii
Molecules 2025, 30(1), 56; https://doi.org/10.3390/molecules30010056 - 27 Dec 2024
Cited by 7 | Viewed by 6783
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain [...] Read more.
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 2622 KiB  
Article
Small Leucine Zipper Protein Regulates Glucose Metabolism of Prostate Cancer Cells via Induction of Phosphoglycerate Kinase 1
by Sila Han, Sungyeon Park, Suhyun Kim, Sujin Kwon and Jesang Ko
Cancers 2024, 16(22), 3861; https://doi.org/10.3390/cancers16223861 - 18 Nov 2024
Viewed by 1284
Abstract
Background: Cancer cells exhibit altered metabolism whereby glucose is preferentially utilized to produce lactate through aerobic glycolysis. The increase in lactate production creates an acidic microenvironment that supports tumor progression and metastasis. Human small leucine zipper protein (sLZIP) is involved in the transcriptional [...] Read more.
Background: Cancer cells exhibit altered metabolism whereby glucose is preferentially utilized to produce lactate through aerobic glycolysis. The increase in lactate production creates an acidic microenvironment that supports tumor progression and metastasis. Human small leucine zipper protein (sLZIP) is involved in the transcriptional regulation of genes related to migration and invasion of prostate cancer. However, the role of sLZIP in modulating glucose metabolism in prostate cancer remains unknown. This study investigates whether sLZIP regulates the transcription of glycolysis-related genes to promote metabolic reprogramming in prostate cancer. Methods: Depletion of sLZIP resulted in the downregulation of several glycolytic genes, including glucose transporter 1, phosphofructokinase liver type, phosphoglycerate kinase 1 (PGK1), and lactate dehydrogenase. Among these, only PGK1 showed a prominent dose-dependent decrease in mRNA and protein expression after sLZIP silencing. Results: Mechanistically, increasing or decreasing sLZIP affected the promoter activity of PGK1 in a similar manner. Moreover, the absence of sLZIP attenuated the maximum glycolytic rate in prostate cancer cells. These results were further supported by a reduction in lactate secretion, glucose uptake, and ATP production in sLZIP-knockout prostate cancer cells. sLZIP deficiency hindered cancer growth, as demonstrated by proliferation assays. However, overexpression of PGK1 in sLZIP knockout cells resulted in recovery of aerobic glycolysis. Results of the xenograft experiment revealed that mice injected with sLZIP knockout cells exhibited a decrease in tumor mass compared to those injected with control cells. Conclusion: These findings suggest that sLZIP contributes to the metabolic reprogramming of prostate cancer cells via the transcriptional regulation of PGK1. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

18 pages, 3862 KiB  
Article
A LAT1-Like Amino Acid Transporter Regulates Neuronal Activity in the Drosophila Mushroom Bodies
by Julie Delescluse, Mégane M. Simonnet, Anna B. Ziegler, Kévin Piffaretti, Georges Alves, Yael Grosjean and Gérard Manière
Cells 2024, 13(16), 1340; https://doi.org/10.3390/cells13161340 - 13 Aug 2024
Cited by 1 | Viewed by 1840
Abstract
The proper functioning of neural circuits that integrate sensory signals is essential for individual adaptation to an ever-changing environment. Many molecules can modulate neuronal activity, including neurotransmitters, receptors, and even amino acids. Here, we ask whether amino acid transporters expressed by neurons can [...] Read more.
The proper functioning of neural circuits that integrate sensory signals is essential for individual adaptation to an ever-changing environment. Many molecules can modulate neuronal activity, including neurotransmitters, receptors, and even amino acids. Here, we ask whether amino acid transporters expressed by neurons can influence neuronal activity. We found that minidiscs (mnd), which encodes a light chain of a heterodimeric amino acid transporter, is expressed in different cell types of the adult Drosophila brain: in mushroom body neurons (MBs) and in glial cells. Using live calcium imaging, we found that MND expressed in α/β MB neurons is essential for sensitivity to the L-amino acids: Leu, Ile, Asp, Glu, Lys, Thr, and Arg. We found that the Target Of Rapamycin (TOR) pathway but not the Glutamate Dehydrogenase (GDH) pathway is involved in the Leucine-dependent response of α/β MB neurons. This study strongly supports the key role of MND in regulating MB activity in response to amino acids. Full article
(This article belongs to the Special Issue Molecular Studies of Drosophila Signaling Pathways)
Show Figures

Graphical abstract

15 pages, 2731 KiB  
Article
Proteomic Analysis of the Characteristic Flavor Components in Bacillus subtilis BSNK-5-Fermented Soymilk
by Miao Hu, Jiao Wang, Yaxin Gao, Bei Fan, Fengzhong Wang and Shuying Li
Foods 2024, 13(15), 2399; https://doi.org/10.3390/foods13152399 - 29 Jul 2024
Cited by 4 | Viewed by 1575
Abstract
Fermentation with Bacillus subtilis significantly enhances the physiological activity and bioavailability of soymilk, but the resulting characteristic flavor seriously affects its industrial promotion. The objective of this study was to identify key proteins associated with characteristic flavors in B. subtilis BSNK-5-fermented soymilk using [...] Read more.
Fermentation with Bacillus subtilis significantly enhances the physiological activity and bioavailability of soymilk, but the resulting characteristic flavor seriously affects its industrial promotion. The objective of this study was to identify key proteins associated with characteristic flavors in B. subtilis BSNK-5-fermented soymilk using tandem mass tag (TMT) proteomics. The results showed that a total of 765 differentially expressed proteins were identified. Seventy differentially expressed proteins related to characteristic flavor were screened through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. After integrating metabolomics data, fifteen key proteases of characteristic flavor components in BSNK-5-fermented soymilk were further identified, and free ammonia was added. In addition, there were five main formation mechanisms, including the decomposition of urea to produce ammonia; the degradation of glutamate by glutamate dehydrogenase to produce ammonia; the degradation of threonine and non-enzymatic changes to form the derivative 2,5-dimethylpyrazine; the degradation of valine, leucine, and isoleucine to synthesize isovalerate and 2-methylbutyrate; and the metabolism of pyruvate and lactate to synthesize acetate. These results provide a theoretical foundation for the improvement of undesirable flavor in B. subtilis BSNK-5-fermented soy foods. Full article
Show Figures

Figure 1

14 pages, 2236 KiB  
Article
Polyhydroxyalkanoate Copolymer Production by Recombinant Ralstonia eutropha Strain 1F2 from Fructose or Carbon Dioxide as Sole Carbon Source
by Chih-Ting Wang, Ramamoorthi M Sivashankari, Yuki Miyahara and Takeharu Tsuge
Bioengineering 2024, 11(5), 455; https://doi.org/10.3390/bioengineering11050455 - 2 May 2024
Cited by 4 | Viewed by 3102
Abstract
Ralstonia eutropha strain H16 is a chemoautotrophic bacterium that oxidizes hydrogen and accumulates poly[(R)-3-hydroxybutyrate] [P(3HB)], a prominent polyhydroxyalkanoate (PHA), within its cell. R. eutropha utilizes fructose or CO2 as its sole carbon source for this process. A PHA-negative mutant of [...] Read more.
Ralstonia eutropha strain H16 is a chemoautotrophic bacterium that oxidizes hydrogen and accumulates poly[(R)-3-hydroxybutyrate] [P(3HB)], a prominent polyhydroxyalkanoate (PHA), within its cell. R. eutropha utilizes fructose or CO2 as its sole carbon source for this process. A PHA-negative mutant of strain H16, known as R. eutropha strain PHB4, cannot produce PHA. Strain 1F2, derived from strain PHB4, is a leucine analog-resistant mutant. Remarkably, the recombinant 1F2 strain exhibits the capacity to synthesize 3HB-based PHA copolymers containing 3-hydroxyvalerate (3HV) and 3-hydroxy-4-methyvalerate (3H4MV) comonomer units from fructose or CO2. This ability is conferred by the expression of a broad substrate-specific PHA synthase and tolerance to feedback inhibition of branched amino acids. However, the total amount of comonomer units incorporated into PHA was up to around 5 mol%. In this study, strain 1F2 underwent genetic engineering to augment the comonomer supply incorporated into PHA. This enhancement involved several modifications, including the additional expression of the broad substrate-specific 3-ketothiolase gene (bktB), the heterologous expression of the 2-ketoacid decarboxylase gene (kivd), and the phenylacetaldehyde dehydrogenase gene (padA). Furthermore, the genome of strain 1F2 was altered through the deletion of the 3-hydroxyacyl-CoA dehydrogenase gene (hbdH). The introduction of bktB-kivd-padA resulted in increased 3HV incorporation, reaching 13.9 mol% from fructose and 6.4 mol% from CO2. Additionally, the hbdH deletion resulted in the production of PHA copolymers containing (S)-3-hydroxy-2-methylpropionate (3H2MP). Interestingly, hbdH deletion increased the weight-average molecular weight of the PHA to over 3.0 × 106 on fructose. Thus, it demonstrates the positive effects of hbdH deletion on the copolymer composition and molecular weight of PHA. Full article
(This article belongs to the Special Issue Advances in Polyhydroxyalkanoate (PHA) Production, 4th Edition)
Show Figures

Figure 1

18 pages, 5501 KiB  
Article
Identification of Quantitative Trait Loci Controlling Root Morphological Traits in an Interspecific Soybean Population Using 2D Imagery Data
by Mohammad Shafiqul Islam, Amit Ghimire, Liny Lay, Waleed Khan, Jeong-Dong Lee, Qijian Song, Hyun Jo and Yoonha Kim
Int. J. Mol. Sci. 2024, 25(9), 4687; https://doi.org/10.3390/ijms25094687 - 25 Apr 2024
Cited by 4 | Viewed by 1718
Abstract
Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait [...] Read more.
Roots are the hidden and most important part of plants. They serve as stabilizers and channels for uptaking water and nutrients and play a crucial role in the growth and development of plants. Here, two-dimensional image data were used to identify quantitative trait loci (QTL) controlling root traits in an interspecific mapping population derived from a cross between wild soybean ‘PI366121’ and cultivar ‘Williams 82’. A total of 2830 single-nucleotide polymorphisms were used for genotyping, constructing genetic linkage maps, and analyzing QTLs. Forty-two QTLs were identified on twelve chromosomes, twelve of which were identified as major QTLs, with a phenotypic variation range of 36.12% to 39.11% and a logarithm of odds value range of 12.01 to 17.35. Two significant QTL regions for the average diameter, root volume, and link average diameter root traits were detected on chromosomes 3 and 13, and both wild and cultivated soybeans contributed positive alleles. Six candidate genes, Glyma.03G027500 (transketolase/glycoaldehyde transferase), Glyma.03G014500 (dehydrogenases), Glyma.13G341500 (leucine-rich repeat receptor-like protein kinase), Glyma.13G341400 (AGC kinase family protein), Glyma.13G331900 (60S ribosomal protein), and Glyma.13G333100 (aquaporin transporter) showed higher expression in root tissues based on publicly available transcriptome data. These results will help breeders improve soybean genetic components and enhance soybean root morphological traits using desirable alleles from wild soybeans. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetic Regulation of Crops)
Show Figures

Figure 1

13 pages, 3523 KiB  
Article
Direct Infusion Mass Spectrometry to Rapidly Map Metabolic Flux of Substrates Labeled with Stable Isotopes
by Nils W. F. Meijer, Susan Zwakenberg, Johan Gerrits, Denise Westland, Arif I. Ardisasmita, Sabine A. Fuchs, Nanda M. Verhoeven-Duif, Judith J. M. Jans and Fried J. T. Zwartkruis
Metabolites 2024, 14(5), 246; https://doi.org/10.3390/metabo14050246 - 25 Apr 2024
Cited by 1 | Viewed by 2437
Abstract
Direct infusion–high-resolution mass spectrometry (DI-HRMS) allows for rapid profiling of complex mixtures of metabolites in blood, cerebrospinal fluid, tissue samples and cultured cells. Here, we present a DI-HRMS method suitable for the rapid determination of metabolic fluxes of isotopically labeled substrates in cultured [...] Read more.
Direct infusion–high-resolution mass spectrometry (DI-HRMS) allows for rapid profiling of complex mixtures of metabolites in blood, cerebrospinal fluid, tissue samples and cultured cells. Here, we present a DI-HRMS method suitable for the rapid determination of metabolic fluxes of isotopically labeled substrates in cultured cells and organoids. We adapted an automated annotation pipeline by selecting labeled adducts that best represent the majority of 13C and/or 15N-labeled glycolytic and tricarboxylic acid cycle intermediates as well as a number of their derivatives. Furthermore, valine, leucine and several of their degradation products were included. We show that DI-HRMS can determine anticipated and unanticipated alterations in metabolic fluxes along these pathways that result from the genetic alteration of single metabolic enzymes, including pyruvate dehydrogenase (PDHA1) and glutaminase (GLS). In addition, it can precisely pinpoint metabolic adaptations to the loss of methylmalonyl-CoA mutase in patient-derived liver organoids. Our results highlight the power of DI-HRMS in combination with stable isotopically labeled compounds as an efficient screening method for fluxomics. Full article
(This article belongs to the Special Issue Advances in Metabolic Profiling of Biological Samples 2nd Edition)
Show Figures

Figure 1

21 pages, 3950 KiB  
Article
Effects of Vine Water Status on Malate Metabolism and γ-Aminobutyric Acid (GABA) Pathway-Related Amino Acids in Marselan (Vitis vinifera L.) Grape Berries
by Zhennan Zhan, Yanxia Zhang, Kangqi Geng, Xiaobin Xue, Alain Deloire, Dongmei Li and Zhenping Wang
Foods 2023, 12(23), 4191; https://doi.org/10.3390/foods12234191 - 21 Nov 2023
Cited by 4 | Viewed by 2043
Abstract
Malic acid is the predominant organic acid in grape berries, and its content is affected by abiotic factors such as temperature (fruit zone microclimate) and water (vine water status). The objectives of this study were to explore the potential mechanisms behind the effects [...] Read more.
Malic acid is the predominant organic acid in grape berries, and its content is affected by abiotic factors such as temperature (fruit zone microclimate) and water (vine water status). The objectives of this study were to explore the potential mechanisms behind the effects of vine water status on the biosynthesis and degradation of berry malic acid and the potential downstream effects on berry metabolism. This study was conducted over two growing seasons in 2021 and 2022, comprising three watering regimes: no water stress (CK), light water stress (LWS), and moderate water stress (MWS). Compared to CK, a significantly higher level of malic acid was found in berries from the MWS treatment when the berry was still hard and green (E-L 33) in both years. However, water stress reduced the malic acid content at the ripe berry harvest (E-L 38) stage. The activities of NAD-malate dehydrogenase (NAD-MDH) and pyruvate kinase (PK) were enhanced by water stress. Except for the E-L 33 stage, the activity of phosphoenolpyruvate carboxylase (PEPC) was reduced by water stress. The highest phosphoenolpyruvate carboxykinase (PEPCK) activity was observed at the berry veraison (E-L 35) stage and coincided with the onset of a decrease in the malate content. Meanwhile, the expression of VvPEPCK was consistent with its enzyme activity. This study showed that water stress changed the content of some free amino acids (GABA, proline, leucine, aspartate, and glutamate), two of which (glutamate and GABA) are primary metabolites of the GABA pathway. Full article
(This article belongs to the Special Issue Quality Control and Process Monitoring of Grape and Wine)
Show Figures

Figure 1

14 pages, 2872 KiB  
Article
Insights into the Response in Digestive Gland of Mytilus coruscus under Heat Stress Using TMT-Based Proteomics
by Lezhong Xu, Yuxia Wang, Shuangrui Lin, Hongfei Li, Pengzhi Qi, Isabella Buttino, Weifeng Wang and Baoying Guo
Animals 2023, 13(14), 2248; https://doi.org/10.3390/ani13142248 - 9 Jul 2023
Cited by 10 | Viewed by 2138
Abstract
Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, [...] Read more.
Ocean warming can cause injury and death in mussels and is believed to be one of the main reasons for extensive die-offs of mussel populations worldwide. However, the biological processes by which mussels respond to heat stress are still unclear. In this study, we conducted an analysis of enzyme activity and TMT-labelled based proteomic in the digestive gland tissue of Mytilus coruscus after exposure to high temperatures. Our results showed that the activities of superoxide dismutase, acid phosphatase, lactate dehydrogenase, and cellular content of lysozyme were significantly changed in response to heat stress. Furthermore, many differentially expressed proteins involved in nutrient digestion and absorption, p53, MAPK, apoptosis, and energy metabolism were activated post-heat stress. These results suggest that M. coruscus can respond to heat stress through the antioxidant system, the immune system, and anaerobic respiration. Additionally, M. coruscus may use fat, leucine, and isoleucine to meet energy requirements under high temperature stress via the TCA cycle pathway. These findings provide a useful reference for further exploration of the response mechanism to heat stress in marine mollusks. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

11 pages, 1986 KiB  
Communication
Asymmetric Pattern of Correlations of Leucine Aminopeptidase Activity between Left or Right Frontal Cortex versus Diverse Left or Right Regions of Rat Brains
by Manuel Ramírez-Sánchez, Isabel Prieto, Ana Belén Segarra, Inmaculada Banegas, Magdalena Martínez-Cañamero, Germán Domínguez-Vías, Raquel Durán, Francisco Vives and Francisco Alba
Symmetry 2023, 15(7), 1320; https://doi.org/10.3390/sym15071320 - 28 Jun 2023
Viewed by 1579
Abstract
Previous studies demonstrated an asymmetry of left predominance for mean values of soluble leucine aminopeptidase (LeuAP) activity in the frontal cortex (FC) and hypothalamus of adult male rats, fluorimetrically analyzed by the hydrolysis of Leu-β-naphthylamide as a substrate. No asymmetries were observed in [...] Read more.
Previous studies demonstrated an asymmetry of left predominance for mean values of soluble leucine aminopeptidase (LeuAP) activity in the frontal cortex (FC) and hypothalamus of adult male rats, fluorimetrically analyzed by the hydrolysis of Leu-β-naphthylamide as a substrate. No asymmetries were observed in nine other left (L) and right (R) regions obtained from rostro-caudally sectioned coronal slices. Neither had inter-hemispheric differences observed for lactate dehydrogenase (LDH), analyzed simultaneously in the same brain regions (L and R) of the same animals. However, the level of intra-hemispheric or inter-hemispheric correlation of LeuAP or LDH between such brain regions has not been analyzed. In order to obtain additional suggestions on the functional heterogeneity between regions of LeuAP and LDH, in the present investigation, the level of intra-hemispheric and inter-hemispheric correlations of the frontal cortex with the rest of the regions studied is described: (A) between the left frontal cortex (LFC) and the rest of the left regions; (B) between the right frontal cortex (RFC) and the rest of the right regions; (C) between the left frontal cortex and all of the right regions; and (D) between the right frontal cortex and all of the left regions. All of the correlations obtained were positive. The intra-hemispheric analysis showed a greater heterogeneity of values in the correlations observed between RFC and the rest of the right regions than between LFC and the rest of the left regions. Greater heterogeneity is observed when comparing RFC correlations with left regions than when comparing LFC correlations with right regions. In conclusion, the greatest heterogeneity (suggesting a greater functional variability) was observed in the right intra-hemispheric analysis and in the inter-hemispheric analysis between the RFC and the left hemisphere. The results for LDH showed a great homogeneity between regions both in the intra- and inter-hemispheric studies. Full article
(This article belongs to the Special Issue The Study of Brain Asymmetry)
Show Figures

Figure 1

15 pages, 3820 KiB  
Article
Crocin Attenuates NLRP3 Inflammasome Activation by Inhibiting Mitochondrial Reactive Oxygen Species and Ameliorates Monosodium Urate-Induced Mouse Peritonitis
by Ruth Sangare, Iskander Madhi, Ji-Hee Kim and YoungHee Kim
Curr. Issues Mol. Biol. 2023, 45(3), 2090-2104; https://doi.org/10.3390/cimb45030134 - 3 Mar 2023
Cited by 9 | Viewed by 2482
Abstract
Crocin is a hydrophilic carotenoid pigment found in the stigma of Crocus sativus or the fruit of Gardenia jasminoides. In this study, we investigated the effects of Crocin on the activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing [...] Read more.
Crocin is a hydrophilic carotenoid pigment found in the stigma of Crocus sativus or the fruit of Gardenia jasminoides. In this study, we investigated the effects of Crocin on the activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome in J774A.1 murine macrophage cells and monosodium urate (MSU)-induced peritonitis. Crocin significantly inhibited Nigericin-, adenosine triphosphate (ATP)-, MSU-induced interleukin (IL)-1β secretion, and caspase-1 cleavage without affecting pro-IL-1β and pro-caspase-1. Crocin also suppressed gasdermin-D cleavage and lactate dehydrogenase release and enhanced cell viability, indicating that Crocin reduces pyroptosis. Similar effects were observed in primary mouse macrophages. However, Crocin did not affect poly(dA:dT)-induced absent in melanoma 2 (AIM2) and muramyl dipeptide-induced NLRP1 inflammasomes. Crocin decreased Nigericin-induced oligimerization and the speck formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Crocin also dramatically alleviated the ATP-induced production of mitochondrial reactive oxygen species (mtROS). Finally, Crocin ameliorated the MSU-induced production of IL-1β and IL-18 and the recruitment of neutrophils during peritoneal inflammation. These results suggest that Crocin suppresses NLRP3 inflammasome activation by blocking mtROS production and ameliorates MSU-induced mouse peritonitis. Thus, Crocin may have therapeutic potential in various NLRP3 inflammasome-related inflammatory diseases. Full article
(This article belongs to the Special Issue Bioactives and Inflammation)
Show Figures

Figure 1

Back to TopTop